


Peeking into the On-Demand Economy: Crowd Behavior and
Incentive Design

a dissertation presented

by

Ming Yin

to

The School of Engineering and Applied Sciences

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Harvard University

Cambridge, Massachusetts

June 2017



© 2017 Ming Yin

All rights reserved.



Dissertation advisor: Professor Yiling Chen Ming Yin

Peeking into the On-Demand Economy: Crowd Behavior and
Incentive Design

Abstract

An increasing number of digital and mobile technologies have emerged today to match

customers, in almost real time, with a potentially global pool of self-employed labor, leading

to the rise of the on-demand economy, which has brought about dramatic changes in our

society. It creates new business models and new dynamics of labor allocation. It enables new

models of computation, that is, human-in-the-loop computing. And it leads to new forms of

knowledge creation—people all over the world are contributing to scientific studies in dozens

of fields, either by making scientific observations as amateur scientists or by participating

in online experiments as subjects. Despite its already significant impact, the on-demand

economy has still been considered as a black-box approach to soliciting labor from a crowd of

on-demand workers. Little is known about how the on-demand economy works and how it

can work better.

In this dissertation, using one of the leading on-demand crowdsourcing platforms—Amazon

Mechanical Turk—as an example, I present my findings in opening up the black box of

on-demand economy. I investigate two lines of problems in this dissertation: first, I focus on

understanding who the crowd of on-demand workers are and how they behave in on-demand

work; second, I explore how effective incentives can be designed for on-demand work. Through

a set of experimental studies, I provide a more precise picture of the on-demand workers,

showing that they display significant temporal variations, value social interactions, and

desire more flexibility and autonomy. Furthermore, based on a combination of experimental,

computational and design methods, I also show the effectiveness of extrinsic financial incentives
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in influencing on-demand workers, the feasibility of algorithmically controlling the provision

of monetary rewards in a session of on-demand tasks in a cost-efficient way, as well as the

potential of incorporating intrinsic motivator like curiosity in on-demand work through clever

designs of task interfaces.
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Chapter 1

Introduction

It is a late Friday night. A group of Harvard alumni has just had a wonderful reunion

night at their used to be favorite restaurant at Harvard Square and now needs a ride back

to their places. Ten years ago, there was not much they could do other than standing on

a corner hoping that some cab drivers would pass by. Nowadays, they can open an app on

their mobile, press a few buttons, and within a few minutes, an Uber driver will show up to

pick them up.

Meanwhile, in the Maxwell Dworkin building, a computer science graduate student is

making a poster in preparation for presenting a paper of hers at a top-tier conference soon,

but she is not completely satisfied with the current graphic designs yet. The best solution

for her not long ago would be asking a friend—if she happens to know someone with good

aesthetic—or hiring a local professional for help. Today, she can easily visit a website like

Upwork, on which she can seek for advice from an excellent freelancer who is savvy at design

and can be located at anywhere in the world.

Like Uber and Upwork, today, an increasing number of digital and mobile technologies

have emerged to match customers, in almost real time, with a potentially global pool of

self-employed labor, leading to the rise of on-demand economy. This technology-driven
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on-demand economy has created disruptive new paradigms of transaction and production.

On the one hand, the efficient matching between demand and supply allows customers to

get access to whatever they want whenever they want it as easy as clicking a button; on

the other hand, the direct matching between individual demand and individual supply also

empowers more people to embrace a different way of working—they no longer work for a

company or an organization, but instead, work for the “demand” and for themselves. Such

profound impact of the on-demand economy has spread across various sectors of our daily

life, from transportation to grocery delivery, to home cleaning, to legal services.

In addition to creating new business models and new dynamics of labor allocation, the on-

demand economy has also led to new models of computation—it has enabled human-in-the-loop

computing, which is one of the building blocks for the recent progress in artificial intelligence.

For example, the renowned ImageNet project has made extensive use of Amazon Mechanical

Turk, an on-demand crowdsourcing platform, to obtain accurate human annotations for

over ten millions of images [Russakovsky et al., 2015], which makes it possible for computer

vision researchers to train machine learning algorithms that surpass human-level performance

in object recognition for the first time [He et al., 2015]. The on-demand labor has also

been included in the feedback loop of computational processes or been asked to perform

tasks that software can’t do, for a wide range of purposes such as improving search result

relevance, filtering out inappropriate web content, or providing personal assistance in everyday

life [Bridgwater, 2016]. In other words, the artificial intelligence technologies of today still need

a degree of human intelligence in them [Gray and Suri, 2017], and the on-demand economy

provides just the right kind of convenience for the exchange of such human intelligence.

More broadly, for the entire community of scientific researchers, the on-demand economy

has also largely changed how knowledge is created today. Researchers are increasingly relying

on on-demand platforms like Amazon Mechanical Turk to conduct inexpensive surveys

and experiments with human subjects [Horton et al., 2011, Mason and Suri, 2012]. It is
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estimated that in 2015 alone, more than 800 studies were published using data collected from

Amazon Mechanical Turk, and these studies span dozens of fields from biomedicine to social

sciences [Hitlin, 2016]. Various citizen science projects like Zooniverse and Foldit have also

been set up, which attract a huge number of people all over the world to contributing to

science, either by making scientific observations as amateur scientists or completing scientific

tasks as needed. Zooniverse, for example, has more than 850,000 members1 across the globe

who volunteer to help with research projects in climate, space, literature, etc.

In many senses, the on-demand economy has opened up numerous exciting possibilities in

different areas including business, computing and science. Despite all its already significant

impact, the on-demand economy has still been considered as a black-box approach to soliciting

labor from a crowd of on-demand workers. In general, people only have some vague ideas,

if not misconceptions, on how the on-demand economy works and how it can work better.

In this dissertation, using one of the leading on-demand crowdsourcing platforms—Amazon

Mechanical Turk—as an example, I demonstrate my effort in opening up the black box of

on-demand economy. In particular, I present a number of studies which provide a more

fine-grained picture of the on-demand economy and resolve some misconceptions about it. I

choose to conduct my investigation on the on-demand economy using Amazon Mechanical

Turk as a starting point because it is one of the major on-demand platforms in the United

States with a large worker pool. Moreover, the use of Amazon Mechanical Turk is widespread

in both the industry (especially by IT and Internet companies) and the research community;

therefore, study results on Amazon Mechanical Turk can be relevant for a wide range of users

of the on-demand economy with different purposes, ranging from eliciting human intelligence

to enhance artificial intelligence to conducting surveys and experiments with human subjects.

More specifically, to better understand today’s on-demand economy, I focus on obtaining

1This statistics is retrieved from http://edutechwiki.unige.ch/en/Zooniverse.
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in-depth knowledge on who the on-demand workers are and how they behave in the on-

demand work, both individually and collectively. Such knowledge is very valuable for people

to understand the commonalities and differences of on-demand workers in comparison with

employees in the traditional economy, and to uncover the ways that the on-demand work

gets done. In addition, it further provides insights to both practitioners and researchers on

the opportunities and challenges in better leveraging the current on-demand economy given

on-demand worker’s characteristics, and potentially improving the on-demand economy in

the future to address worker’s needs and wants. Obtaining this knowledge can be particularly

challenging though, because it is not practical for people to interview or observe on-demand

workers on a large scale given that they can be physically apart from these globally-distributed

workers. Although such distance to workers has been virtually eliminated by the digital

communication protocols provided by on-demand platforms (e.g., the APIs), these protocols

come with certain problems—for instance, they may only provide very limited information

on the personal attributes (e.g., demographic information like age, gender, education, etc.)

and social characteristics (e.g., whether a worker has friends who also do on-demand work)

of an on-demand worker, let alone any detailed information on the procedure for a worker

to complete her work (e.g., how a worker schedules her tasks). It is thus important to use

innovative methods to collect such data, in order to answer a variety of questions in respect

to the behavior of the crowd of on-demand workers, including how stable or varying the

crowd is over time, whether there is any social interaction among them, and how they work

in different tasks with different levels of temporal flexibility.

Of equal importance to understanding the on-demand economy of today is exploring

possible ways to improve it in the future. In particular, as the on-demand economy presents

a new model of work that differs from the traditional job, it is straightforward to consider

multiple elements in work design and search for effective designs for the on-demand work

to enhance its efficiency and sustainability. One of the central design elements here is
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the design of incentives (or motivations), as incentives can largely direct one’s behavior.

From the designer’s point of view, the key challenge in incentive design is how incentives

should be structured and managed to induce desirable behavior from on-demand workers,

such as encouraging active participation and maintaining the quality of work from workers.

Psychological theories typically divide motivation into two types—extrinsic motivation, which

is the desire to do something because it leads to a separate outcome, and intrinsic motivation,

which is the desire to do something because it is inherently enjoyable [Ryan and Deci, 2000a].

Hence, I approach the problem of incentive design in the on-demand work from both directions

and explore methods to motivate the on-demand workers extrinsically and intrinsically.

Corresponding to the above two lines of problems of on-demand economy that I am

studying, this dissertation is composed of two parts. In the first part of the dissertation, I

present a number of experimental studies to understand the behavior of crowd workers in

the on-demand economy. Study results provide a more precise picture of the on-demand

workers, showing that they display significant temporal variations, value social interactions,

and desire more flexibility and autonomy. In the second part of the dissertation, I design

effective incentives for the on-demand work. I empirically show the effectiveness of extrinsic

financial incentives in influencing work quality and worker effort in on-demand work. Based

on quantitative models on worker’s reaction to financial incentives, I illustrate the feasibility of

algorithmically controlling the provision of monetary rewards in a session of on-demand tasks

in a cost-efficient way. I also provide design principles for task interfaces of the on-demand

work, which can be adopted to initiate intrinsic motivation, such as stimulating the curiosity

of on-demand workers to engage and incentivize high performance from them.

At the core of this dissertation lies the application of an interdisciplinary, mixed-methods

methodology. A fundamental aspect of this methodology is the design and deployment of

large-scale online experiments. Such large-scale online experimentation allows me to collect

rich behavioral datasets that enable the discoveries of some “unknown unknowns” about
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human behavior, which may not only improve the understanding of on-demand workers but

also help to answer important social science questions about humans in general. Moreover,

through carefully designed randomized online experiments, I can also explore the “known

unknowns”, for example, by making casual inference about human behavior, which guides

me to employ effective interventions and advance the designs of on-demand work from an

engineering perspective. On top of the experimentation approach, I add in the application

of computational methods to further improve the on-demand economy in an algorithmic

way, and the computational approach becomes especially powerful when integrated with the

experimental approach—with the combination of these two approaches, models and algorithms

can be designed to be aware of human behavior that is observed in the experimental data,

and computational solutions can also be quickly evaluated, improved and iterated through

experimentation.

1.1 Understanding Crowd Behavior

Understanding the ways the on-demand economy works requires us to understand who

the crowd of on-demand workers are and how they behave, so that we can get a sense of

how work gets done in the on-demand economy. The traditional black-box view of the

on-demand economy has led to limited or even inaccurate perception of the crowd. For

example, the promise of the on-demand economy to immediately provide some labor to fulfill

a customer’s demand upon request (but without a detailed description of various features of

the worker) has, to some degree, made it easy for people to neglect individual differences

among on-demand workers. As a result, it is unclear, for example, how the population of

on-demand workers varies over time in terms of their demographics. For researchers who

utilize the on-demand economy to facilitate scientific discoveries, the lack of knowledge on

the crowd dynamics is even more concerning—there is little evidence supporting or refuting
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the existence of temporal differences within the population of on-demand workers regarding

their economic behavior, cognitive abilities and styles, and personality, yet such evidence is

crucial for researchers to interpret how robust their crowd-based findings are. In addition, our

impression of on-demand workers has largely been shaped by how they have been “advertised,”

which may actually lead to some misconceptions. For example, on-demand platforms typically

attract workers by allowing them to complete the work whenever and wherever they want.

Thus, it is not surprising that people have viewed the crowd as a group of independent

workers who have enjoyed sufficient amount of flexibility to control their own work, and little

attention is paid on connections and social interactions among workers or whether workers

actually have enough flexibility in the on-demand work.

To obtain a more comprehensive and accurate understanding of crowd behavior in the

on-demand economy, using workers on Amazon Mechanical Turk as an example, I have

conducted a set of experimental studies to examine various aspects of the crowd.

First, I investigated the temporal dynamics within the population of crowd workers.

Results suggested that on-demand workers who are available at different times in a day

display significant variations in a number of dimensions in their demographics, and some

distinctive features were extracted to characterize workers of different times of day. For

example, for the population of U.S. on-demand workers recruited from Amazon Mechanical

Turk, there are more inexperienced workers and West coast workers around 2am EST while

workers available at 8am EST are significantly older, more experienced, more likely to be

white and reside in the Northeast. To see whether conducting scientific studies on on-demand

platforms at different times in a day may lead to different results, I further looked into

whether temporal differences also exist in the ways that on-demand workers make incentivized

decisions in economic games, the levels of cognitive abilities and types of cognitive styles

they have, and the kind of personality they show. Experimental results indicated that

while the crowd population has a rather stable composition in their cognitive abilities/styles
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and personality over time, they exhibit different economic behavior within a day, including

fluctuations in their tendency to cooperate as shown in the public goods game and variations

in their risk attitudes as evident in the lottery choice game.

Next, I dispelled the notion of the crowd as a collection of independent workers by mapping

the entire communication network of workers on Amazon Mechanical Turk. In particular, I

designed and executed a task in which over 10,000 on-demand workers from across the globe

self-reported their communication links to other workers; hence the communication network

within the crowd was revealed for the first time. Experimental results showed that there is

a rich network topology over a subset of roughly 13% of all the workers who took our task.

I conducted further analysis to understand with whom workers communicate (e.g., is there

any homophily in the communication network?), how workers communicate with one another

(e.g., does communication happen primarily through online forums or one-on-one channels?),

what workers communicate about, and the potential influences that communication exerts on

workers. These findings implied that many on-demand workers value social interactions and

have the needs to connect with others either virtually or in person. In other words, behind

the scenes of the on-demand economy, there is a substantial amount of organic collaboration

developed among on-demand workers.

Finally, I conducted a study on how on-demand workers react to temporal flexibility

in their work. It was found that while many workers value the flexibility provided in the

on-demand work in determining when and how long to work on on-demand platforms, they

also find themselves to be much more constrained within a task due to the short amount of

time allotted to the task. For example, after an Amazon Mechanical Turk worker accepts a

task, she must complete the task within a pre-specified time limit in order to get paid. Such

time constraint makes completing a task almost like taking an exam, and naturally leads

to workers’ desire for more flexibility within tasks, which is supported by our experimental

results. It was observed that granting more in-task flexibility significantly improves the
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engagement and performance of on-demand workers, and workers also behave differently

in different tasks by, for example, leveraging the flexibility within a task to work at their

own pace and schedule their workload in an efficient way. I further explicitly measured the

economic values that on-demand workers associate with in-task flexibility and confirmed that

about 65%–70% of the workers attach a positive value to it—in fact, it was estimated that

on average, on-demand workers are willing to forego a financial compensation of $0.82/hour

or more for the ability to control their own time in the on-demand work.

1.2 Designing Extrinsic and Intrinsic Incentives

Designing effective incentives for the on-demand work is a key step for exploring how

the on-demand economy can work better. One of the most widely used and studied ways

to incentivize on-demand workers is to provide extrinsic motivation like financial incentives,

yet the folk knowledge and early research suggests that the quality of work does not seem

to be affected by how much a worker is paid [Mason and Watts, 2010, Rogstadius et al.,

2011]. This is in stark contrast to the common belief of “people respond to incentives” and

leads one to suspect whether financial incentives can be effective in encouraging higher effort

and better work in the on-demand economy. Even if the answer is yes, for requesters who

hire on-demand workers, using monetary rewards to motivate workers is not free. Hence,

one critical challenge to address is how to trade off financial cost for work quality and offer

monetary rewards in a way to maximize the requester’s overall utility. In addition, there

have been numerous attempts to incorporate intrinsic motivation in the design of on-demand

work, such as highlighting the meaningfulness of work [Chandler and Kapelner, 2013] and

applying gamification techniques [von Ahn and Dabbish, 2008]. However, the efficacy of these

approaches ranges quite a bit, making it necessary for us to further investigate the potential

for using other types of intrinsic motivators in the on-demand work environment, and ideally
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provide a principled way to do so.

I first resolved the concern about the effectiveness of financial incentives in the on-demand

work by focusing on performance-contingent financial incentives, and carefully examining

their impact on worker effort and work quality in a sequence of on-demand tasks (i.e.,

an on-demand work session) through randomized experiments. Our experimental results

demonstrated that performance-contingent financial incentives can effectively motivate better

worker performance. More specifically, in a session of tasks of the same type, although a

higher payment level in each individual task doesn’t necessary impact workers, increasing

(or decreasing) the magnitude of financial incentives over the subsequent two tasks leads to

increased (or decreased) levels of worker effort and work quality. In other words, workers

respond more to the “relative magnitude” of incentives rather than the “absolute magnitude.”

This phenomenon can be related to an anchoring effect in worker’s perception of the fair

payment level—workers may compare the incentive in a task with the reference of fair

payment in their minds before deciding their effort levels in tasks, yet their perceptions

of fair payment can be largely influenced by the first payment level they receive in a task

session. On the other hand, it was also showed that in a session of tasks of different types,

performance-contingent rewards are most effective in improving worker performance when

the task-switching frequency is low and rewards are placed at the switching points, where

task type has just changed from one to another.

These experimental studies informed us of the importance of characterizing the effects of

financial incentives on workers in the context of a task workflow, rather than for individual

tasks. In light of this, I proposed a wide range of quantitative models, including supervised

learning models, autoregressive models and Markov models, to capture the impact of financial

incentives on on-demand workers in a sequence of tasks. I also conducted an empirical

comparison across these models to better understand how well they can predict on-demand

work quality under monetary interventions, especially in realistic scenarios where the size
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of training data or the access to ground truth information is limited. Furthermore, using a

particular type of Markov model, that is, the first-order input-output hidden Markov model,

I developed an algorithmic approach that enables dynamic provision of monetary rewards to

workers in an on-demand work session. This algorithmic approach solved the optimization

problem for requester utility, considering model predictions on worker’s future performance as

well as the requester’s tradeoff between quality and cost. Empirical evaluations on Amazon

Mechanical Turk confirmed that the dynamic bonus policies designed using this algorithmic

approach can increase requester utility in real on-demand work sessions by 27%–64%.

Finally, to complement studies on the design of extrinsic incentives, I also explored the

possible application of intrinsic motivation in on-demand work contexts and demonstrated

the potential of using curiosity as an intrinsic motivator for the on-demand work. In

particular, based on the information gap theory of curiosity, the concept of curiosity has

been operationalized into the task interface design of the on-demand work to create synergy

between working on tasks and satisfying one’s curiosity. Examples are provided on designing

curiosity interventions in the on-demand work with three design elements—information

goal, gap salience, and incremental information reveal. Experimental results suggested that

curiosity can be an effective intrinsic incentive to use in future on-demand work designs, as it

may significantly improve worker engagement without degrading the worker performance,

while the magnitude of its effect is influenced by both personal characteristics of the worker

and the nature of the task.

1.3 Limitations

In this dissertation, the investigation on the on-demand economy is conducted on a

particular on-demand platform (i.e., Amazon Mechanical Turk). Therefore, specific results

may only be directly generalizable to similar platforms (e.g., other micro-task based, online
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crowdsourcing platforms like Crowdflower and ClickWorker), and may not be valid for other

significantly different ones. For example, in examining the behavior of on-demand workers,

I found that providing more temporal flexibility to Amazon Mechanical Turk workers by

allotting more time in a task leads to higher levels of worker engagement and performance.

But in other settings (e.g., for on-demand mobile apps like Uber), it may not be practical to

provide flexibility in a similar way as it may hurt the core interest of customers (e.g., get a car

as fast as possible). Obtaining a more comprehensive view of the on-demand economy for a

more diverse set of on-demand platforms is an important next step to deepen the knowledge

of on-demand economy.

To do so, it is necessary to both examine the external validity of results in this dissertation,

and perhaps more crucially, to understand the unique challenges for different types of plat-

forms that may stem from the specific industry that a platform serves (e.g., transportation).

To that end, while specific findings may not generalize, the interdisciplinary, mixed-methods

methodology described in this dissertation is generalizable. For example, large-scale online

experimentation can be adopted to investigate the effectiveness of different communication

messages in nudging Uber drivers to stay on the road [Scheiber, 2017]. Moreover, computa-

tional methods can be designed to model drivers’ behavior (e.g., whether choose to stay on

road, whether accept a passenger request) based on various factors (e.g., time, location, traffic,

sensitivity to communication messages, etc.) as well as deciding on possible interventions

(e.g., whether and to whom to send a communication message, and what to send) to influence

drivers.

1.4 Contributions and Thesis Overview

This dissertation consists of two major components, in which I demonstrate my effort in

opening up the black box of on-demand economy, using one of the leading on-demand crowd-
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sourcing platforms, Amazon Mechanical Turk, as an example. Through experimental studies,

the first component provides a quantitative account of workers in the on-demand economy:

who they are and how they behave in the work. Contributions related to understanding

crowd behavior include:

• Revealed the temporal dynamics of on-demand workers at different times of day in

terms of demographics, economic behavior, cognitive abilities and styles, and personality.

(Chapter 2)

• Mapped the communication network among more than 10,000 on-demand workers for

the first time, and analyzed the scale and topological structure of this communication

network, as well as the ways on-demand workers utilize and be influenced by this

network. (Chapter 3)

• Characterized the impact of providing on-demand workers with more control over their

own time during work on workers’ engagement, performance and ways of completing

the work, and further estimated the economic values on-demand workers attach to the

temporal flexibility in their work. (Chapter 4)

The second component focuses on designing effective incentives for on-demand work to

improve its efficiency and sustainability. Contributions related to incentive design in the

on-demand economy include:

• An in-depth, empirical understanding on whether and when financial incentives are

effective in influencing worker performance, for both on-demand work sessions of a

single type of task and sessions with mixed types of tasks, as well as psychological

explanations for the observed phenomenon. (Chapter 5)

• An algorithmic approach to predicting work quality under monetary interventions and

dynamically controlling the provision of financial incentives in an on-demand work

session to elicit high-quality work in a cost-efficient way. (Chapter 6)
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• Design elements and principles that enable the incorporation of curiosity as an intrinsic

motivator for the on-demand work through task interfaces. (Chapter 7)

Finally, Chapter 8 concludes and presents discussion for future research directions.

The work presented in Chapters 3, 5, 6 and 7 was produced in collaboration with Yiling

Chen, Yu-An Sun, Mary Gray, Siddharth Suri, Jennifer Wortman Vaughan, Edith Law, Joslin

Goh, Kevin Chen, Michael Terry and Krzysztof Z. Gajos, and was previously published as

conference papers. Pointers to specific papers are provided at the end of each chapter. The

research in Chapter 2 (in collaboration with Yiling Chen, Emma Heikensten, and Anna

Dreber) and Chapter 4 (in collaboration with Mary Gray and Siddharth Suri) are unpublished

working papers at the time of writing this dissertation.
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Chapter 2

The Temporal Dynamics of the Crowd

The on-demand economy has created an efficient way to connect the supply and demand

of labor, no matter it is for one-off services like driving, or small piece of information work

like image annotation, or scientific studies like short surveys and experiments. For example,

on Amazon Mechanical Turk (MTurk)1, an on-demand crowdsourcing platform, requesters of

the labor can use an API provided by the platform to post small jobs, referred to as human

intelligence tasks or HITs, along with specified time limits and payments for completing each

HIT. A typical HIT might involve translating a paragraph of text, labeling an image, or

completing a survey. Workers can then browse available HITs and choose HITs to work on in

exchange for the pre-specified payments. With a global, on-demand workforce, requesters

can easily get thousands of HITs done in a very short amount of time.

While enjoying the convenience of quick access to the supply of labor, requesters often get

very limited information on who the workers that they interact with are through the digital

communication protocols, defined by the API of the on-demand platforms—for example, on

MTurk, the personal attributes of workers, such as age, gender, and ethnicity, are all hidden

from requesters. To address this problem, a large number of studies have been conducted to

1https://www.mturk.com/
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understand the demographic, geographical, political, occupational and motivational informa-

tion for on-demand workers from various platforms [Ipeirotis, 2010, Paolacci et al., 2010, Huff

and Tingley, 2015, Avery et al., 2016, Hitlin, 2016, Intuit, 2017]. In particular, as on-demand

platforms like Amazon Mechanical Turk has become increasingly popular among researchers

as a source of data collection, especially for recruiting human subjects for scientific studies,

there have been considerable effort in examining how “representative” the samples of workers

on on-demand platforms are. It is found that U.S. subjects recruited from MTurk are more

demographically diverse and thus more representative of the U.S. population compared to

various convenience samples like the typical American college samples [Buhrmester et al., 2011,

Berinsky et al., 2012]. However, it still exhibits notable differences from national probability

samples obtained through face-to-face interviews, suggesting that it is not representative of

the population as a whole [Berinsky et al., 2012].

In addition, researchers and practitioners have also noticed that the composition of the

on-demand worker population may change from time to time. For example, it is reported

that from March 2008 to February 2010, the crowd worker population on Amazon Mechanical

Turk has largely shifted from a primarily moderate-income, U.S.-based workforce towards

an increasingly international group with a large number of young, well-educated Indian

workers [Ross et al., 2010]. More recently, Stewart et al. [2015] has estimated that the time

taken for half of the workers to leave the MTurk pool and be replaced is about 7 months.

These observations raise an important issue for understanding who the crowd of on-demand

workers are that deserves in-depth research, that is, the temporal dynamics of the crowd.

Arguably, the variations in the on-demand worker population observed in [Ross et al.,

2010, Stewart et al., 2015] all represent a “macro-level” temporal dynamics that span over a

period of months or years. However, the crowd may also exhibit some “micro-level” temporal

dynamics within individual days. Indeed, the high mobility of workers in the on-demand

economy implies that the worker who picks up a task at a particular time of day is someone
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who happens to be available at that time, suggesting the temporal differences within the

on-demand worker population in a day can be significantly larger compared to employees in

the traditional economy. Such micro-level temporal dynamics has received much less attention,

perhaps because people tend to treat each individual worker within a short timeframe as,

more or less, “interchangeable,” especially concerning what kind of work the worker can

complete2.

The problem of better understanding the micro-level temporal variations in the on-demand

worker population is especially relevant for scientific researchers who conduct studies with

the crowd, though. In particular, with on-demand platforms like Amazon Mechanical Turk,

researchers can essentially collect experimental data at any time that they want. As such,

one may wonder whether the subject samples that researchers obtain at different times (e.g.,

in the morning or at night) differ from each other. Moreover, from an experimenter’s point

of view, it is also natural to ask whether conducting an experiment on these platforms at

different times can possibly lead to different experimental results.

Recently, a few studies have been conducted to provide some initial knowledge on the

micro-level temporal dynamics within the population of on-demand workers. For example,

Difallah et al. [2015] have developed a website called “Mechanical Turk Tracker”3, which keeps

track of various activities on Amazon Mechanical Turk, including monitoring the fluctuations

in its worker demographics through periodical surveys. Researchers have examined whether

the demographic composition of experiment participants that they recruit through MTurk

varies by time of day, day of week and the serial position in the experiment (i.e., whether

a subject participates in the experiment in the early stage or the late stage) [Casey et al.,

2017, Arechar et al., 2016]. Moreover, Arechar et al. [2016] further looked into the differences

2For example, each worker on on-demand crowdsourcing platforms may be viewed as near-identical CPU
that perform computations for pay [Suri, 2016].

3http://www.mturk-tracker.com/
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in worker behavior at different times, especially in terms of workers’ incentivized decisions

involving prosociality, punishment and discounting (e.g., worker’s decisions in prisoner’s

dilemma, dictator games, charitable giving, time discounting, etc.). Results in [Casey et al.,

2017, Arechar et al., 2016] indeed point out a few inter-temporal differences in terms of the

subject demographics—for instance, participants at different times of day differ from each

other in dimensions like the time zones they come from, marital status and experience levels.

However, it is also reported that participants at different times of day don’t seem to exhibit

significantly different behavior in various economic games.

Interestingly, the findings in both [Casey et al., 2017] and [Arechar et al., 2016] are based

on data from experiments in which workers are not allowed to participate for more than once.

In other words, the reported temporal differences for workers at different times of day in

these studies actually represent the variations of experiment participants in one experiment,

when the experimenter leaves that experiment continuously open for a very long time while

sampling participants from the underlying worker pool without replacement4. However, as

workers are naturally presented on on-demand platforms at different times of day, it can be

biased to use these results to interpret whether the available workers at different times of day

differ in their demographic characteristics, as well as whether an experimenter will get the

same experimental results if, hypothetically, he launched his experiment on the platform in

different time slots (e.g., whether launching an experiment during 8am–9am leads to the same

experimental results as that in the scenario when the experiment is launched at 5pm–6pm). A

solid understanding on these questions is critical for researchers who leverage the on-demand

economy as a way to facilitate scientific studies, as it will give them a sense of how robust the

findings that they derive from crowd-based online studies are. Moreover, such understanding

4In [Arechar et al., 2016], the authors also calculated each participant’s “experienced time,” that is, the
time that subjects participate in the experiment according to their local time zones, and analyzed the temporal
differences using subjects’ experienced times.
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will also inform researchers on how to conduct their surveys or experiments on on-demand

platforms and communicate their discoveries in an appropriate way.

Thus, in this chapter, we attempt to understand the micro-level temporal dynamics of the

crowd by analyzing the differences across on-demand workers that are available at different

times of day, and we further examine whether the timing of an experiment on on-demand

platforms like MTurk has any influence on experimental results. An ideal approach to

answering these questions would be to artificially create a few “parallel universes” of the

on-demand platforms—for example, we may build a number of different versions of the MTurk

website, and each MTurk worker is randomly assigned to use one of them. These different

versions of the MTurk website are identical in all aspects except that the experiment that we

are interested in studying will be posted in each version of the website at a different time (all

other tasks will be posted on all versions of website in exactly the same way). Such design

would allow us to construct a few plausible counterfactual worlds, and we can therefore answer

our research questions by comparing the worker demographics and experimental results for

the experiments that we conduct in each “world.”

This ideal approach is hardly practical, though, given that we are not the provider of the

platform. Therefore, in this chapter, we propose a few innovative experimental designs to

address our research questions without actually creating the parallel universes (at least not at

a full scale), and we limit our attention to examine the temporal dynamics of crowd workers

on MTurk in individual days. In Section 2.1, we create an experiment to understand the

temporal variations in demographics for available workers on MTurk throughout a day, by

collecting worker samples every 3 hours through different tasks posted from different requester

accounts. Based on the collected data, we identify a few dimensions of demographics for

which significant differences are observed across the available MTurk workers at different

times, and we further extract a few distinctive features to characterize workers at different

times. These results reflect that there is indeed certain fluctuation in the composition of

19



workers on MTurk throughout a day. Furthermore, in Section 2.2, we examine whether

the results of scientific studies conducted on MTurk can differ by time, or more specifically,

whether the available crowd workers at different times of day display significantly different

economic behavior, cognitive abilities and styles, and personality. We answer these questions

using a two-phase experiment which is designed to approximate the idea of “parallel universes”

with a representative sample of the entire MTurk worker population. In our experiment, no

significant difference is observed in terms of the cognitive abilities and styles or the personality

of workers at different times of day. However, we do find that for studies that involve some

incentivized decisions from the workers (e.g., classical behavioral economic experiments like

the public goods game or the lottery choice game), it is possible that the timing of the study

will change its result to some degree. In other words, for some scientific experiments that are

conducted with the crowd, the timing of the experiment may in fact exert notable influences

on its result. We finally discuss the implications of our findings in Section 2.3.

2.1 The Temporal Variations in Crowd Demographics

In this section, we aim at thoroughly understanding temporal variations in the demographic

characteristics of workers who are available on on-demand platforms throughout a day—what

are the key differing dimensions and what kind of characteristics workers at different times

have? To answer these questions, we conducted an empirical investigation on Amazon

Mechanical Turk.

2.1.1 Experimental Design

Existing work that examines the temporal variations of the crowd for different times in a

day is based on experiments that prevent worker from participating more than once [Casey

et al., 2017, Arechar et al., 2016]. Hence, they can not be used to accurately interpret the
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differences among the available workers of the platform in different time slots. The key

limitation here is that by leaving an experiment open for a long time and restricting each

worker to participate in the experiment only once, the obtained worker sample in the later

stage of data collection can be biased. This is because at the later stage of data collection,

a fraction of available workers then may be forbidden from participating in the experiment

again if they have already participated in the experiment earlier, but in fact, they should

have been allowed to participate as they are actually presented on the platform at that time.

An alternative design is to leave the experiment open for a long time while allowing each

worker to participate for multiple times5. However, this design may only attenuate the bias

in worker sample in the later stage of data collection at best, because workers may find it

boring to complete the same task more than once and therefore choose not to do so. To solve

this problem, we may consider another design, in which the experimenter posts a different

HIT at a different time in the day, but content-wise, these HITs are similar enough to attract

the same pool of workers on the platform. Workers are allowed to participate in as many of

these different HITs as they wish, as long as they are available when the HIT is posted. One

issue raised by this design is that workers may start to “follow” the experimenter’s requester

account (possibly using some scripts) if they find that various kind of tasks provided by this

requester are all interesting and well-paid. As a result, these workers will be immediately

notified and may come back to work once the experimenter posts new tasks on the platform,

even though the tasks are not posted during the time that they typically work on MTurk. In

other words, we may create new bias with this design, and such concern is especially serious

if, for example, we use a requester account to post different tasks at a fixed interval (e.g.,

post a different kind of task every 3 hours), and workers manage to figure out this interval.

5For example, researchers have adopted this kind of approach to capture the time variability in the
demographics of MTurk workers by posting one 5-question demographic survey every 15 minutes, and
each worker is allowed to take this survey once per month [Ipeirotis, 2015]. See http://demographics.
mturk-tracker.com/ for the results.
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A third design is to create multiple requester accounts and post the same HIT at different

times using each of the requester accounts in turn. Yet, from the worker’s point of view, this

design may seem to be a bit suspicious to them as they will find that many requesters are

posting the exact same task in a day.

Given the limitations on all possible designs that we have discussed above, in this study,

we present a fourth, innovative experimental design that we believe to be natural while

minimizing the possible bias in collecting worker samples at different times as much as

possible. Specifically, we create 8 requester accounts in total, and each requester account is

associated with a HIT that contains a pre-task demographic survey, a unique cognitive task,

as well as a post-task exit survey. Every 3 hours, we use a different requester account to post

its HIT. We thus can collect 24÷ 3 = 8 worker samples from different times in a day, and

each worker sample roughly contains 100–200 workers who participate in the same HIT that

is posted from one requester account at a particular time slot. In other words, we collect

data on worker demographics at different times in a day through posting different HITs from

different requester accounts. In addition, to see whether any possible demographic difference

that we observe in the collected worker samples is limited to a particular day, we repeat this

process for 5 consecutive workdays. Therefore, in total, we get 8× 5 = 40 worker samples

from different days and times, with 5 samples in each particular time slot (e.g., for the

8am slot, we obtain 5 worker samples, each roughly of size 100–200, from Monday, Tuesday,

Wednesday, Thursday and Friday, respectively). We provide more detailed information about

this experimental design below, especially on a number of design decisions we make to ensure

its validity—on the one hand, we try to make sure that the 8 HITs associated with the 8

requester accounts actually look like (ideally irrelevant) tasks from different requesters, so

workers will not find it unnatural to see similar tasks from different requesters; on the other

hand, we also try to keep all 8 HITs as similar as possible at the preview stage, so that we

can use them to approach to the same pool of subjects on MTurk and thus minimize the
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chances that differences in worker demographics across different samples, if any, are a result

of each HIT attracting a different subpopulation of workers.

Pre-task demographic survey. In the pre-task survey of each HIT, we ask workers seven

questions regarding their demographic background, including their gender, location (i.e., the

state that they currently live in), age, highest level of education, ethnicity, race and religion.

To make the 8 HITs look more different, for each question, we randomly select one way to

state it from three alternatives (e.g., for the question on gender, the three alternatives are

“Gender”, “What is your gender?” and “Please indicate your gender.”). Furthermore, the

order of questions in the survey is also randomized.

Cognitive tasks. Including a unique type of cognitive task in each HIT is the key step

for making the 8 HITs different. More specifically, we consider the following eight types of

cognitive tasks:

• Social intelligence (Requester account 1): In each task, the worker is shown a pair of

eyes with four emotion labels around it and asked to select the word that best describes

the emotion that the eyes are showing. Such ability is observed to be related to worker

performance on team-based problem solving tasks [Baron-Cohen et al., 2001].

• Nutrition intelligence (Requester account 2): In each task, the worker is presented with

a pair of photographs of meals and asked to answer a nutrition-related question, such

as “which meal has more fat.”

• Sleight of hand (Requester account 3): In each task, the worker is shown a picture of

a hand and asked to guess whether the hand on the screen is a left or right hand. In

addition, in some tasks, we inform workers that the picture is presented as a mirror

image and thus workers should reverse their answers (e.g., if a worker sees a left hand

in a mirror image, it is actually a right hand).
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• Reaction time (Requester account 4): In each task, the worker sees a red square on the

screen, which may change into another shape at any time. The worker is asked to click

on the shape as quickly as she can after the change happens.

• Thinking style (Requester account 5): In each task, the worker is shown three words

(e.g., “seagull”, “sky” and “dog”) and asked to click on the two words that she feels go

together best. This task, initially designed by Ji et al. [2004], determines whether an

individual tends to group information holistically or analytically.

• Spatial intelligence (Requester account 6): In each task, the worker is asked to answer

a question that tests her ability to comprehend 3D images and shapes (e.g., select an

unfolded object that can be folded into a target cube).

• Face recognition (Requester account 7): In each task, the worker is shown 25 faces and

has 1 minute to remember them. When the time is up, the worker gets a sequence of

faces and for each of them, she is asked to decide whether that face is among the 25

faces that she previously sees.

• Memory test (Requester account 8): In each task, the worker first sees a screen showing

anywhere between 1 and 6 symbols (each symbol is a numeric digit) and she is asked

to memorize these symbols in 6 seconds. Then, the worker sees a series of screens, each

showing one symbol at a time and asking her to decide whether or not that symbol is

present in the set that she has just memorized.

Four of these tasks (social intelligence, nutrition intelligence, thinking style and memory

test) are adapted from experiments on the online experimental platform LabintheWild6 [Rei-

necke and Gajos, 2015], and the other four tasks are designed by us. As the cognitive task

is the main body for each HIT, workers may naturally treat the HITs we post at different

times from the corresponding requester accounts as different tasks from different requesters.

6http://labinthewild.org/

24

http://labinthewild.org/


Therefore, it’s likely that they will be willing to participate in multiple tasks at different

times as long as they are online and interested in the tasks.

Post-task exit survey. In the post-task survey of each HIT, we ask a few more questions

regarding workers’ demographics, including:

• working experience on MTurk (4 questions): the number of years using MTurk, the

number of HITs completed, the number of HITs completed in the last month, approval

rate on MTurk;

• levels of communication related to MTurk work (2 questions): usage of online forums

related to MTurk work, the number of workers communicated with in the last week

about MTurk work;

• income/household information (6 questions): personal income, household income, the

number of income earners in the household, the number of children under 18 in the

household, whether MTurk is primary source of income, whether hold other jobs outside

MTurk;

• experience in participating scientific experiments on MTurk (2 questions): whether

participated in scientific experiments on MTurk in the last month, the number of

scientific experiments participated in the last month.

Similar to the pre-task survey, to further differentiate the 8 HITs, we also state each question

in the post-task survey randomly from three possible options, and the order of questions are

randomized whenever appropriate7.

Since in this study, we are mainly interested in understanding the temporal variations

in worker demographics at different times of day, the main purpose for posting the 8 HITs

7We keep the order of the questions fixed for some categories of questions like the income/household
information, because for example, it may make more sense to ask about personal and household income
subsequently.

25



from different requester accounts every three hours is to collect worker responses to the

demographic questions in the pre-task and post-task surveys in the HITs. Dividing the 21

demographic survey questions into two parts (i.e., the pre-task survey and the post-task

survey) is also a part of our design choice. Ideally, because we aim at analyzing the variations

across available workers at different times, we would put all survey questions at the beginning

of the HITs. In this way, we can collect the demographic information for as many workers

who have ever accepted our tasks as possible, even though some of them may eventually drop

out. However, if we do so, workers may find that a number of different HITs from different

requester accounts share a long and somewhat similar survey at the start, which can possibly

lead them to suspect whether these HITs are “actually” from different requesters. To address

this concern, we decide to only keep the 7 basic demographic questions before the cognitive

task and leave the other 14 questions after the cognitive task. With this design, we can at

least collect as much information as possible on the basic demographic without incurring

unnecessary suspicions among workers, as it is very common for requesters to ask workers

about these basic demographic information before workers entering the actual task.

Experimental procedure. We conducted our experiment from August 1, 2016 (Monday)

to August 5, 2016 (Friday). Each day, HITs were posted at eight time slots (i.e., 2am, 5am,

8am, 11am, 2pm, 5pm, 8pm and 11pm; all according to the Eastern Standard Time), and

at each time slot, we used a different requester account to post the HIT associated with it.

Besides, to minimize the chance for workers to follow requester accounts, each account was

used at different time slots across different days. Table 2.1 provides a detailed schedule on

how we posted HITs in our experiment.

As we posted HITs 8 times a day for 5 days, we can think of our experiment as an

aggregation of 40 sub-experiments. Hence, we collected 40 worker samples in total, one for

each sub-experiment. Notice that the expiration time limits for all HITs were set to be 1
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August 1
(Mon.)

August 2
(Tue.)

August 3
(Wed.)

August 4
(Thu.)

August 5
(Fri.)

2am Account 1 Account 6 Account 5 Account 4 Account 2
5am Account 2 Account 8 Account 7 Account 1 Account 6
8am Account 3 Account 1 Account 4 Account 6 Account 5
11am Account 4 Account 3 Account 2 Account 7 Account 8
2pm Account 5 Account 7 Account 8 Account 3 Account 4
5pm Account 6 Account 4 Account 1 Account 8 Account 3
8pm Account 7 Account 5 Account 6 Account 2 Account 1
11pm Account 8 Account 2 Account 3 Account 5 Account 7

Table 2.1: Schedule for posting HITs in the experiment that was conducted from
August 1 to August 5, 2016. For example, at 2am EST, August 1, 2016, we used
requester account 1 to post the HIT associated with it (i.e., the HIT with a social
intelligence task as its cognitive task).

hour, which means that the worker sample we collected for each time slot was composed

of workers who were available in an interval of 1 hour (e.g., the 2am worker sample were

made of workers who were available between 2am and 3am). Each worker was restricted to

take part in each sub-experiment only once. However, workers can participate in as many

sub-experiments as long as they are available. That is, workers can both take multiple HITs

from different requester accounts within a day and take HITs from the same requester account

across different days. In fact, to make sure that a worker would be willing to take HITs from

the same requester account across different days (if the worker happens to be available at

those times when these HITs are posted), for a given requester account, we also used different

contents for the cognitive task in the HIT on different days (e.g., the set of eye pictures used

in the HIT of requester account 1 on Monday was different from that used on Tuesday).

Importantly, we adopted a few approaches to ensure that all 8 HITs in our experiment

look similar at the preview stage so that they attracted the same type of workers on MTurk.

For example, all HITs were advertised on MTurk as short cognitive experiments, though the

wordings were slightly different. Furthermore, the first page of all HITs, which is the only

page workers would be able to see at the preview stage, had the same layout (it is the layout

for HITs that were created through templates on MTurk) and contained only very general
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information about the HIT without any detailed instructions on the specific task. These

controls give us the confidence that if we observe any difference across worker samples for

different time slots, such observation is not likely to be an artifict of that HITs posted at

different times attracted different types of workers.

After the preview stage, once a worker decided to take a HIT and proceeded on to

the second page, the worker would see a detailed instruction about the cognitive task that

was used in that HIT. Starting from the second page of each HIT, we used different fonts,

background images, and color schemes for different HITs, which can possibly help to reinforce

the perception that these HITs were from different requesters. The worker then needed to

complete the pre-task demographic survey, the cognitive task as well as the post-task exit

survey in the HIT. At the end of the HIT, the worker also got a personalized feedback on

their performance in the cognitive task and would be paid with a fixed amount of 50 cents

after she submitted the HIT. Our experiment was open to U.S. workers only.

Experimental data. 3,998 unique workers participated in at least one sub-experiment

and in total, they completed 9,132 pre-task surveys. Among these 3,998 workers, 1,937

(48.4%) workers participated in at least two sub-experiments, yet we found 478 of them were

inconsistent with themselves in answering questions in the pre-task demographic surveys (i.e.,

the worker provided different answers for at least one of the 7 demographic survey questions

among all the sub-experiments that she participated in). We therefore excluded all 1,969

pre-task survey responses from these 478 workers from further analysis. As a result, our

analysis on the temporal differences in worker’s basic demographic information is conducted

on 7,163 pre-task survey responses collected from 3,520 unique workers.

Regarding post-task surveys, we found that 3,405 out of the 3,520 workers who were

preserved after the previous data cleaning process actually completed the post-task surveys,

and they generated 6,711 responses in total. Again, among these 3,405 workers, 254 of them
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were identified as inconsistent with themselves when responding to a few selected questions

in the post-task survey8. After removing the 982 responses from these 254 workers, we

conducted our analysis on demographics in the post-task survey based on 5,729 responses

from 3,151 unique workers.

Notice that on average, for each sub-experiment, we collected the basic demographics

from a sample of 179 workers through the pre-task survey, as well as some more detailed

demographics from a sample of 143 workers using the post-task survey. In practice, it’s

common for scientific researchers to conduct an experiment on MTurk to recruit 100–200

workers for each treatment, which suggests that the average size of worker samples that we

collected in each of our sub-experiment is representative of that for a typical crowd-based

experiment. In other words, if we can observe significant differences in the demographics for

the 8 worker samples we collect within one day, it may imply that when an experimenter

conducts an experiment of normal size at different times of day, he may approach to collections

of subjects with different demographic backgrounds.

2.1.2 Identifying the Time-Varying Dimensions

Our first goal is to examine whether available workers at different times of day have

different demographics, and if yes, what are the key dimensions of demographics that workers

of different times differ from each other.

We first answer these questions from an aggregated level. That is, given a particular time

slot (e.g., 2am), we combined the data we get in that time slot from each of the 5 days

together. In this way, we created a set of 8 aggregated worker samples, one for each time

slot. Comparing the worker demographics across the 8 aggregated samples then helps us to

8These questions are the number of income earners in the household, the number of children under 18,
whether MTurk income is the primary source of income and whether the worker holds a job outside MTurk.
These 4 questions were selected to check worker’s self-consistency as answers to these questions are not likely
to change in a short period of time.

29



understand the temporal dynamics of the crowd from a population point of view.

We examined the temporal variations of the worker demographics in terms of each of

the 21 survey questions that we asked. For each survey question, we coded a few dependent

variables according to possible responses to that question, and each dependent variable

represents a certain aspect of worker demographics. For example, for the question on the

highest level of education, we created 3 dependent variables—the percentage of workers whose

highest education is high school or lower in a particular worker sample, the percentage of

workers whose highest education is some college or equivalent, and the percentage of workers

whose highest education is bachelor degree or higher. In total, we created 55 dependent

variables based on all survey questions. Next, for each dependent variable, we attempted

to examine whether there is any difference in terms of the value of this variable across the

8 aggregated samples, with the null hypotheses being that the values are all equal across

different samples. For continuous dependent variables (e.g., the age of workers), one-way

analysis of variance (ANOVA) [Wasserman, 2003] or Kurskal-Wallis tests [Kruskal and Wallis,

1952] was used for the tests depending on the distributions of the data, and for proportions

(e.g., the percentage of workers living in California), proportion test [Wasserman, 2003] was

used for the hypothesis testing.

Given that in total, we conducted 55 hypothesis testings, to control the family-wise error

rate to be at the level of α = 0.05, that is, to ensure the probability of rejecting at least one

true null hypothesis (i.e., making at least one type I error among all hypothesis testings) to

be at most 0.05, we apply the Bonferroni correction [Frank Bretz and Westfall, 2011] and

only report statistically significant results if the unadjusted p-value is at most 9.09× 10−4.

Out of the 55 dependent variables, we found statistically significant difference across the

aggregated worker samples for 31 of them, and Table 2.2 provides a list of them. Results

in Table 2.2 clearly suggests that for the population of crowd workers who were available

on MTurk from August 1, 2016 to August 5, 2016, there are significant differences across
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Question Dependent variable unadjusted p-value

Location

Percentage of worker from California < 2.2× 10−16

Percentage of workers from Florida 2.40× 10−5

Percentage of worker from the Pacific division < 2.2× 10−16

Percentage of worker from the South Atlantic division 3.10× 10−8

Percentage of worker from the West region < 2.2× 10−16

Percentage of worker from the South region 1.22× 10−5

Percentage of worker from the Northeast region 0.0005
Percentage of worker from the Midwest region 0.0003

Age
Average age of workers 3.16× 10−6

Percentage of workers under 30 4.99× 10−11

Percentage of workers under 35 4.65× 10−8

Race Percentage of white workers 8.47× 10−7

# of years using MTurk Percentage of workers who use MTurk for fewer than 1 month < 2.2× 10−16

Percentage of workers who use MTurk for fewer than 6 months < 2.2× 10−16

# of HITs completed (total)
Median number of HITs a worker completed 7.31× 10−19

Percentage of workers who completed 1000+ HITs < 2.2× 10−16

Percentage of workers who completed 5000+ HITs 1.96× 10−10

# of HITs completed (last month) Percentage of workers who completed <25 HITs last month 3.29× 10−8

Percentage of workers who completed <50 HITs last month 4.45× 10−10

Approval rate Percentage of workers with 99% or higher approval rate 8.59× 10−5

# of forums used Median number of forums a worker used 9.98× 10−6

Percentage of workers who don’t use forums 1.10× 10−7

# of workers communicated with
(last month)

Percentage of workers who didn’t communicate with anyone 0.0009
Percentage of workers who communicated with 10+ people 0.0008

Household income Percentage of workers with household income in [$45K, $115K] 0.0006

# of income earners in household
Percentage of households with 1 income earner 0.0003
Percentage of households with 2 income earners 6.05× 10−9

Percentage of households with 3 or more income earners 4.51× 10−5

# of children under 18 Percentage of workers who has no child under 18 2.86× 10−5

# of experiments participated Percentage of workers who participated in <5 experiments 3.63× 10−8

(last month) Percentage of workers who participated in 90+ experiments 1.24× 10−7

Table 2.2: A list of aspects of worker demographics for which statistically significant
differences are identified across the eight aggregated worker samples collected at
different times in a day.

available workers at different times, in terms of a few key dimensions of their demographic

backgrounds, including location, age, race, working experience with MTurk, etc. On the

other hand, we also find that workers at different times don’t exhibit much variations in

terms of their religion, personal income, whether MTurk is their primary source of income

and whether they hold other jobs outside MTurk, as the unadjusted p-values of hypothesis

tests for all dependent variables associated with these dimensions are larger than 0.05.

In addition to analyzing the aggregated, population-level temporal differences, we are

also interested in understanding the differences among available workers at different times

on the level of individual days, when the average size of each worker sample is of the same

order of magnitude as the sample size for a typical experiment. Understanding such temporal
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Question Dependent variable # of days
with p < 0.05

Location
Percentage of worker from California 5
Percentage of worker from the Pacific division 5
Percentage of worker from the West U.S. region 5

# of years using MTurk Percentage of workers who use MTurk for fewer than 1 month 5
Percentage of workers who use MTurk for fewer than 6 months 5

# of HITs completed (total)
Median number of HITs a worker completed 5
Percentage of workers who completed 1000+ HITs 5
Percentage of workers who completed 5000+ HITs 5

# of HITs completed (last month) Percentage of workers who completed <50 HITs last month 4

# of forums used Median number of forums a worker used 5
Percentage of workers who don’t use forums 5

# of experiments participated Percentage of workers who participated in <5 experiments 5
(last month) Percentage of workers who participated in 90+ experiments 5

Table 2.3: A list of aspects of worker demographics for which statistically significant
differences are identified across worker samples collected at different times on the
level of individual days.

differences on the day-level is particularly relevant for experimenters, because it gives an

experimenter a sense of whether his experiment (where 100–200 subjects are recruited for each

treatment) can possibly approach to subpopulations with significantly different demographics

from the entire worker pool if, hypothetically, he launches the same experiment at different

times within a day. To address this question, for each of the 5 days in our experiment, we

conducted the 55 hypothesis testings across the 8 worker samples that we got from that day.

We claim the temporal difference in a dependent variable to be statistically significant on the

day-level, if we obtain a p-value of 0.05 or smaller in the hypothesis tests on that variable for

at least 4 out of 5 days.

Table 2.3 shows the set of dimensions that we have identified significant temporal differences

on the day-level. As the table indicates, launching an experiment at different times in a

day may result in subject samples that significantly differ from each other in terms of

where the subjects come from, how experienced the subject is with MTurk and/or scientific

experiments, and how they complete the work on MTurk (e.g., work more independently or

tend to communicate with other workers on forums). In other words, these results imply that

experimenters may need to use cautions when deciding the timing of their experiments on

on-demand platforms like MTurk, especially if any of these differing dimensions of worker
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demographics across different times can possibly influence the experimental results9.

2.1.3 Capturing the Key Characteristics for Workers at Different

Times

In the previous subsection, we have showed that significant temporal variations do exist in

the demographics for available workers on MTurk at different times, and we further identified

a few differing dimensions. To accurately describe the features for workers at different times

of day, we next move on to have a more detailed examination on what the key characteristics

for workers in each time slot are.

Again, we start with extracting key demographic characteristics for workers at different

times from a population point of view, using the aggregated worker samples. To get an

intuitive idea, we first plot the worker compositions across all eight aggregated samples with

respect to each of the 21 demographic survey questions, and Figure 2.1 shows a subset of

the plots. For example, in Figure 2.1a, for each time slot, we present the percentage of

workers in the aggregated sample of that slot who comes from the northeast, midwest, south

or west regions of the U.S., and further compare such breakdown across all 8 time slots.

From a visual inspection on these figures, it’s easy to see that, for instance, workers who are

available at 2am are featured by a large portion of west U.S. workers (about 40% of them are

from west U.S.), while workers who are available at 8am are characterized by a rather small

percentage of west U.S. workers (about 10% of them are from west U.S.). In addition, it’s

also visually apparent that the 2am workers are likely to be younger, have completed fewer

HITs on MTurk, and live in a household with a single income earner, while the 8am workers

9For example, researchers found that when participants are not naive to experimental materials, the
effect sizes observed in the experiments can be significantly reduced [Chandler et al., 2015]. As we find that
the available MTurk workers at different times in a day have different levels of experience with scientific
experiments, researchers may need to carefully consider whether such temporal difference would influence the
effect size of their experiments.
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(a) Location (b) Age

(c) Number of HITs completed in total (d) Number of income earners in the household

Figure 2.1: Temporal differences in the aggregated worker examples in terms of
worker location, age, number of HITs completed in total and number of income
earners in the household. For Figures 2.1b and 2.1c, the dashed gray lines are
associated with the right y-axes.

tend to be older, have completed more HITs, and live in a household with 2 income earners.

To see whether these characteristics for workers in different time slots that we conclude

from our visual inspections are statistically significant, we conduct further statistical tests. In

particular, given a particular dependent variable, after using a statistical test (i.e., one-way

ANOVA, one-way Kruskal-Wallis ANOVA, or proportion test, depending on the data type)

to examine whether the values of this dependent variable are statistically the same across

all aggregated worker samples as we have described in the previous subsection, we further

conduct a post-hoc test to understand which pairs of samples have significantly different

values on this variable from each other. Since we have 8 aggregated samples in total, for any

particular sample, we can get a set of 7 comparison results, indicating whether the value of

the dependent variable in the given sample is significantly different from those in each of the
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other 7 samples. We define a dependent variable X to be the “key characteristic” for workers

in time slot Y, if a significant difference has been detected (at the level of p = 0.05 with the

Bonferroni-Holm correction) between the value of X for the worker sample in time slot Y

and those for more than half of the other 7 worker samples (i.e., at least 4 out of the other

7 slots), and the direction of comparisons are consistent (e.g., it’s always the case that the

value of X for workers at time Y is smaller than that for workers at other time slots in the

pairwise comparisons that are statistically sigificant). Roughly speaking, identifying a key

characteristic X for workers at time Y means that in terms of X, the available workers at

time Y is consistently different from other available workers for at least half of the time in a

day. For example, if we find the percentage of workers from west U.S. at 2am is significantly

higher than that percentage for workers in at least 4 other time slots, we will label the 2am

workers as “more likely to come from west U.S.”

Following this criteria, we summarize the key characteristics that we have identified for

available workers in each of the 8 time slots in Table 2.4. We first notice that workers in the

2pm, 5pm and 8pm slots don’t have any key characteristic identified, implying that available

workers in these time periods are “average workers” who are similar to workers in other time

slots for at least half of the time in a day. On the other hand, we also find that workers in

the 2am and 8am slots have many characteristics that distinguish them from the average

workers, and these characteristics span a wide range of dimensions in worker demographics

including worker location, age, race, working experience on MTurk, levels of communication

related to MTurk work and household information. In addition, workers in the 5am, 11am,

and 11pm time slots are observed to be different from the average workers on some particular

dimensions as well—for example, there are significantly more workers who are inexperienced

with scientific experiments at 5am, fewer workers from west U.S. at 11am, and more workers

who have limited work experience on MTurk at 11pm.

Finally, to understand whether there is any consistently significant key characteristic for
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Time slots Key characteristics

2am

% of worker from California/Pacific division/West region is higher (7)
% of worker from Florida/South Atlantic division is lower (6)
% of worker who used MTurk for 1 month or fewer is higher (5)
% of worker who used MTurk for 6 months or fewer is higher (6)
Median number of HITs completed in total is smaller (6)
% of worker who completed 1000+ HITs in total is lower (6)
% of worker who completed 5000+ HITs in total is lower (5)
% of worker who completed <25 HITs last month is higher (5)
% of worker who completed <50 HITs last month is higher (5)
% of worker who communicated with 10+ workers last month is lower (4)

5am % of workers participated in <5 experiments last month is higher (5)

8am

% of worker from California is lower (6)
% of worker from the Pacific division/West region is lower (7)
% of worker from the Northeast region is higher (4)
Average age is higher (5)
% of worker under 30 is lower (7)
% of worker under 35 is lower (6)
% of white worker is higher (4)
Median number of HITs completed in total is larger (5)
% of worker who completed 1000+ HITs in total is higher (4)
% of worker who don’t use forums is lower (5)
% of worker living in a household with 2 income earners is higher (5)
% of worker living in a household with 3 or more income earners is lower (5)

11am % of worker from California is lower (6)
% of worker from Pacific division/West region is lower (6)

2pm N/A
5pm N/A
8pm N/A

11pm

% of worker who used MTurk for 1 month or fewer is higher (5)
% of worker who used MTurk for 6 months or fewer is higher (6)
Median number of HITs completed in total is smaller (5)
% of workers who completed 1000+ HITs is lower (6)
% of workers who completed 5000+ HITs is lower (4)

Table 2.4: A list of key characteristics for available workers at different times of
day on the aggregated level. Numbers in the parentheses for each key characteristic
represent the number of statistically significant differences detected among a total of
7 pairwise comparisons between the aggregated worker sample of the given time slot
and that for another time slot.

workers at different times on the level of individual days, we repeat our analyses on the set of

8 worker samples for each of the 5 days. We denote a dependent variable X to be the key

characteristic for workers in time slot Y on the day-level, if for at least 4 out of 5 days, we

find a significant difference in the value of X between workers in time slot Y and workers

in at least two other time slots (at the level of p = 0.05). Table 2.5 reports all such key

characteristics. These results imply that for an experimenter, if he launches an experiment

of typical size at 2am EST, he will almost certainly get a collection of subjects who are

significantly more likely to be from west U.S. and with significantly lower levels of work
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Time slots Key characteristics

2am

% of worker from California is higher (4)
% of worker from Pacific division/West region is higher (5)
Median number of HITs completed in total is smaller (4)
% of worker who completed 1000+ HITs in total is lower (4)

5am N/A

8am
% of worker from the Pacific division is lower (5)
% of worker from the West region is lower (4)
Median number of HITs completed in total is larger (4)

11am N/A
2pm N/A
5pm N/A
8pm N/A
11pm % of worker who used MTurk for 1 month or fewer is higher (4)

Table 2.5: A list of key characteristics for available workers at different times of
day that are consistently observed on the level of individual days. Numbers in the
parentheses for each key characteristic represent the number of days (out of 5) where
a statistically significant difference is detected in at least 2 pairwise comparisons
(out of 7) between the worker sample of the given time slot on one day and that for
another time slot on the same day.

experience on MTurk compared to the case if he launches the experiment at other times, no

matter which day in the week the experiment is launched. Similarly, an experimenter will

get a sample of workers who are less likely coming from west U.S. and more experienced

with MTurk if he decides to launch an experiment at 8am EST, and he will approach to a

sub-population of inexperienced workers if the experiment is conducted at 11pm EST.

2.2 Scientific Studies with the Crowd: How Timing

Influences Results

In the previous section, we have experimentally showed that there are temporal variations

in worker demographics throughout a day for available workers on on-demand platforms

like MTurk. For researchers who leverage on-demand platforms to conduct scientific studies,

observing these temporal variations naturally leads to the question of whether the timing

of a study will influence its results. More specifically, imagine a researcher who conducts

an experiment on MTurk to understand certain aspects of human behavior—he decides to
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launch his experiment at 8am EST in a day, collects enough amount of data according to

his experimental plan and then draws conclusions from the data that he collects. But what

if in a counterfactual world, the researcher actually launches his experiment at 5pm EST?

Will he obtain the same conclusion in this 5pm experiment as what he gets from the 8am

experiment? In this section, we aim to answer this question.

2.2.1 Experimental Design

Different from our experiment in the previous section, to examine whether the timing of a

study (e.g., a survey or a behavior experiment) has any impact on study results, we have to

conduct the same study at multiple different times within a day, so that we can have a direct

comparison on the study results. Similar to what we have discussed in Section 2.1.1, the first

possible experimental design—posting the same study at multiple different times without

allowing each worker to participate for more than once—can not give us an accurate answer

to our research question, because workers are naturally presented on MTurk at different

time periods. More specifically, consider our previous example that a researcher launches an

experiment at 8am, or counterfactually, at 5pm. If a worker i typically works on MTurk from

8am to 6pm, she should have been permitted to participate in the experiment no matter it is

posted at 8am or 5pm. If we actually post the experiment on MTurk twice in a day at 8am

and 5pm, respectively, and further forbidden a worker from participating in the experiment

for more than once, we can possibly exclude significant amount of data from participants

like worker i in experiments that are conducted later (i.e., the 5pm experiment), which may

result in certain bias in the results of those experiments. On the other hand, if we post the

same study at different times and allow each worker to take the study for multiple times, we

may only be able to attenuate the data bias problem at best (as workers may find it boring

to take the same study more than once), and it is also hard for us to determine whether

the differences in experimental results, if any, are because of the experimental timing or
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worker’s experience with the study (i.e., workers may behave differently in the study after

participating in it many times).

Without finding a satisfying solution from our existing options of experimental designs, we

return to the ideal approach for answering our research question, that is, to create “parallel

universes” of the on-demand platform by randomly assigning each worker to one version of the

MTurk website and posting the study of interest on each version of the website at a different

time. In practice, this is very challenging as we don’t have the access to the entire population

of MTurk workers and therefore there is no way for us to conduct a randomization on all the

workers. However, we realize that although it’s impossible to conduct randomization on the

entire population of MTurk workers, it’s feasible to do so on a representative sample of all

MTurk workers. Inspired by this idea, we propose a two-phase experimental design as follows.

A two-phase experiment. We design our experiment as a two-phase experiment. In

particular, in the first phase, we continuously post a recruiting HIT on MTurk for a long period

of time. The purpose of the first phase is to get a representative sample of the entire MTurk

worker population for the time period when we conduct our experiment. In this recruiting

HIT, workers are told that we will run an experiment to study people’s cognitive skills and

decision-making behavior in the near future, and they can sign up to that experiment by

answering a set of simple demographic questions (i.e., all the 7 basic demographic questions

that we used in the pre-task survey of the experiment in Section 2.1). Each worker is allowed

to participate in the recruiting HIT only once.

All workers who have signed up in the first phase are then eligible for participating in the

second phase which contains the actual experiment that we are interested in studying, and

we will describe more detail about the experiment content later. Before the second phase

starts, we randomly assign each signed-up worker to one of the 4 time slots (i.e., 2am EST,

8am EST, 2pm EST, 5pm EST). Importantly, a worker’s time slot assignment decides when

39



the worker can find out our second phase experiment HIT—we only open the experiment

HIT to each worker during the time slot that the worker is assigned to10, and each worker

can only take part in the experiment once. For example, if a worker is assigned to the 2am

slot, she will only be able to find out our second phase experiment HIT on MTurk around

2am, but not 8am, 2pm or 5pm. We again set the expiration time for each HIT in the second

phase experiment to be 1 hour, so subjects we recruit in a particular time slot actually arrive

at the experiment within a time period of 1 hour (e.g., subjects in the 2am experiment accept

the HIT between 2am and 3am). Furthermore, we do not use separate emails to communicate

with workers about when our second phase experiment HITs are launched. In other words,

a worker takes our second phase experiment HIT only if she happens to be available on the

platform around the time period that she is assigned to. Such experimental design effectively

allows us to build 4 “parallel universes” for the representative sample of the MTurk worker

population that we collect in the first phase. Hence, comparing the results obtained from

experiment HITs that are posted at different times in a day can help us to understand the

potential impact of experimental timing on experimental results.

As we have found in Section 2.1, among the 4 selected time slots, the available workers

at 2am EST and 8am EST have a number of distinctive demographic characteristics, while

workers at 2pm EST and 5pm EST tend to be average workers. This diversity in worker

demographics for the 4 selected time slots can potentially improve the chance for us to observe

different experimental results at different times.

Experiment content. We include a wide range of different tasks in our second phase

experiment HIT. These tasks cover a variety of studies that economists, psychologists, social

scientists and computer scientists may be interested in conducting on MTurk. In particular,

10This is realized by creating a new qualification type on MTurk which corresponds to the group assignment
of workers, and the second phase experiment HITs that are posted at different times is only visible to workers
with a particular value (i.e., group number) for the newly created qualification.
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we consider 3 tasks that examine people’s decision-making behavior in classical economic

games, and comparing decisions in these games for available workers across different time

slots can help us to understand that for experimental and behavior economists, whether they

need to concern about the possible influences of experimental timing on the results of their

crowd-based studies:

• Dictator game: In this task, a worker is told that she will be randomly paired with

another participant in our experiment to play a game—one of them will be randomly

selected as Player A (i.e., the “dictator”) and the other will be Player B (i.e., the

recipient). If the worker is Player A, she will be given 1 dollar and need to decide how

much of the money she is willing to give to Player B. If the worker is Player B, she

will get whatever amount of money that the Player A in her pair decides to give to her.

The dictator game is frequently studied in the area of experimental economics, and it

is partly used to interpret people’s social preferences such as altruism and inequality

aversion [Kahneman et al., 1986].

• Public goods game: In this task, a worker is told that she will be randomly matched

with two other participants in our experiment to play a game—Each of them will first

get 60 cents, and then the worker is asked to divide the money between a private

account and a public account. The worker can keep all the money that she puts in her

private account for herself. Meanwhile, for each cent that the worker decides to put in

her public account, it will be multiplied by 1.5 and will become a public fund that is

owned by all three participants in the group. At the end of the game, we will divide

the public fund equally into three shares, so the worker can get one share of the public

fund in addition to the money in her private account. The public goods game and

its variants are often used in experimental economics to understand the cooperative

behavior of people [Fehr and Schmidt, 1999, Fischbacher et al., 2001].
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• Lottery choice: In this task, a worker is presented with a series of 11 pairs of lottery

choices. In each pair of lotteries, one lottery option is fixed as “earn $0 with 50% of the

chance and earn $2 with 50% of the chance”, while the other option is “earn $x for sure”

where x ∈ {0.4, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.6}. The worker is asked to pick

one lottery that she prefers for each pair of lottery options. The order for presenting

lottery pairs in the task is randomized. The lottery choice game has been adopted in a

large number of studies to understand the risk preferences of individuals [Holt et al.,

2002].

To elicit worker’ actual behavior when facing real economic decisions, we provide monetary

rewards as bonus payments to workers in the above three tasks. Specifically, in both the

dictator game and the public goods game, the amount of bonus payment a worker will get

in each game is actually decided by the outcomes of the game. For example, if a worker is

assigned as Player A in the dictator game and she decides to give Player B $0.30, she will

get the rest $0.70 as her bonus in this game. For the lottery choice game, we will randomly

choose one lottery that the worker prefers (among the total 11 lotteries that the worker has

picked) and realize it. The amount of bonus payment the worker will earn from the lottery

choice game is then decided by the realization of the chosen lottery. To make sure that

each worker in our experiment understands the rules of the dictator game and the public

goods game, we further add two qualification questions in each of these two games to test

worker’s understandings on the game. A worker can only earn bonus payments in a game if

she answers all qualification questions for that game correctly.

Besides the 3 economic games, we also include 3 cognitive tasks that we have introduced in

Section 2.1—a social intelligence task (i.e., reading emotions from eyes; 20 questions in total),

a nutrition intelligence task (i.e., answering a nutrition-related question after examining a

pair of photographs of meals; 20 questions in total) and a thinking style task (i.e., deciding

which two words go together best among three words; 30 questions in total)—in the HIT.
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While the results of these cognitive tasks provide valuable insights for psychologists and

social scientists to better understand the cognitive abilities or styles of individuals, some of

these tasks also resemble a variety of data collection tasks that computer scientists typically

conduct on platforms like MTurk, for either academic or commercial purposes (e.g., the

social intelligence task can be thought of as a special image annotation/classification task).

Therefore, including these 3 cognitive tasks as a part of our second phase experiment HIT

enables us to provide some initial answers on whether psychologists and social scientists can

draw similar conclusions from their cognitive studies if they conduct the same studies at

different times in a day, as well as on how much the collected data quality varies by the task

posting times for computer scientists who leverage the crowd for data collection.

In addition, we further add a personality survey in the HIT to get a sense of whether

launching an experiment on MTurk at different times in a day implies any difference in the

personality for subjects that are recruited. Such knowledge is of great value to scientific

researchers as individual’s behavior is highly related to her personality [Ajzen, 2005, Snyder,

1983, Colvin, 1993]. Since we have found in Section 2.1 that available workers in different

time slots come from quite different locations, and there is evidence suggesting distinctive

personality profiles associated with various geographical regions of U.S. [Rentfrow et al., 2013],

it’s reasonable to conjecture that we may observe a temporal difference in worker personality

on MTurk through the personality survey. More specifically, personality is measured in this

survey through the big-five inventory [John and Srivastava, 1999], which contains a set of 44

statements and a worker is asked to indicate how much she agrees with each statement on a

5-point scale, from 1 (disagree strongly) to 5 (agree strongly). The worker’s responses are

then used to compute the scores for five factors of her personality, including extraversion,

agreeableness, conscientiousness, neuroticism, and openness to experience.

Finally, at the end of second phase experiment HIT, we again ask the worker a set of 14

extra demographic survey questions, which are the same as those questions that we have
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used in the post-task exit survey of the experiment in Section 2.1.

Experimental data. For each worker who completes the recruiting HIT in our first phase,

we record her responses to each of the 7 basic demographic questions (e.g., age, gender,

location). For a worker who completes our second phase experiment HIT, we collect a wide

range of data on worker’s economic behavior, cognitive abilities or styles and personality

using worker’s responses in each task of the HIT.

First, for each of the three economic games in the HIT, we record all the decisions a

worker makes in these games, including the amount of money she transfers to Player B if she

is assigned as the Player A in the dictator game, the amount of money she decides to put in

her public account, and her preferred lotteries for each of the 11 lottery pairs. In particular,

for the lottery choice game, we denote the option of “earn $x for sure” as the “safe choice,”

and we further use the total number of safe choices a worker selects in all 11 lottery pairs as

a summary statistic for the worker’s behavior in the lottery choice game.

Regarding the 3 cognitive tasks, as we have access to the ground truth for both the

social intelligence and the nutrition intelligence tasks, we use the number of questions that

a worker answers correctly for each type of task as a measure of the worker’s cognitive

ability in that task. Meanwhile, for the thinking style task, given a particular group of three

words that are presented in one of the 30 questions, we denote some pairs of words in it

as an “analytic combination” or a “holistic combination” according to [Ji et al., 2004]. For

example, in a group of three words “seagull”, “sky” and “dog”, “seagull” and “dog” is an

analytic combination because they both belong to the same abstract category (i.e., they

are all animals), while “seagull” and “sky” is a holistic combination grouped together by

their function—seagulls fly in the sky. We then count the number of word pairs picked by a

worker in all 30 questions of the thinking style task that belong to analytical combinations

(alternatively, holistic combinations), and use that value to represent the cognitive style of the
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worker, that is, the degree to which the worker tends to reason in an analytical (alternatively,

holistic) way.

As for the personality survey, we summarize a worker’s personality by computing the

scores for each of the five key dimensions in personality using the worker’s responses in the

survey, following the instructions in [John and Srivastava, 1999]. And finally, we also keep a

copy of worker’s answers to all the 14 detailed demographic questions that they provide to

us at the end of the HIT, regarding aspects like their working experience with MTurk and

income/household information.

Experimental procedure. As we have discussed early, we design the experiment into two

phases where workers recruited in the first phase are randomly assigned to one of the 4 time

slots, which determines the time period when a worker will be able to find out the second

phase experiment. We also do not conduct separate email communication with workers

about the second phase experiment to ensure that workers who take part in the second phase

experiment are the ones who are naturally available in the time slots that they are assigned to.

These design decisions, yet, suggest that the retention rate for our second phase experiment

can be inevitably low11.

To get a sense of the retention rate, we first launched our experiment as a small-scale pilot

from April 18, 2017 (Tuesday) to April 21, 2017 (Friday). More specifically, we conducted

the first phase of our experiment during April 18–19, 2017. The recruiting HIT was posted

for the first time at 12am EST, April 18, 2017, and it was re-posted every 2 minutes before

being deleted at 11:59pm, April 19, 2017. Each worker got a fixed payment of 15 cents from

completing the recruiting HIT, and in total, 2,508 workers signed up to our experiment in

these two days. We then uniformly randomly assigned each of these 2,508 workers to one of

11For example, it is possible that although a large number of workers are assigned to a particular time slot
Y, very few workers actually show up in the experiment that is conducted at time Y because most workers
are not available on the platform during that time.
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the 4 time slots, and further conducted the second phase of our experiment within all these

workers on April 20 and April 21 at 2am EST, 8am EST, 2pm EST and 5pm EST, as we

have described earlier. Each worker got a fixed payment of $1.5 by completing the second

phase experiment HIT, and she might also earn extra bonuses depending on her decisions in

the economic games in the HIT. During the period of April 20–21, we got experimental data

from 21, 71, 64, and 59 workers for the 2am, 8am, 2pm, 5pm slots respectively, implying a

daily retention rate of 1.65%–5.70% for each time slot. Not surprisingly, the retention rate

for the 2am slot is the lowest, suggesting the number of available workers at that time is

likely to be very low.

As our goal is to understand whether the experimental timing of a crowd-based study

on MTurk can possibly influence the experimental results, for each time slot in our second

phase experiment, we aim at collecting experimental data from a set of 100–200 workers at

that time so that the sample size is similar to that for a treatment in a typical crowd-based

experiment. The observed low retention rate in the pilot leads us to relaunch our first phase

experiment again to get a larger representative sample of MTurk workers. In particular, we

posted the recruiting HIT again between 12am EST, April 24, 2017 (Monday), and 11:59pm

EST, April 28, 2017 (Friday), with the HIT being re-posted every 2 minutes. We increased the

payment of the recruiting HIT from 15 cents to 20 cents at 5pm EST, April 26 (Wednesday)

to accelerate the worker recruiting process. During this period, an additional 2,094 workers

signed up to our experiment. That is, combining all the workers who completed our recruiting

HIT during April 18–19 and April 24–28 together, in total, we got a representative sample of

4,602 unique MTurk workers.

We then conducted a uniformly random assignment of workers to time slots for the 2,094

workers that we recruited during April 24–28, and relaunched our second phase experiment

HITs from May 1 (Monday) to May 5 (Friday), 2017. While the HIT was open to all 4,602

workers who were signed up to our experiment (at the time slot that corresponds to each
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worker’s assignment), each worker was only allowed to take this HIT once. Thus, if a worker

had completed the HIT during April 20–21, she could not take the HIT again during May 1–5.

Combining all participants of the second phase experiment during April 20–21 and May 1–5

together, we eventually collected the experimental data from 87, 192, 231, and 215 workers

for the 2am, 8am, 2pm, 5pm experiments, respectively. In other words, the size of recruited

subjects sample for each time slot is roughly on the same magnitude of that for the sample

size of a treatment in a typical crowd-based experiment.

All the HITs in our experiment was open to U.S. workers only. Moreover, as scientific

researchers typically post their studies on MTurk on weekdays, to understand the realistic

effect of experimental timing on experimental results, we further restricted ourselves to

conduct experiments on weekdays (according to EST) only.

2.2.2 Revisiting Worker Demographics

First of all, since we have collected the demographic information for each worker in both

the first and the second phase of our experiment, it is interesting to examine whether we

can observe the same kind of significant differences in demographics for available workers

at different times in a day, as we have reported in Section 2.1. Given the sample size in

each time slot of our experiment is on the level of 100–200, which is similar to the average

worker sample size for each sub-experiment of Section 2.1, we are essentially interested in

checking whether the results in Table 2.3 (i.e., dimensions of worker demographics for which

significant temporal differences exist on the level of individual days) still hold for a set of

worker demographics data that is collected through a different experimental design.

The results of our check are reported in Table 2.6. As the table suggests, for many

dimensions of worker demographics that we have observed significant temporal variations in

Section 2.1, we again make a similar observation when examining the temporal differences

in demographics for workers who participated in our second phase experiment in different
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Question Dependent variable p-values

Location
Percentage of worker from California 0.0075**

Percentage of worker from the Pacific division 0.0002***

Percentage of worker from the West U.S. region 0.0013**

# of years using MTurk Percentage of workers who use MTurk for fewer than 1 month 0.2571
Percentage of workers who use MTurk for fewer than 6 months 0.1252

# of HITs completed (total)
Median number of HITs a worker completed 0.0239*

Percentage of workers who completed 1000+ HITs 0.4203
Percentage of workers who completed 5000+ HITs 0.2350

# of HITs completed (last month) Percentage of workers who completed <50 HITs last month 0.8494

# of forums used Median number of forums a worker used 0.0253*

Percentage of workers who don’t use forums 0.0697†

# of experiments participated Percentage of workers who participated in <5 experiments 0.2527
(last month) Percentage of workers who participated in 90+ experiments 0.0206*

Table 2.6: Statistical test results for examining whether worker demographics
significantly vary over time using the data that we collect through the two-phase
experiment, with †, *, **, and *** representing significance levels of 0.1, 0.05, 0.01,
and 0.001 respectively.

time slots. These dimensions include worker location, the level of experience with MTurk (in

terms of the number of HITs completed in total), the number of forums used that are related

to MTurk work, as well as the level of experience in participating scientific experiments on

MTurk.

On the other hand, in our check, we find that values for the two dependent variables that

are related to the number of years a worker uses MTurk are not significantly different for

available workers in different time slots, which seems to be inconsistent with our previous

conclusion. However, as we conducted the experiment in Section 2.1 during August 2016

and conducted the two-phase experiment that we describe above mostly during May 2017,

worker’s answers to the question of “the number of years using MTurk” also changed between

these two experiments. For example, in May 2017, a worker who indicated to use MTurk for

fewer than 1 month in August 2016 would have used MTurk for 8–9 months, and thus she

would choose the option of “half to one year” for this question. In other words, the statistical

tests on the percentage of workers who use MTurk for fewer than 1 month (or 6 months)

across different times in the two experiments are not directly comparable. To see that in

our two-phase experiment, whether the available workers at different time slots exhibit any
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difference in terms of the number of years they use MTurk, we conduct a series of extra

statistical tests on the other dependent variables that are coded from worker’s answer to this

question (e.g., the percentage of workers who use MTurk for more than 2 years). Our test

results show a significant (or marginally significant) difference in the percentage of workers

who use MTurk for more than 2 years (or 3 years) across different time slots with p = 0.0266

(or p = 0.0883), which again supports the conclusion that the available workers at different

times can vary a lot in terms of how long they have used MTurk. Similarly, regarding the

demographic dimension on the number of HITs a worker completed in the last month, we

also found that the percentage of workers who completed fewer than 250 HITs (or more than

750 HITs) last month is marginally different across different time slots with p = 0.0596 (or

p = 0.0566).

In sum, our validity check largely confirms our observations on the variations of worker

demographics across different times throughout a day, as reported in Table 2.3. As we are

able to reach the same conclusions on the temporal differences using two sets of data that are

collected from different experimental designs in different years, we believe that these detected

temporal differences in worker demographics are very robust.

2.2.3 Influences on Studies Involving Incentivized Economic Deci-

sions

Next, we move on to examine whether and how the timing of a crowd-based study may

affect the experimental results in classical behavioral economic games. In particular, we

consider the incentivized decisions workers make in these games, such as the amount of

money a worker is willing to transfer to another worker in the dictator game, the amount

of money a worker is willing to put in her public account in a public goods game, and the

number of safe choices a worker makes in a series of lottery choice games. As no significant
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Figure 2.2: The incentivized decisions that workers in different time slots make for
each of the 3 economic games. Mean values are reported and error bars represent
bootstrapped 95% confidence intervals of the mean value.

difference is observed in worker’s incentivized decisions in different days, we aggregate the

data for each of the 4 time slots across all days. Figure 2.2 compares the mean values of these

economic decisions across the 4 time slots for each of the 3 economic games in our experiment

HIT12. Moreover, to obtain a range within which each of the mean values is likely to lie, we

further attach a bootstrapped 95% confidence interval for each mean value in the figure. For

example, given the set of data on the number of safe choices a worker at 2am EST made in

her lottery choice game, we can estimate a 95% confidence level for its mean value as follows:

We first obtain a bootstrap resample by sampling with replacement from the set of data while

maintaining the same sample size as the original data, and compute the mean value for this

bootstrap resample. This process is repeated for 1,000 times and thus we get a bootstrap

distribution of the mean value. The 95% bootstrapped confidence interval of the mean value

is then determined by the 2.5-percentile and the 97.5-percentile of the empirical distribution.

We make a few interesting observations by inspecting Figure 2.2 visually. On the one

hand, it seems that workers in different time slots make similar decisions in terms of how

much they are willing to transfer to another worker in the dictator game, as the confidence

intervals for the mean values of transferred money across the 4 time slots largely overlap in

12For the dictator game and the public goods game, we consider only those data points if the worker
answers the qualification questions correctly.
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Figure 2.2a. On the other hand, the stories for the public goods game and lottery choice

game are quite different—in both Figures 2.2b and 2.2c, we find that the confidence intervals

for some pairs of time slots hardly overlap at all, suggesting that launching the experiment

at different times in a day may actually lead to significantly different experimental results for

these two games. For example, it seems that on average, workers at 2am put less money in

their public accounts compared to workers at 2pm in a public good game, while workers at

8am are more risk averse (i.e., make more safe choices) than workers at 2pm.

To confirm our visual intuition, for each of the 3 economic games, we conduct an one-way

ANOVA test for the values of the corresponding incentivized decision in different time slots

to examine whether the distributions of these values are statistically the same at different

times. The test results are reported in Table 2.7. Consistent with our previous intuition, we

find that workers at different times don’t exhibit significant differences on their decisions in

dictator games, yet they do behave significantly differently in the public goods game and the

lottery choice game. This means that if an experimental or behavioral economist is interested

in understanding how collaborative people tend to be through conducting a public goods

game on MTurk, or interested in obtaining insights on the risk preferences of individuals

by running a sequence of lottery choice games on MTurk, he may end up with different

conclusions if he launched the experiment at different times in a day. More specifically, the

post-hoc pairwise comparisons suggest that conducting a public goods game at 2am EST will

lead the experimenter to believe people to be significantly less cooperative compared to that

in the case if, hypothetically, he conducted the game at 2pm EST (p = 0.0248). Similarly,

if an experimenter decides to run the lottery choice games at 8am EST, he would conclude

the crowd to be significantly more risk averse than that in the scenario when he ran the

experiment at 2pm EST (p = 0.0353).

To further understand whether the significant behavioral differences that we observe for

economic games conducted in different time slots are simply a result of the variations in
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Economic decision p-values

Dictator game: amount transferred to Player B 0.8906
Public goods game: amount put in public account 0.0248*

Lottery choice game: number of safe choices 0.0427*

Table 2.7: p-values of the one-way ANOVA tests on economic decisions that workers
at different times make, with * representing significance level of 0.05.

worker demographics over time, we fit each worker’s decision in the public goods game or

the lottery choice game into linear regression models while controlling for her demographic

information, and results are reported in Table 2.8. For both games, we consider two linear

regression models—one using only the basic demographics as covariates (i.e., Model 1 for

both games, columns 2 and 4 in Table 2.8), while the other controlling for both the basic and

a few more detailed demographic information (i.e., Model 2 for both games, columns 3 and 5

in Table 2.8). For simplicity, we do not consider interaction terms in all the models.

More specifically, in the regression models of the public goods game, the dependent

variable is the amount of money a worker puts in her public account, and we set workers in

the 2am slot as our reference. Results in Table 2.8 show that workers in the 2pm slot puts

significantly more money in their public accounts compared to workers in the 2am slot, even

after the worker demographics is controlled. This implies that the influences of experimental

timing on the results of the public goods game can not be fully explained by the differences

in worker demographics across different times—in fact, according to our regression results,

none of the worker demographics is actually observed to be significantly correlated with the

worker’s decision in the public goods game.

As for the lottery choice game, we use the number of safe choices a worker selects as

the dependent variable and workers in the 2pm slot are set as the reference. Again, we find

the significant temporal differences in worker’s decisions in the lottery choice game is robust

to demographic controls—workers who are available on MTurk at 8am and 5pm are still

significantly more risk averse than available workers at 2pm when demographic information
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Public goods
(Model 1)

Public goods
(Model 2)

Lottery choice
(Model 1)

Lottery choice
(Model 2)

Intercept 19.82***

(5.32)
21.24***

(5.54)
7.12***

(0.45)
7.06***

(0.46)

2am 0.32
(0.33)

0.23
(0.33)

8am 6.18
(3.81)

6.03
(3.84)

0.61*

(0.26)
0.57*

(0.26)

2pm 8.39*

(3.73)
8.41*

(3.76)

5pm 3.78
(3.71)

3.60
3.73

0.51*

(0.25)
0.45†

(0.25)

Female 1.16
(2.18)

1.28
(2.24)

-0.04
(0.20)

0.01
(0.21)

Age -0.03
(0.09)

-0.04
(0.10)

0.02**

(0.01)
0.02**

(0.01)

Northeast 2.38
(3.33)

2.21
(3.35)

0.55†

(0.31)
0.56†

(0.31)

South -1.65
(2.91)

-1.89
(2.95)

0.07
(0.27)

0.02
(0.27)

West -1.12
(3.30)

-1.71
(3.36)

0.29
(0.31)

0.38
(0.31)

Bachelor -0.79
(2.11)

-0.79
(2.18)

-0.27
(0.20)

-0.06
(0.20)

Hispanic/Latino 0.90
(4.63)

1.15
(4.65)

-0.73†

(0.44)
-0.79†

(0.43)

White 2.38
(2.83)

1.92
(2.91)

-0.24
(0.26)

-0.18
(0.26)

Christian -1.34
(2.16)

-1.17
(2.18)

-0.07
(0.20)

-0.05
(0.20)

HITs (total) 0.00
(0.00)

0.00
(0.00)

Personal income > 37.5K -0.13
(2.80)

0.10
(0.25)

Household income > 70K -1.94
(2.63)

-0.71**

(0.35)

Half income from MTurk -2.82
(2.67)

0.67**

(0.25)

Completed > 90 experiments (last month) 2.88
(2.44)

-0.36
(0.24)

Table 2.8: Linear regressions for the decisions workers made in the public good
game and the lottery choice game. Coefficients and standard errors are reported. The
statistical significance of the estimated coefficient is marked as a superscript, with †,
*, **, and *** representing significance levels of 0.1, 0.05, 0.01, and 0.001 respectively.

is used as covariates in the models. Interestingly, we also note a few significant correlations

between an individual’s risk attitude and her demographics. For example, workers who are

older, live in Northeast U.S., and rely on MTurk for at least half of their income tend to

be more risk averse, while Hispanic or Latino workers and workers whose household income

is higher than $70,000 are more risk-seeking. To see whether the temporal differences of

worker behavior in the lottery choice game can be partly attributed to these significantly

correlated demographics, we then compare the worker compositions across different time slots
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on these dimensions of demographics. We find that compared to the 2pm workers, workers

who are available at 8am and 5pm are indeed older, more MTurk-dependent, less likely to be

Hispanic/Latino or come from households with an income of $70,000 or higher, though the

differences are not statistically significant. For the demographic compositions in terms of

worker location, it is observed that the percentage of Northeast U.S. workers indeed differs

significantly across the 4 time slots (p = 0.0007). However, this is mostly due to a very low

fraction of Northeast workers in the 2am slot, and for the other three time slots (i.e., 8am,

2pm, 5pm) where significant differences in worker’s risk preferences are observed, there is no

statistically significant difference in terms of whether workers in these time slots come from

Northeast U.S.

To summarize, through our analyses on the incentivized decisions that workers at different

times make in a number of classical behavioral economic games, we find that the timing

of a crowd-based behavioral economic experiment may change the economic behavior that

workers display in the experiment. Importantly, the change in the experimental results is

not just due to the variations of worker demographics across different times, although these

variations may also play a role.

2.2.4 Influences on Studies Examining Cognitive Abilities and

Styles

Our previous analyses have examined whether different experimental timing for crowd-

based behavioral economics studies can lead to different results, and we give a positive answer

to that question. Now, we look into whether similar results can be found for a variety of

cognitive experiments that psychologists or social scientists may be interested in conducting

with the crowd to better understand the cognitive ability and style of people. We consider

worker’s performance in each of the 3 cognitive tasks in our HIT, that is, the number of
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Figure 2.3: Worker performance in different time slots for each of the 3 cognitive
tasks. Mean values are reported and error bars represent bootstrapped 95% confidence
intervals of the mean value.

Worker performance metrics p-values

Social intelligence: number of correct answers 0.3846
Nutrition intelligence: number of correct answers 0.1996
Thinking style: number of analytic combinations 0.1604

Table 2.9: p-values of the one-way ANOVA on worker performance in cognitive
tasks at different times in a day.

questions in the social intelligence task that a worker answers correctly, the number of

questions in the nutrition intelligence task that a worker answers correctly, and the number

of analytical combinations of words that a worker selects in the thinking style task. Again,

we don’t find significant differences in worker performance across different days, which allows

us to combine the data in different days together for further analyses. Figures 2.3a, 2.3b

and 2.3c show the average worker performance with the bootstrapped 95% confidence interval

across all 4 time slots for the social intelligence, nutrition intelligence and thinking style tasks,

respectively.

As we can see in the figures, there is no obvious difference in worker performance across

different times in a day for all the 3 cognitive experiments that we conduct. We further report

the one-way ANOVA test results on worker performance for each of the 3 cognitive tasks in

Table 2.9—worker performance in none of the three cognitive tasks is significantly different

across time, implying that for psychologists and social scientists, the specific timing that
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Figure 2.4: Worker personality in different time slots for each of the 5 factors.
Mean values are reported and error bars represent bootstrapped 95% confidence
intervals of the mean value.

they decide to launch cognitive experiments on MTurk has limited influence on the cognitive

abilities or styles that they will be able to observe from the subjects (at least for cognitive

abilities and styles that are studied in our experiments). Furthermore, given that some of

these cognitive tasks are quite similar to many data collection tasks that computer scientists

often post on MTurk (e.g., a computer vision researcher may ask MTurk workers to help him

annotate human emotions in a set of pictures, which is similar to the social intelligence task

in our HIT), our results also indicate that computer scientists may not need to worry too

much about the fluctuation of the crowdsourced data quality over time. In other words, there

is no such a time period, at least among the 4 time slots that we have examined, that if a

data collection task is posted during that period, the crowd will return the requester with a

batch of data of significantly higher (or lower) quality.

2.2.5 Examining Differences in Worker Personality

Finally, we examine whether launching the experiment at different times in a day will

result in samples of subjects who display significant differences in their personality. Figure 2.4

compares the worker personality across 2am, 8am, 2pm and 5pm for each of the five major

factors in personality, i.e., extraversion, agreeableness, conscientiousness, neuroticism and

openness, and Table 2.10 reports the one-way ANOVA test results on each factor. It is

observed that the available workers at different time periods don’t have significant differences
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Worker personality p-values

Extraversion 0.1356
Agreeableness 0.2102
Conscientiousness 0.2528
Neuroiticism 0.2774
Openness 0.6653

Table 2.10: p-values of the one-way ANOVA on personality for available workers at
different times in a day.

in their worker personality on any of the five factors. In other words, experimenters don’t

need to worry too much about approaching to pools of workers with different personality if

they launch their studies at different times in a day.

2.3 Discussion

In this chapter, we adopt two innovative experimental designs to understand the temporal

dynamics of the crowd. In particular, we have showed that available workers on on-demand

platforms like Amazon Mechanical Turk at different times in a day may exhibit significant

differences in terms of their demographic backgrounds, such as their location and experience

levels with MTurk. In addition, for researchers who conduct scientific studies with the crowd,

we also find that it is possible that the specific timing that they decide to launch their studies

on the platform may change the results that they will be able to obtain from the crowd.

These findings have very important implications for scientific researchers. First of all, given

that experimental results can be influenced by the timing of the experiments, it is necessary

for researchers to carefully record and report their experimental procedure, especially in terms

of the experimental timings, in the communication of their scientific discoveries to improve

the replicability of the findings. Besides, it’s also worthwhile for researchers to consider

conducting their crowd-based studies multiple times at different times in a day to better

understand the robustness of their results. Finally, as the varying worker demographics over
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time may also partly contributes to the differences in experimental results, researchers should

collect the demographic information from all subjects of their studies and control for the

demographics in their analyses whenever possible.

There are many interesting future directions to extend this work. For example, while we

have answered in this chapter whether experimental timing can affect experimental results

for crowd-based studies, we do not have a comprehensive understanding on why or why not

yet. For example, as we have showed in Section 2.2.3, worker’s incentivized decisions in the

public goods game are significantly different across different time slots, but it seems that such

differences are not resulted from the temporal variations in worker demographics or worker

personality. So what makes workers behave differently? Could it be worker’s prior knowledge

about other workers in that time slot? In addition, why significant temporal differences are

observed for worker behavior in the public goods game and the lottery choice game, but not

the dictator game? What kind of experiments display higher levels of “robustness” against

experimental timing? These are all interesting research questions that deserve in-depth

research.

We have examined the temporal differences in worker’s demographics, economic behavior,

cognitive abilities and styles, and personality in this chapter. There is another important

question that researchers may care about regarding to launching experiments on on-demand

platforms at different times. That is, if researchers conduct randomized experiments (i.e.,

randomly assign subjects into control and treatment groups), whether the results of these

experiments can be influenced by the experimental timing. We conjecture that it is possible.

For example, as we have identified the demographic composition of the worker population

changes over time, if the treatment effect in a randomized experiment is highly correlated

to one significantly temporally-varying worker demographic, researchers are likely to obtain

different effect size when they launch the experiment at different times. Further research is

needed to verify whether the results of randomized experiments can indeed be influenced by
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experimental timing and to further understand why if the answer is yes.

Moreover, in this chapter, we focus on micro-level temporal dynamics of the on-demand

workers in terms of their variations across different times within a day. As previous studies

have noted, the crowd of on-demand workers also experiences evolvement over time and thus

exhibits a significant temporal dynamics on the macro-level of months, years, or decades.

Understanding the interplay between the macro-level and micro-level of temporal dynamics

is thus an interesting future topic. In particular, given the rapid growth of the on-demand

economy in recent years as well as in a foreseeable future, it is important for us to keep track

of the demographics and behavior of the crowd in a long term. These data will then allow us

to conduct various longitudinal studies on the crowd, including revisiting the topics that we

have discussed in this chapter from time to time. With these studies, we can both get a more

accurate and updated knowledge about the crowd of the moment, and possibly understand

the development of on-demand economy in a broader context of the economic, political and

cultural movement of the entire society.
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Chapter 3

The Communication Network Within

the Crowd

The traditional black-box view of the on-demand economy has not only made it difficult

for us to understand who the on-demand workers are, but also how these workers perform

the work. Unlike employees in traditional companies or organizations who are likely to share

the same working space with each other, the crowd of on-demand workers can possibly be

dispersed all over the world. It is, therefore, not uncommon for people to view the “crowd”

as a group of independent workers, who do not, and do not need to, talk to or work with one

another. For the requesters of the on-demand labor, this perception of on-demand workers

being independent has been further strengthened by the digital communication protocol

between them and the workers. For example, on a typical on-demand crowdsourcing platform

like Amazon Mechanical Turk, the platform’s API hides from requesters personal attributes

of workers (e.g., demographics), as well as social characteristics of workers, such as how many

friends they have who also do crowdwork or if they are currently working on a task with

other workers. Without this information, it is not surprising that requesters come to view

the crowd of on-demand workers as independent from one another, with little attention paid
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to the connections between them.

This notion of crowds as independent workers was recently dispelled by Gray et al. [2016],

who opened up the black box and showed that workers are not independent but rather

connected through social ties. Through a mix of ethnographic fieldwork, in-person interviews,

surveys, and large scale data analyses of four different crowdsourcing platforms, they showed

that workers collaborate with one another to meet social and technical needs left wanting by

the crowdsourcing platforms studied. More specifically, they showed that workers collaborate

on three fronts: 1) helping each other get through the administrative overhead involved in

doing crowdwork (e.g., signing up for an account and getting paid, which can be especially

challenging outside of the United States), 2) sharing information about lucrative tasks and

reputable (or irreputable) requesters, and 3) completing work together. Thus, Gray et al.

[2016] showed the crowd is not a collection of independent workers, but that there exist edges

between the workers.

While prior work showed that communication exists, it left open the problem of un-

derstanding the scale, structure and impact of this communication. How widespread is

the communication? What is the topology of the communication network? And how does

participation in this communication network relate to the lives of crowd workers?

In this chapter, we set out to thoroughly understand the connectivity between the crowd of

on-demand workers and answer all the above questions by mapping the entire communication

network of workers on a leading crowdsourcing platform, Amazon Mechanical Turk (MTurk).

We aim to understand the network’s properties and the implications that communication

across the network has on all parties in the on-demand economy. To do so, we designed a

task that encouraged workers to self-report their connections to other workers in a privacy-

preserving way. The task was designed to provide value back to workers by allowing them

to explore the network and learn about the workers they connect to as well as the greater

network of crowd workers. The edges that workers provide are self-reported and thus not

61



perfectly accurate. However, they give us a close approximation of the true communication

network underlying MTurk, and a sense of how widespread communication among workers is.

We analyze the structural features of the MTurk communication network. While a large

segment of the population does, in fact, appear to be made up of isolated nodes, we show

that there is a rich network topology over the subset of workers who report connections. That

is, there is a substantial network within the crowd.

We show that online forums dedicated to working on MTurk play a key role in allowing

workers to communicate across the network. Forums create overlapping subcommunities

among workers. Forums differ from each other in terms of the topological structure of their

subcommunities, the temporal nature of communication, and the content of discussions.

Meanwhile, one-on-one channels are also used by some workers to communicate, yet they

play a different role in fostering communication when compared to online forums. We also

observe various types of homophily between workers. That is, we observe that workers are

more likely to communicate with other workers who live in the same country, have worked

on MTurk for a similar amount of time, and prefer the same types of MTurk tasks (e.g.,

classification or scientific experiments).

By correlating topological features of the network with a number of worker properties,

we find that workers’ positions in the network are related to various aspects of their MTurk

experiences, such as how long they have stayed on MTurk, whether they make use of online

forums, how successful they are as MTurk workers, and how fast they can find interesting

tasks on MTurk. And as a final case study of how workers with different properties participate

in the network differently, we provide a comparison between workers who live in and out

of the United States and show that these two populations hold different positions in the

network, adopt different channels for communication, and focus on different topics in their

communication.
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3.1 Related Work

The results of Gray et al. [2016] are based on data gathered by a team of ethnographers

who spent roughly 19 months in India interviewing over 100 crowd workers, conducting

repeat interviews with many of them over time to understand the longitudinal effects of

crowdwork. Gray et al. [2016] augmented their interviews with large scale surveys of the

crowd worker population in both the U.S. and India and an analysis of a HIT designed to

understand where MTurk workers are located and what resources they use to find HITs.

Their key finding is that workers collaborate with each other, often to make up for technical

or social shortcomings in the platform. The notion that some workers talk and collaborate

with one another is also supported by the 35 interviews of Indian workers that Gupta et al.

[2014] conducted, mostly via Skype. Both studies indicate that workers collaborate to share

tasks, aid each other in doing tasks, and provide social interaction that is often missing in

online labor. This notion inspired our goal of mapping the worker network. Our contribution

above and beyond these studies is to scale up their findings and dig deeper into the structure

of communication. While they find communication between 35 to over 100 interview subjects,

we measure and analyze the communication network of over 10,000 MTurk workers.

One theme that appears prominently in our findings is the importance of online forums

to the structure of the communication network. Prior research has shown the importance of

these forums in the work and lives of MTurk workers. Martin et al. [2014] spent hundreds

of hours reading posts on TurkerNation, a popular online forum for MTurk workers, to

understand this online community. They showed that workers primarily work on MTurk to

augment their pay and that workers spend a lot of time talking about requesters and tasks in

search of requesters with good reputations and tasks with high pay. Similarly, Zyskowksi and

Milland [2015] conducted an ethnographic study of TurkerNation. They observed participants

in chat rooms and interviewed them. They state that on TurkerNation, “common topics of
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discussion include the best jobs of the day, how to build one’s reputation, how to earn more

money, and how to make working more fun.” Thus workers are using forums not just to find

lucrative tasks but also to provide each other with social support. These qualitative studies

inform our work. Our goal is to scale these studies up and see how big the communication

network between MTurk workers is, what topology it has, and how workers use it.

Researchers have built at least two platforms that facilitate worker communication. First,

TurkOpticon is a system developed by Irani and Silberman [2013] used by workers to rate

requesters in terms of their communicativity, fairness, generosity, and promptness. Second,

Dynamo [Salehi et al., 2015] is a community platform designed to aid MTurk workers with

collective action problems such as “reining in problematic academic research practices” and

gathering support for a letter-writing campaign. These works facilitate worker communication

for focused goals. The purpose of our work is different in that we seek to understand the

structure and scale of the overall communication network that has organically grown among

the workers themselves.

3.2 Experimental Design

Amazon Mechanical Turk is an on-demand crowdsourcing platform in which requesters

can post small tasks (i.e., HITs) with pre-specified payments for workers to complete, while

workers can browse available tasks and choose HITs to work on. Once a worker has submitted

her work for a given HIT, the HIT’s requester can review this work, accepting it if it is high

quality and rejecting it if not. If work is rejected, the worker receives no payment. The

rejection is also reflected in the worker’s approval rate, which is simply the fraction of HITs

the worker has done that have been accepted. The approval rate serves as part of a de facto

reputation system, and requesters often make HITs available only to workers with a high

approval rate. Amazon additionally designates some workers as Masters. While Amazon
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Forum URL Registered Users Posts Start Date

Reddit HWTF https://www.reddit.com/r/HITsWorthTurkingFor/ 32,297 unknown February, 2012
MTurkGrind http://www.mturkgrind.com/ 6,743 748,983 October, 2013
TurkerNation http://turkernation.com/ 15,411 311,816 August, 2011
MTurkForum http://www.mturkforum.com/ 53,883 (932 active) 1,354,249 January, 2009
CloudMeBaby http://www.cloudmebaby.com/ 4,180 32,072 July, 2012
Facebook (groups) http://facebook.com/ unknown unknown unknown

Table 3.1: Statistics as of October 4, 2015 on the six online MTurk forums listed as
options for the question on forums.

does not disclose the criteria used to grant the Masters qualification, it is viewed as a sign of

high quality, and requesters may choose to make HITs available only to workers who have

received this qualification.

Amazon does not provide a platform for workers to interact with each other. However,

MTurk workers have created a variety of forums focused on navigating MTurk. A brief

overview of the most popular forums is given in Table 3.1. These forums differ somewhat in

functionality. Reddit’s HITsWorthTurkingFor (HWTF) is a highly active subreddit primarily

used by workers to share links to, and information on, good HITs. MTurkGrind, TurkerNation,

and MTurkForum are post-driven discussion boards organized around a range of themes, much

like USENET newsgroups. They each offer moderated areas and distinct but comparable

conversation modes organized by discussion threads. Each of these forums has tens of

thousands of threads dedicated to a wide range of topics. Registered members of these forums

can participate in the discussion in any threads they are interested in, and they may also

interact with each other in chat rooms or through private messaging systems provided by

the forums. CloudMeBaby is a site devoted to helping navigate and improve cloud based

workplaces including MTurk. In addition to these public forums, there are a number of both

private and public MTurk-related Facebook groups, varying in size from tens of users to

thousands of users.

Since the communication network among workers is not accessible from the API provided

by MTurk—in fact, the network exists outside of and separate from the MTurk platform—we

cannot simply download, crawl, or scrape this network. In this section, we describe a HIT
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that we designed to give workers incentive to self-report their connections with each other in

the communication network underlying MTurk. We believe the approach described here is

novel and could be of independent interest.

3.2.1 The Network Mapping HIT

We designed a five-step HIT to gather information from workers and allow them to

self-report other workers with whom they communicate. In the first step of our HIT, each

worker was asked to create a unique nickname for herself. This nickname had several intended

purposes. First, it was used as a unique identifier for the worker, preserving the worker’s

privacy since it was not based on the worker’s MTurk ID or other identifying information.

(Workers were encouraged not to use their real name, though we had no way to enforce this.)

Additionally, it was used as a way for other workers with whom this worker communicates to

add edges to this worker and identify this worker in the network. This is described in more

detail below.

In the second step, workers were asked nine survey questions about their demographics

and MTurk usage:

• Location: Which country do you currently live in?

• Age: Which year were you born in?

• Gender: What is your gender?

• Education: What is the highest degree or level of school you have completed?

• Master: Are you a Mechanical Turk Master?

• Approval Rate: What’s your approval rate on Mechanical Turk?

• Experience: How long have you been Turking?

• Tasks: What types of MTurk tasks do you typically do?

• Forums: What online MTurk forums do you regularly use?
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For the question on tasks, we provided a list of eleven common types of MTurk tasks such as

data entry, survey, and scientific experiments, and allowed workers to choose one or more. For

the question on forums, we enumerated the six popular MTurk forums in Table 3.1. Workers

could choose any number of these forums, specify other forums they use, or say that they do

not use any forums.

We allowed workers to set privacy preferences individually for each of the nine questions.

For each question, a worker could choose whether to share her answer with all other workers

who completed our HIT, to share her answer with only those workers connected to her in the

communication network, or to keep her answer private.

In the third step, workers were asked to answer two free-form questions related to their

experience on MTurk:

• Why did you start Turking?

• What motivates you to keep Turking?

These questions were carefully chosen to obtain information that other workers would find

valuable and interesting as a way of providing value back to workers who completed our HIT.

We ran a pilot survey in which we asked workers what they would most like to know about

other workers in the MTurk community and extracted the most popular questions. Our hope

was that presenting information that workers found valuable would encourage workers to

explore the communication network through the visualization and to truthfully report their

connections. Workers were informed that their answers to these two questions would be

shared with all other workers who completed our HIT as part of the network visualization

which they would view in Step 5.
In Step 4, each worker was asked to pause and take a moment to exchange nicknames

with other MTurk workers that she knows. Workers were told that they could do this in any

way they wanted and given several examples including exchanging nicknames in person, over

the phone, through instant messaging, or through text messaging.
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Figure 3.1: Screenshot of the user interface for the visualization of the MTurk
communication network.

In the final step, workers were shown a visualization of the current state of the com-

munication network (Figure 3.1). Each worker in the network was represented by a node

displaying the national flag of her country (if her privacy settings allowed), and edges were

shown between pairs of connected workers. The worker was able to locate herself, zoom in

and out of the network, and click on any worker in the network to view his information. When

a worker clicked on another worker to whom she was connected, she would see his nickname

as well as all information that he had chosen to share with his connections. Crucially, when a

worker clicked on a worker to whom she was not connected, she would not see his nickname

and would see only information he chose to share with all workers. Thus such workers were

effectively anonymous.

At this point, workers could add an edge to any other worker by providing his nickname.

When adding an edge, the worker was asked an additional two questions:

• How do you usually talk to this worker?

• What do you usually talk about with this worker?
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For the first question, the worker was provided with a list of communication channels such as

forums, phone calls, email, and instant messaging, and allowed to choose one or more. For

the second, the worker was given a list of topics such as sharing HITs, discussing requesters,

sharing Turking tools/scripts, and chatting about day-to-day life, and could choose one or

more. After entering this information, an undirected edge between the two workers was

immediately added to the network. Workers were also able to remove edges to other workers.

Before submitting the HIT, the worker was given a unique URL that would allow her to

return to the visualization to add or remove additional edges and continue to explore.

Note that by design, an edge between two workers could only be added if one of the

workers knew the other’s nickname, which could only occur if the workers had communicated1.

Thus we believe that the vast majority of the edges in the network represent a true exchange

of information, or in other words, a communication between workers. Of course there are

likely pairs of workers who communicate but did not choose to exchange nicknames. However,

exchanging nicknames allowed workers to learn interesting information about each other and

better understand their own place in the MTurk community. We believe this design nudged

workers towards reporting many of their true connections, though the true communication

network is perhaps even more dense and vast than we show here.

We cannot rule out the possibility that the very existence of our HIT caused communication

between pairs of workers who had not previously communicated with each other. This is

unavoidable; in general, every new HIT has the potential to provoke new communication

and the communication network is always evolving. We attempted to minimize this effect by

intentionally deciding not to pay workers per edge added, as this would result in workers

adding edges to those they do not regularly communicate with.

1A worker could potentially guess another worker’s nickname, but we do not believe this frequently
occurred. If it did, the second worker could remove the unwanted edge.
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3.2.2 Experimental Procedure

We posted our HIT to MTurk. Workers who accepted the HIT read through a description

of the task, signed a consent form stating that they were voluntarily participating in our

experiment, and then completed the HIT as described above. The payment for the HIT was

fixed at $1 USD and the average completion time was roughly 10 minutes. The HIT was

open to all workers on MTurk. Each worker was allowed to complete the HIT only once, but

could return to their personalized URL to further explore the network and add or delete

edges as often as they liked.

To ensure our HIT was well-functioning and scalable, we intentionally launched our exper-

iment in phases during August and September of 2015. We first launched two small batches

on August 11 (60 HITs) and August 12 (200 HITs). We notified workers on TurkerNation

ahead of time about these two test launches. Next, to test the scalability we launched two

larger batches on August 17 (596 HITs) and August 20–21 (1594 HITs). Satisfied with these

initial tests, we finally left our HIT up for 2 weeks straight from August 28 to September 11,

with the exception of 2 days (September 3-4) during which our requester account accidentally

ran out of money due to the unexpected popularity of our HIT. After our HIT was taken

down, workers continued to update the network via their private URLs. We report on data

collected on September 13 once the addition and removal of edges had greatly slowed.

3.3 Results

A total of 10,354 workers completed our HIT. Stewart et al. [2015] estimated that when

conducting behavioral research on MTurk, one laboratory is sampling from a pool of roughly

7,300 workers, and that the seven laboratories they studied sampled from an overall pool

of roughly 11,800 workers. This suggests that our HIT was approximately a census of the

active workers at the time. Of the workers who did our HIT, 1,389 (13.4%) either added
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(a) The communication network

(b) Reddit HWTF

(c) MTurkGrind

(d) TurkerNation

(e) Facebook

(f) MTurkForum

Figure 3.2: 3.2a: The communication network among Amazon Mechanical Turk
workers. 3.2b-3.2f: Subnetworks for Reddit HWTF (magenta; 660 workers, 1837
edges), MTurkGrind (red; 392 workers, 1331 edges), TurkerNation (green; 200 workers,
740 edges), Facebook (blue; 133 workers, 357 edges), and MTurkForum (black; 312
workers, 244 edges).

at least one edge to another worker or had an edge added to them by another worker. We

refer to these workers as connected. Among connected workers, a total of 5,268 edges were

added, resulting in a mean degree of 7.6, median degree of 2, and maximum degree of 321.

The largest connected component of the communication network consisted of 994 workers

(71.6% of all connected workers), while the next largest consisted of just 49 workers (3.5%

of all connected workers). Of the remaining connected components 117 were made up of a

single edge between a pair of workers.

The communication network is shown in Figure 3.2a. Examining the network visually,

it appears that the largest connected component is made up of several densely connected
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clusters of workers. Below we show that this structure largely coincides with workers’ use of

different online forums dedicated to Mechanical Turk work.

3.3.1 A Network Enabled by Forums

Forum use is extremely widespread among workers who completed our HIT, with 59.1%

of all workers and 83.0% of connected workers reporting that they use at least one forum2.

The overwhelming majority of edges involved communication through a forum as 89.9% of

the edges added were between pairs of workers that communicate via forums, and 86.2%

between pairs that communicate exclusively through forums. Since the vast majority of

communication between workers occurs on online forums, we next analyze the structure of

the subnetworks defined by each of the forums.

We extract the subnetwork corresponding to each forum by keeping only connected workers

who use that forum and only edges between pairs of these workers. As a sanity check, pairs

of workers reported communicating with each other through forums for the vast majority of

these edges (93% averaged over all subnetworks). Figures 3.2b-3.2f illustrate the subnetworks

for Reddit HWTF, MTurkGrind, TurkerNation, Facebook, and MTurkForum, respectively.

We omit CloudMeBaby as only 0.9% of all workers reported using it. As is visually apparent

from the figures, users of different forums make up distinct but overlapping subcommunities,

which explains much of the structure in the network.

To quantify our visual intuition, we measure whether or not workers who use the same

forum are more likely to connect to each other than to other workers. The sociological

phenomenon that contact between similar people occurs at a higher rate than among dissimilar

2The Forums question was added to Step 2 of our HIT on August 20 when we first realized the prevalence
of forum usage. We asked the 856 workers who completed our mapping HIT before August 20 which forums
they regularly use in a separate, one-question follow-up HIT and 659 responded. As a result, 98.1% of all
workers answered the question. Whenever we report statistics related to forum usage, we restrict attention to
workers who answered the Forums question.
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Forum Name ECGR ACGR p-value User Fraction (q) R H

Reddit HWTF 0.50 0.30 <0.001 0.48 0.69 0.70
MTurkGrind 0.41 0.23 <0.001 0.28 0.53 0.65
TurkerNation 0.25 0.18 0.005 0.14 0.56 0.62
Facebook 0.18 0.17 0.362 0.10 0.53 0.45

MTurkForum 0.36 0.25 <0.001 0.23 0.39 0.28

Table 3.2: Left section: Expected cross-group ratio and actual cross-group ratio
for the usage of each forum. Right section: One-sided homophily measures for each
forum.

people is called homophily [McPherson et al., 2001]. Thus, we are interested in understanding

the extent to which homophily exists with respect to forum use.

One standard approach to quantifying homophily is the homophily test described in [Easley

and Kleinberg, 2010]. Consider a binary property C that a node may or may not satisfy. In

our case, satisfying C might mean using a particular forum like MTurkGrind. Let q denote

the fraction of the population who satisfy C, S denote the set of all nodes that satisfy C,

and T denote the set of all nodes that do not. If there is no homophily with respect to C,

edges would be equally likely to form between all pairs of nodes in the network independent

of whether those nodes satisfy C. So, in the case of no homophily each node on an edge

would satisfy C independently with probability q, and the probability that any edge would be

between one node in S and one node in T would be 2q(1− q). We refer to this quantity as

the expected cross-group ratio (ECGR) of C. If, on the other hand, nodes in S were more

likely to connect to other nodes in S, and nodes in T to other nodes in T , then the actual

fraction of edges that would be between nodes in S and T , or the actual cross-group ratio

(ACGR), would be significantly lower. The homophily test compares these ratios.

Table 3.2 (left section) reports the results of homophily tests run separately for each

forum3, limited only to connected workers. For each of the five forums, we find that the

actual cross-group ratio is lower than the expected cross-group ratio. This provides evidence

3Note that while the test of Easley and Kleinberg [2010] easily extends beyond binary properties, we must
run it separately for each forum since workers may select multiple forums.
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for homophily with respect to the use of each forum, confirming the visual intuition given

by Figure 3.2. To check whether the differences are statistically significant, we keep the

network structure fixed and simulate a random assignment of node property values (that is,

whether or not a node uses a particular forum) by assigning each node to use the forum with

probability equal to the fraction q of users who use the forum in the real worker population.

We repeat this process 1,000 times, calculating the cross-group ratio for each of the 1,000

resulting networks. An empirical p-value can then be computed as the fraction of these

simulated networks with a cross-group ratio smaller than the ACGR we measure. As reported

in Table 3.2 (left section), the differences are significant for almost all forums.

The results of the homophily tests may, in fact, underestimate the amount of homophily

in the network. This is because while we might expect workers who use Facebook forums, for

example, to be more likely to connect with other workers who use Facebook forums, it is

unclear if workers who do not use Facebook forums are much more likely to connect with

other workers who do not. To address this, we look at two alternative measures of such

“one-sided” homophily. For a given node i, let ni be the total number of edges incident on i,

and ni,S be the number of edges incident on i that connect to nodes in S. Intuitively, it is a

sign of homophily if, on average, the fraction of the edges that are incident on some node in S

that to connect to other nodes in S is higher than the fraction of nodes in the total population

that are in S, i.e., if R ≡ (1/|S|) ∑
i∈S (ni,S/ni) > q. The measure R treats all nodes equally.

The homophily index of Currarini et al. [2009], defined as H ≡ ∑
i∈S ni,S/

∑
i∈S ni, is similar

but effectively gives more weight to nodes with higher degree. Again, if H > q, there is

evidence of homophily.

Table 3.2 (right section) shows both R and H for each forum along with the fraction of

workers who reported using that forum, again limited to connected workers. As expected,

these measures show a clear and striking tendency for workers to connect to other workers

who use the same forums.
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Given that workers are more likely to communicate with others from the same forums,

information should flow easily within subcommunities. One may wonder how information

spreads between subcommunities. Are there “connectors” in the network who bridge sub-

communities [Burt, 2004, 2007]? In fact, 32.4% of connected workers reported using more

than one forum regularly, providing ample opportunities for information to flow from one

forum to another through these individuals. Furthermore, among all edges connecting a pair

of workers that both reported using forums, 71.8% are between pairs in which at least one

worker uses a forum that the other does not. This provides another route for information

to spread between subcommunities. This observation supports the theoretical prediction

of Kleinberg et al. [2008] that if there are informational benefits to bridging communities,

many people will take a position in the network to earn, share, and ultimately dilute these

benefits.

3.3.2 Differences Between Subcommunities

We next highlight three major differences across these subnetworks in terms of topological

structure, temporal communication patterns, and content of communication, and then discuss

implications. As before, we extract the subnetwork corresponding to a forum by taking all

connected workers who use the forum and all edges between these workers.

Topological Differences

We first examine how tightly connected each subcommunity is using two metrics: density

and transitivity. Given a network with n nodes and m edges, the density of the network is

defined as d ≡ 2m
n(n−1) , which is the ratio between the actual number of edges in the network

and the maximum number of edges that could exist in any network with n nodes [Wasserman

and Faust, 1994]. Transitivity measures the degree to which triangles in the network are

closed. Let ntriangle be the number of triangles in a network (i.e., sets of three nodes with
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Forum Name Density (d) Transitivity (t) Diameter Avg. Shortest Distance

Reddit HWTF 0.008 0.30 9 8.36
MTurkGrind 0.017 0.38 13 7.15
TurkerNation 0.037 0.48 5 4.55
Facebook 0.041 0.38 6 4.37

MTurkForum 0.005 0.11 10 7.85

Table 3.3: Density, transitivity and distance metrics for each subcommunity.

edges between each pair) and ntriple be the number of connected triples (i.e., nodes x, y, and

z with an edge between x and y and another between y and z; a set of three nodes can create

up to three triples). The network’s transitivity is then t ≡ 3ntriangle/ntriple, which measures

the ratio between the actual number of triangles and the maximum number of triangles that

could occur in any network with ntriple triples.

Intuitively, higher density and higher transitivity both imply a more densely connected

network. Table 3.3 reports the density and transitivity for each of the five subcommunities.

The degree of connectivity varies a lot between subcommunities, with TurkerNation and

Facebook being the most tightly connected and MTurkForum the least tightly connected.

To further understand how densely connected the subcommunities are, we measure the

diameter and the average shortest distance between two nodes for the largest connected

component of each subcommunity. With the exception of MTurkForum, the largest connected

component contains the majority of nodes in the subnetwork for each forum. Table 3.3

summarizes these results. TurkerNation and Facebook have the smallest diameter and average

shortest distance respectively, suggesting that workers in the largest connected components of

these two subcommunities are closer to each other. This echoes our previous observation that

the TurkerNation and Facebook subcommunities are more highly interconnected. Despite

the largest connected component in the MTurkForum subnetwork containing only 35.3% of

workers who use the forum (110 workers), the diameter is still large, further evidence that

the MTurkForum community is not tightly connected.

Individual subcommunities are not uniformly dense, but composed of a mixture of tight-
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Figure 3.3: The percentage of central workers of star structures in each subcommu-
nity.

knit groups and “star structures,” consistent with the core-periphery structure of social

networks [Borgatti and Everett, 1999]. Within tight-knit groups, most workers communicate

with each other, forming cliques in the extreme. The sizes of the largest cliques in Reddit

HWTF, MTurkGrind, TurkerNation, Facebook, and MTurkForum are 11, 16, 16, 12, and 6,

respectively, and these largest cliques account for 1.67%, 4.08%, 8.00%, 9.02% and 1.92% of

all workers in each subcommunity. In contrast, star structures occur when a large number of

workers connect to a common central worker but not much to each other. To identify star

structures, we formally define a “central worker” to be any node with degree at least some

value dmin and clustering coefficient4 at most some value cmax. We use the number of central

workers identified in a network as a proxy for the number of star structures in it. Figure 3.3

shows the fraction of workers who are central workers in each subcommunity when we vary

dmin and cmax. By this measure, there exist many more star structures in the Reddit HWTF

subcommunity than in any others, a phenomenon that can be observed by a visual inspection

of Figures 3.2b – 3.2f. This suggests that workers may be using Reddit HWTF in a different

way than the other forums. We provide more evidence of this below.

4The clustering coefficient of a node is c ≡ 2 × |{ej,k : ej,k ∈ E, j, k ∈ N}|/(d(d − 1)), where d is the
node’s degree, N is the set of the node’s neighbors, E is the set of edges among nodes in N , and ej,k is the
edge connecting nodes j and k [Watts and Strogatz, 1998]. This is the ratio between the number of edges
between the node’s neighbors and the maximum number of edges between d nodes.
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Figure 3.4: Temporal communication in each subcommunity.

Temporal Communication Differences

HIT completion timestamps can be used to understand the temporal nature of communi-

cation in each subcommunity. For this analysis, we coarsely divide the edges in the network

into three categories: edges between workers who completed the HIT on the same day, edges

added by a worker to another worker who completed the HIT on an earlier day, and edges

added by a worker to another worker who completed the HIT on a later day. Note that the

third type of edge can only occur when a worker returns to the network visualization another

day via their private URL.

Figure 3.4 shows the fraction of edges that are of each type for each of the subcommu-

nities. More than half of the edges in the Reddit HWTF, MTurkGrind, and MTurkForum

subcommunities are between workers who took the HIT on the same day. On the contrary,

workers who use TurkerNation and Facebook are much more likely to communicate with other

workers who took the HIT on different days. Strikingly, at least 15%–20% of the edges in the

TurkerNation and Facebook subcommunities were created by workers who had submitted the

HIT on a previous day, but returned to the network to add additional edges later.

To further understand the temporal nature of communication, we calculate two additional

quantities for each subcommunity: the empirical probability of a worker in the subcommunity
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Forum Name Same Day Different Day

Reddit HWTF 0.049 0.005
MTurkGrind 0.077 0.010
TurkerNation 0.081 0.032
Facebook 0.074 0.035

MTurkForum 0.030 0.002

Table 3.4: Mean probability of connecting to a worker who took the HIT on the
same day or a different day.

adding an edge to another worker in the subcommunity conditioned on that worker arriving

the same day, and the empirical probability of a worker adding an edge to another worker

conditioned on that worker arriving a different day. Specifically, for each worker in a

subcommunity we calculate the fraction of all workers who arrived the same day with whom

the worker shares an edge and the fraction of all workers who arrived on different days with

whom the worker shares an edge, and we average these empirical probabilities across workers.

The results, given in Table 3.4, show that an average worker who uses Reddit HWTF or

MTurkForum is an order of magnitude more likely to connect to a worker who accepted the

HIT on the same day as opposed to a different day. This effect is dramatically smaller for

workers using TurkerNation or Facebook.

Taken together, these results suggest that workers might use Reddit HWTF and MTurk-

Forum to broadcast or obtain information that is immediately actionable, communicating

primarily with other workers who happen to be online at the same time. This is in contrast

with workers on TurkerNation and Facebook, perhaps indicating that workers on the latter

forums form longer lasting relationships.

Communication Content Differences

We turn to a comparison of the topics discussed in different subcommunities. Figure 3.5

shows the fraction of connected pairs that report communicating about each of five topics:

HITs, requesters, Turking scripts and tools, day-to-day-life, and other things. Consistent with
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Figure 3.5: Topics discussed in each subcommunity.

the previous literature on forum usage [Gray et al., 2016, Gupta et al., 2014, Zyskowksi and

Milland, 2015], we find intensive discussion about HITs in all subcommunities. Workers in

Reddit HWTF almost exclusively discuss HITs. Workers in other subcommunities are more

likely to share information about requesters, provide technical support, and recreate the social

environment otherwise missing from online work. TurkerNation has the most communication

on day-to-day life and Facebook has the most communication on other topics, suggesting

that workers use these forums in a more social manner.

Comparing the Subcommunities

Next we put all the differences we have observed together to help us understand how

these subcommunities are similar and how they are different. On the one hand, TurkerNation

and Facebook might be more socially oriented than other forums, leading to more tightly

connected subcommunities, workers who felt the urge to add edges to other workers they know

even if those workers took the HIT on a different day, and more discussions not directly related

to MTurk work. In comparison, Reddit HWTF, MTurkGrind, and MTurkForum appear to

be mostly dedicated to discussions about details of MTurk work. Reddit HWTF in particular

displays a variety of features (e.g., prevalence of star structures and discussions almost
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exclusively about HITs) which suggest that workers treat it as a platform for broadcasting

good HITs above all else. MTurkGrind appears to be something in between a social community

and a broadcasting platform, which may be related to the fact that 51.3% of all connected

workers who use MTurkGrind also reported using Reddit HWTF. One might conjecture either

that MTurkGrind has developed into an independent, more socialized community partly

from a pool of Reddit HWTF users, or that MTurkGrind has started to attract users from

Reddit HWTF who seek more social interactions. Finally, as we discuss in Section 3.3.6,

MTurkForum accounts for a significant amount of the communication that occurs between

workers outside of the United States. This might explain why it seems less connected than

other subcommunities.

3.3.3 The Role of One-on-One Communication

While the majority of communication occurs over forums, workers also report commu-

nicating one-on-one via in-person discussions, phone calls, emails, text messages, instant

messages, video chatting, and other channels. Overall 13.8% of connected pairs communicate

at least partially through one-on-one channels, and 10.1% communicate exclusively through

one-on-one channels. Among those pairs that communicate at least partially one-on-one,

the three most popular communication channels are instant messaging (27.3%), in-person

discussion (18.0%), and email (15.8%).

The role of one-on-one communication is different from that of communication via forums.

While forum use is responsible for enabling much of the communication within the largest

connected component, one-on-one communication is much more common in the smaller

components. Inside the largest component, only 10.7% of connected pairs communicate

at least partially through one-on-one channels, and 7.29% exclusively so. Outside of this

component, the story is very different: 74.0% of pairs communicate at least partially through

one-on-one channels and 63.6% exclusively so. Thus, one-on-one communication accounts for
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Figure 3.6: Comparison of topics discussed through forums vs. one-on-one commu-
nication.

the majority of edges outside of the largest component.

In addition, the distribution of topics discussed by pairs of workers who communicate one-

on-one differs substantially from that of workers who communicate over forums. Figure 3.6

compares the amount of discussion for each topic (i.e., the percentage of pairs that communi-

cate on the topic) among pairs who communicate one-on-one vs. in forums. Workers primarily

use forums to discuss HITs, while workers who communicate one-on-one communicate much

less about HITs and more about day-to-day life and other topics.

3.3.4 Homophily in the Network

We have seen that there is a communication network within the crowd and that workers

communicate across the network both via forums and one-on-one channels. It is natural to

ask who it is that workers are most likely to communicate with. In Section 3.3.1, we showed

that there is homophily in the network in terms of forum usage. We now examine whether

there is homophily in the network with respect to other worker characteristics.

To answer this question, we follow the same approach used in Section 3.3.1. First, we

apply (generalized, non-binary) homophily tests to examine and compare cross-group ratios.

Next, we compare the one-sided homophily measures R and H with the fraction q of workers
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who share the same property among all connected workers. Using this approach, we do not

see strong, consistent evidence for homophily along characteristics such as worker age, gender,

education, approval rate, or if a worker is an MTurk Master.

We did, however, find that there is homophily in the network for two other worker

characteristics: location and length of time on MTurk. For a worker’s location (limited to

just U.S. and Indian workers, ECGR = 0.249, ACGR = 0.107, p < 0.001), it is observed that

U.S. workers are much more likely to connect to other U.S. workers (q = 0.857, R = 0.906,

H = 0.943), and the tendency for Indian workers to connect with other Indian workers

is even more substantial (q = 0.130, R = 0.781, H = 0.580). For the length of time on

MTurk (ECGR = 0.844, ACGR = 0.809, p < 0.001), the values for both one-sided homophily

measures are also larger than the fraction of workers for almost all groups (“less than 1 year”,

“1-2 years”, “2-3 years”, “more than 4 years”) and close for the remaining “3-4 years” group

(q = 0.0914, R = 0.1694 > q, yet H = 0.0907 is just slightly less than q). This implies that

experienced workers are likely to connect to experienced workers while inexperienced workers

tend to communicate with inexperienced workers.

Finally, we analyze homophily around the types of tasks workers regularly do. We could

not conduct a single unified homophily test for task type since the vast majority of workers

regularly work on more than one type of task. We also did not conduct homophily tests on

the binary property of whether or not a worker does a particular type of task (as we did with

forum usage) because two workers who do not have a particular task type in common may

still be very likely to connect to each other because of their shared interest on one or more

other types of task. This would make interpreting the ACGR difficult. Figure 3.7 shows that

both one-sided homophily measures are larger than the corresponding fraction of workers

who do that type of task for almost all task types, with only the exception of transcription.

This indicates that workers tend to communicate with others who work on similar tasks.
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Figure 3.7: Comparisons of worker fraction and one-sided homophily measures for
each type of task.

3.3.5 Correlates of Network Position

Next we report our findings on the relationship between network position and various

worker properties such as length of time on MTurk, success on MTurk, and access to

information. Note that the relationships we report are correlations only. It is impossible

to determine whether there is a causal relationship between network position and worker

properties from our data.

First, we examine whether workers’ positions in the network have any relationship with

how long they have been on MTurk. According to Table 3.5, the percentage of workers

that have been on MTurk for more than 1 year is higher among connected workers than

unconnected workers. Consistent with our understanding that the network within the crowd

is largely conducted over forums, Table 3.5 shows that connected workers are also more likely

to use forums than unconnected workers.

Next, we attempt to understand whether workers’ network positions relate to how

successful they are. While “success” on MTurk is hard to measure, we can use as a proxy

a worker’s approval rate and whether or not the worker has been granted Masters status.

These capture how successful a worker has been at getting her own work approved. As

Table 3.5 suggests, by both of these measures, connected workers are more successful than
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Property Connected Unconnected

Be active >1 year 54.9% 45.9%
Use forums 83.0% 55.5%

Have Master status 11.4% 6.9%
Mean approval rate 98.6% 97.4%

Table 3.5: Relationship between whether a worker is connected and various worker
properties.

unconnected workers as they are more likely to be MTurk Masters and have higher approval

rate on average. At first glance these two effects may seem small, but a 1% increase in

approval rate or a Masters qualification allows a worker access to many more HITs which

could dramatically affect her income. Thus these are very important outcomes for workers.

Finally, we investigate the connection between workers’ network positions and how fast

they learn about HITs. We analyze how the network characteristics of workers who accepted

our own network mapping HIT changed over time. Specifically, we sort all workers according

to the time that they took our HIT and bin them into groups of 200. Figure 3.8 shows

the percentage of connected workers in each bin5. There is a clear decreasing trend over

time: connected workers were likely to learn about our HIT earlier than unconnected workers.

Figure 3.9 shows a box plot of the degrees of connected workers who took our HIT on different

days. Since our data was collected two days after we took down the HIT when few new edges

were being added, we believe we gave workers ample time to connect to those workers who

took our HIT late, reducing the chance that the low degrees of these workers are an artifact

of our data. Here we see that workers who found our HIT earlier also seem to have larger

degrees. If this phenomenon generalizes across HITs, this dynamic might result in connected

workers starving out isolated workers from high paying tasks.

These results suggest that there are potential benefits to crowd workers associated with

5As mentioned in Section 3.2.2, we notified TurkerNation workers about our test batches of HITs on
August 11–12 before launch. Hence we exclude workers who took the HIT on these 2 days in this analysis to
minimize possible bias.
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Figure 3.8: The percentage of connected workers in each bin of 200 workers, ordered
by time. The red dashed line is a linear regression trend line.

Figure 3.9: Degrees for connected workers who did our HIT by day. We omit four
outliers with degree over 100.

their positions in the network. Being connected is correlated with longevity on the site,

higher probability of getting work accepted, and the ability to learn about HITs faster than

unconnected workers.

3.3.6 U.S. vs. International Workers

Finally, we study the differences between workers who are located inside and outside

of the United States. Overall, 9,108 workers (88.0%) reported being located in the U.S.,

while the remaining 1,246 workers (12.0%) reported being located in other countries. While

international workers are more likely to be connected than U.S. workers (13.1% U.S. vs.
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16.0% international), connected U.S. workers have higher degree on average than connected

international workers (8.19 vs. 3.96). This coincides with the finding that a higher percentage

of U.S. workers (59.9%) reported using forums than international workers (53.2%), and this

comparison is even sharper when we restrict to connected workers (85.8% U.S. vs. 66.5%

international).

U.S. workers rely heavily on forums to communicate with each other (91.1% of connected

pairs of U.S. workers communicate with each other on forums, and 88.1% exclusively so).

International workers tend to use one-on-one channels dramatically more often (76.7% of

connected pairs of international workers communicate through one-on-one channels, and

56.9% exclusively so). Interestingly, the most popular forum among U.S. workers is Reddit

HWTF while international workers are most likely to use MTurkForum.

The topics discussed among these workers also differ. In particular, a larger fraction of

U.S. pairs communicate about HITs (83.2% U.S. vs. 61.2% international), while international

workers are much more likely to chat about day-to-day life (12.5% U.S. vs. 30.2% international).

This finding coincides with the finding in Figure 3.6 that forum communication is more likely

to focus on HITs while one-on-one communication is more likely to focus on day-to-day life.

In terms of network position, most of the connected U.S. workers (79.8%) are part of the

largest connected component, while the majority of connected international workers (77.9%)

are in smaller components.

Taken as a whole, this analysis resolves a question left open from Section 3.3.1: Who are

the connected workers who lie outside the largest connected component? These are largely

international workers who mostly communicate one-on-one on topics not limited to MTurk

work only and are most likely to use MTurkForum if they use a forum at all.
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3.4 Discussion

We designed and executed a HIT to map the network of workers on Amazon Mechanical

Turk, and showed that there is a substantial communication network within the crowd. Put

another way, the crowd is not a collection of independent workers. It is a network. The largest

connected component of this network is made up mostly of U.S. workers communicating on

various online MTurk forums on which discussion is mostly focused on aspects of MTurk work

such as sharing HITs. The network additionally contains many smaller components composed

largely of international workers talking with each other through one-on-one channels in which

conversations focus on topics like the workers’ day-to-day lives in addition to MTurk work.

Workers who are part of the network tend to communicate with other workers who are similar

to themselves in terms of geographic location, worker experience, and the types of tasks

they prefer. Being part of the network may confer some informational advantages to workers

allowing them to hear about HITs before workers who are not part of the network. Overall,

connected workers tend to be experienced and of high quality.

The existence of the network within the crowd has implications for requesters, workers,

and platform designers. Requesters should be aware that the workers they recruit are not an

independent sample from the community of active workers. Instead, workers are effectively

sampled from a network of workers bound together by the online forums they use or the type

of tasks they prefer to do. Since there is homophily among workers, if one worker does a

HIT she is more likely to recruit a fellow worker who is similar to her to do the HIT next. If

a requester who is using Mechanical Turk to conduct behavioral experiments [Rand, 2011,

Mason and Suri, 2012, Paolacci et al., 2010] randomly assigns workers to the treatment and

control groups, both groups are still statistically equivalent in all aspects. However, such

requesters should carefully consider if the treatment itself would be artificially increased or

decreased depending on the characteristics of the population sampled. This is especially
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true for characteristics like location and experience with MTurk, for which we have shown

homophily. Additionally, since workers frequently communicate with one another about HITs,

it is natural to ask whether the work that they submit is generated independently or whether

they may, for example, share answers with one another. Any discussion among workers of

the contents of HITs could bias results.

Our results show that many workers share lucrative tasks and information about reputable

requesters with their network connections. With access to this extra information, connected

workers might be able to start on high quality tasks before other workers hear about them.

In the extreme, this might lead to connected workers using up all of the high paying tasks

before isolated workers have had a chance to find them, effectively starving out the isolated

workers. Thus, we speculate that being a part of the network may confer an advantage to

workers.

All of the forums discussed in this paper were built by workers and exist outside of

the Mechanical Turk platform and website. We offer two explanations as to why workers

would spend their time building and using these forums. First, it could be the case that

participation in forums results in higher pay for workers since they gain access to information

about lucrative tasks, as discussed above. Beyond that, workers might inherently value the

social interactions that these forums provide. A quote from Zyskowksi and Milland [2015]

indicates that some workers value online forums for both of these reasons: “If I had not found

TurkerNation, I would not have made as much money for sure. And the fun we have when

things are slow: priceless.” Platform designers should be aware that some functionality of

their site is missing, so much so that workers felt the need to build that functionality on

their own, at their own expense. Crowdsourcing platforms should perhaps consider whether

there are ways to make their sites more social and provide workers with the interaction they

clearly value.
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Chapter 4

Managing the Flexibility of

Crowdwork

On-demand platforms often attract workers by claiming that the on-demand work op-

portunities on their platforms have a unique advantage compared to the traditional jobs in

companies and organizations, that is, the flexibility. For example, Amazon Mechanical Turk,

a leading on-demand crowdsourcing platform, advertises on its website that a Mechanical

Turk worker can “work from home, choose your own work hours, and get paid for doing good

work.” Meanwhile, on-demand workers may indeed attach crucial value to the flexibility of

the work beyond the immediate price-per-task payment that they earn from their work. For

example, it is found that for workers on crowdsourcing platforms, the job flexibility provided

by the crowdwork is a major factor that is associated with a favorable preference for workers

to pursue a crowdsourcing career [Deng and Joshi, 2013].

At the first glance, the on-demand work is indeed quite flexible as workers seem to be

able to choose whatever time, location, and manner to work that is most convenient for

them. However, a few recent studies have suggested that the on-demand work may not be as

flexible as it has been advertised, especially in terms of the temporal flexibility. For example,
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Figure 4.1: A requester needs to set a parameter of the maximum amount of time
allotted for each task on Amazon Mechanical Turk.

in contrast to our impression of on-demand workers typically completing the work during

their spare time to earn some extra cash, it is recently found that most participants in the

on-demand economy treat it as a secondary source of income to address the income fluctuation

in their traditional wage or salaried jobs so that they can cover their living expenses [Farrell

and Greig, 2016]. For some workers, the on-demand work is even their sole source of income.

As such, instead of completing on-demand work only when they want to do so, many workers

in fact try to complete as much on-demand work as possible, whenever it is available, in

order to make a living [Smith, 2016b]. The nature of “on-demand” work then decides that

for these workers, they actually need to work whenever there is demand from customers (e.g.,

work during the rush hours as an on-demand driver) rather than enjoying the flexibility of

adjusting their own working schedule.

Moreover, even if a worker can fully decide when she would like to participate in the

on-demand work, she may still face additional constraints within each individual task that

she works on. Take Amazon Mechanical Turk (MTurk) as an example—on MTurk, when

a requester posts a task, one important parameter that he needs to set is the maximum

amount of time assigned to the task, which is referred to as “time allotted” (see Figure 4.1

for an example). A worker needs to complete the task within this time limit in order to get

paid; otherwise, the task will be expired and she may not be able to accept the task again.

As most tasks on MTurk are “micro-tasks” that typically can be completed within a few

minutes, it is not uncommon for a requester to set the time limit to be rather short. In fact,

the default value of “time allotted” for a task on MTurk is 1 hour, and for about 85% of the
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tasks on MTurk, the requesters choose to set the time allotted to be no longer than 1 hour1.

These short time limits of individual tasks inevitably lead to certain inflexibility for workers:

workers may not be able deal with occasional interruptions in the tasks like restroom breaks

or picking up a phone call without having the tasks expired; in addition, workers may find

themselves quite constrained in scheduling tasks—for example, in a survey on crowd worker’s

experience, one stay-home mother suggested that the short time allotted on tasks prevented

her from accepting those tasks that she would like to conduct because they conflict with her

child care responsibilities [Deng et al., 2016].

In the traditional workplaces, there are a large number of studies clearly suggesting that

the flexibility of a job can influence both the work outcomes and workers themselves [Baltes

et al., 1999, Joyce et al., 2010, Nijp et al., 2012]. It is, therefore, natural to ask in the new

on-demand work settings, whether workers are influenced by the flexibility of the work in

a similar way. This is, in fact, the first question we attempt to answer in this chapter. In

particular, while it is difficult to control the flexibility of on-demand work by manipulating

the timing of demand, it is relatively easy to manage the flexibility within a task by allotting

different amount of time to each task, which we refer to as the in-task flexibility. Granting

sufficient in-task flexibility then implies the ability for a worker to control her working time

in a task once she decides to take it, including deciding when to actually start to work on

the task and whether and when to take breaks within the task.

In this chapter, we first focus on examining whether and how does the in-task flexibility

influence the worker engagement, performance and working behavior (e.g., the ways that

workers complete a task) in the on-demand crowdwork through an experiment on Amazon

Mechanical Turk. Our results suggest that providing more in-task flexibility to crowd workers

not only leads to significant improved levels of engagement and performance, but also changes

1This percentage is arrived by examining the time allotted for all available tasks on MTurk on May 1,
2017, using the author’s own MTurk worker account.
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the way that workers work on tasks. More specifically, the working behavior data that we

collect in the experiment is consistent with the hypothesis that more in-task flexibility allows

workers to work at their own pace (e.g., take breaks as needed within the tasks; therefore

take fewer breaks between subsequent tasks) as well as schedule their tasks in an efficient

way (e.g., work on urgent tasks with tight time limits first while putting other tasks in the

queues). Moreover, it is observed that workers who are more active in participating in the

on-demand crowdwork (e.g., workers who spend more hours on MTurk in a week) are more

likely to leverage the extra amount of time allotted to them in each task.

The positive association between in-task flexibility and work outcomes such as engagement

and performance seems to indicate that workers value the in-task flexibility. To further

understand that from worker’s point of view, how important it is to have sufficient flexibility

within a task, we conduct a survey to explicitly measure the economic values of in-task

flexibility for workers. Based on our survey, we find that about 65%–70% of the workers

attach a positive value to the in-task flexibility. In particular, it is estimated that on average,

workers are willing to take a pay cut of at least $0.82/hour to work on tasks which give them

more freedom in controlling their time.

4.1 Related Work

The impact of job flexibility on workers has been extensively studied within traditional

companies and organizations in the organizational behavior and psychology literature. While

the broad term of “job flexibility” includes the flexibility in various dimensions like work

schedule and work location, the concept of “temporal flexibility” or “work time control”

specifically refers to the flexibility regarding working times. The temporal flexibility can be

further divided into a number of sub-dimensions, including the control over when to start

and end the workday (i.e., “flextime”), when to take breaks, when to take days off or work
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overtime, etc.

A large number of studies have been conducted to understand the relationship between the

temporal flexibility in traditional workplaces and many job-related outcomes as well as different

aspects of worker’s lives. For example, it was found that an increase of temporal flexibility

in terms of flextime was associated with positive effects on worker productivity and job

satisfaction [Baltes et al., 1999]. Flexible working arrangement such as self-scheduled shifts was

observed to lead to improved health conditions and wellbeing [Joyce et al., 2010]. Research also

suggested that organizational interventions that were designed to promote greater employee

control over work time not only reduced the perceived stress for employees [Moen et al.,

2016a], but also lowered the turnover intentions [Moen et al., 2016b]. In addition, there were

further evidence which supported a positive association between temporal flexibility and the

work-life balance of workers [Hill et al., 2001, Nijp et al., 2012]. We refer interested readers

to a recent systematic review by Nijp et al. [2012] for more information.

Furthermore, two major types of mechanisms are provided to explain why temporal

flexibility can significantly influence job-related outcomes and worker’s lives. The time-

regulation mechanism suggests that the work time control allows workers to better regulate

their time demands, such as reduce the level of work-family conflict [Geurts and Demerouti,

2003, Shockley and Allen, 2007]. Meanwhile, the recovery-regulation mechanism indicates

that the temporal flexibility may give workers the opportunities to lessen the fatigue from

work by taking breaks as needed or prevent the work overload at the first place [Costa, 2003,

Nijp et al., 2012].

More broadly, job flexibility is a part of job autonomy, which refers to the freedom,

independence, and discretion to plan out the work and determine the procedures in the

work, and job autonomy is one of the five “core” characteristics of a job as suggested in

the job characteristics theory [Turner and Lawrence, 1965, Hackman and Oldham, 1980].

According to this theory, job autonomy, together with other four core job characteristics (i.e.,
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skill variety, task identity, task significance and feedback), can directly and indirectly affect

employee’s work related attitudes and behaviors, including worker motivation, satisfaction,

performance, absenteeism and turnover [Hackman and Lawler, 1971, Hackman and Oldham,

1975]. In addition, the self-determination theory in psychology [Ryan and Deci, 2000b, Deci

and Ryan, 2012] also includes autonomy as one of the three basic psychological needs for

people to self-motivate (i.e., be intrinsically motivated). For example, it was experimentally

showed that when explicit deadlines were imposed on a task and hence the levels of autonomy

for workers were limited, workers became less interested in the task [Amabile et al., 1976].

Our work is different from the previous studies in two ways. First, we focus on examining

the impact of flexibility on the on-demand crowdwork, which is often composed of small-sized

tasks and generally believed to be more flexible than traditional jobs. It is thus interesting to

see whether the level of flexibility in the work still has a similar effect on job-related outcomes

and working behavior for on-demand workers. To the best of our knowledge, our work is

the first study to answer this question. Second, in this study, we restrict our attention on

understanding the effects and values of the in-task flexibility, which is reflected by the amount

of time allotted to each task and describes the worker’s freedom in controlling their working

time within individual tasks. As an analogy, the in-task flexibility in the on-demand work is

similar to the flexibility within each project (e.g., whether a tight deadline is imposed on a

project or not) for a traditional job rather than the flextime. Our study, therefore, specifically

explores how the in-task flexibility affects crowd workers.

4.2 Experimental Design

In this section, we describe an online experiment on Amazon Mechanical Turk that we

designed and conducted to understand whether and how granting workers with more in-task

flexibility (i.e., allotting extra amount of time to tasks, which allows workers to control their
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own working time in the tasks) can affect worker’s engagement, performance as well as their

working behavior in the tasks.

4.2.1 The Sentiment Analysis Tasks

The tasks we used in this experiment were sentiment analysis tasks. In particular, each

task contained an Amazon customer review for an automobile related product, and workers

were recruited to analyze the sentiment in the review. The set of customer reviews in the tasks

were taken from [McAuley and Leskovec, 2013]. Each review used in our task had 150–200

words, and workers were asked to indicate whether the review is positive or negative in their

opinion. As the ground truth, we got access to the actual customer rating associated with

each of the reviews on a 5-point scale, with a higher rating indicating a higher satisfaction

level. We classified reviews with a rating of 4 or 5 as positive reviews, and reviews with a

rating of 1 or 2 as negative reviews. Reviews with a rating of 3, which we determined as

neither positive nor negative, were therefore not used in our tasks. Through a pilot study, we

found that it took a worker about 30 seconds on average to read one review and determine

the sentiment in it. Figure 4.2 shows an example of the sentiment analysis task.

4.2.2 A 3×2 Factorial Design

By controlling how much time we allotted to each sentiment analysis task and whether we

provided an estimate of the task completion time in a task, we created a set of six treatments.

In particular, each treatment is defined by the following two dimensions:

• time allotted: the amount of time allotted in a task, with three possible levels—1 minute,

1 hour, and 1 day;

• provision of time estimate: whether to provide an estimate of the task completion time

in a task—if time estimate is provided, we will let workers know that we expect that it
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Figure 4.2: Example of an sentiment analysis task.

takes roughly 30 seconds to complete one sentiment analysis task; if time estimate is

not provided, we will not tell workers this information.

With the combination of 3 levels of time allotted and 2 possible values for providing time

estimate, we have a 3×2 factorial design which led to a total of six treatments.

As our pilot study suggested that completing one sentiment analysis task took 30 seconds

on average, we in fact granted workers enough amount of time to complete the task for all

three levels of time allotted. However, compared to workers who were allotted 1 minute for

each task, workers who got 1 hour or 1 day for each task had much more in-task flexibility and

thus were able to control their working time in the task (e.g., decide when to start the task,

whether to take a break in the task) to a much larger degree. Comparing worker engagement,

performance and working behavior across treatments with different time allotted can thus

help us to understand the impact of in-task flexibility on crowd workers.

On the other hand, one may wonder whether workers would use the amount of time

allotted in a task to infer the difficulty of the task—for example, workers may take the time

allotted as a proxy for how long it would cost to complete the task. If this is indeed the case,

98



one can imagine that, for example, workers who were allotted 1 day for each task would not

interpret getting extra amount of time for a task as more in-task flexibility, but rather an

indicator of the task being complex and time-consuming. To control worker’s perception

on the time allotted, we added in the second dimension of “provision of time estimate” and

explicitly informed workers about the estimated completion time of a task in those treatments

where time estimate was provided. By examining whether there is any difference in worker

engagement, performance, and working behavior across treatments with and without time

estimate, as well as the interactions between the two factors (i.e., time allotted and the

provision of time estimate), we can have a more in-depth understanding on how workers

interpret and thus be affected by the amount of time allotted in a task.

4.2.3 Experimental Procedure

A two-phase experiment. We conducted our experiment in two phases. The first phase

is the recruitment phase, in which we posted a 20-cent participant recruiting HIT for future

sentiment analysis tasks on Amazon Mechanical Turk (MTurk) on September 8, 2016. Workers

who were interested in completing the future sentiment analysis tasks can sign up by answering

three survey questions about their usage of MTurk (i.e., number of years using MTurk, number

of hours working on MTurk in the last week, number of income sources out of MTurk) in

the recruiting HIT and submit it. Workers were informed that we would include all workers

who submitted the recruiting HIT into the participant pool for the sentiment analysis tasks,

hence they were instructed to answer the survey questions honestly. The second phase is

the phase for the actual experiment, which was conducted on September 12, 2016. Each

worker who signed up through the recruiting HIT was randomly assigned to one of the six

treatments and was provided with 100 sentiment analysis HITs, with each HIT containing

one sentiment analysis task. We communicated with workers about these sentiment analysis

HITs through email once we launched them. Depending on the treatment that the worker
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was assigned to, the amount of time allotted to each task can be 1 minute, 1 hour or 1 day,

and a completion time estimate may or may not be included in the instruction of the task.

Workers were asked to complete as many sentiment analysis HITs as they want, and they can

get a fixed payment of 5 cents for each HIT they completed. While workers were working on

the tasks, we recorded data on their engagement, performance and working behavior in the

tasks, which we will detail later.

Such design of two-phase experiment allowed us to mimic the requester’s management on

in-task flexibility in a most natural way. In particular, consider an alternative scenario where

we don’t have the recruiting HIT of the first phase and directly assign workers into one of the

six treatments upon their arrival in the actual experiment HIT in an online fashion. In order

to control the time allotted in a task, we will have to set an extra timer of 1 minute, 1 hour or

1 day on the task within each HIT in addition to the default timer of the HIT that we have

already set when defining the parameter of time allotted for the HIT, which is before the

random assignment of workers. From the worker’s perspective, this “embedded timer” can be

confusing and can potentially lead to negative discussions about our experiment HITs on

online forums. On the contrary, when we have the separate recruiting phase, we can conduct

the random assignment of workers offline. Thus, in the actual experiment phase, workers

who are assigned to a treatment with time allotted being T (T ∈ {1 minute, 1 hour, 1 day})

will be exposed to a group of 100 HITs where each HIT has the time allotted parameter being

set as T , and there is no need for setting an extra timer within the HIT. Importantly, using

the MTurk qualification, we ensure that workers will only be able to see and work on HITs in

the treatment that they were assigned to, although we post the sentiment analysis HITs for

all treatments at the same time.

Experimental data. We kept track of a wide range of engagement, performance and

working behavior data while workers completed our sentiment analysis tasks. More specifically,
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we used the number of sentiment analysis tasks that a worker accepted and completed as

the metrics for measuring worker engagement. Given that we only presented 100 sentiment

analysis HITs to workers, both the number of accepted tasks and completed tasks had an

upper bound of 100. We further compared worker’s answer in each task to the ground truth,

determined whether the answer was correct and then calculated the accuracy of a worker by

averaging over all tasks that she completed. Worker’s accuracy was then used as the metric

of worker performance.

In addition, we also kept a detailed log for each worker’s interaction with each task that

she completed. In particular, when the worker i accepted a task t, we recorded a timestamp

ati as the time for task acceptance, which was also the time that the worker entered the task

for the first time. Once a worker accepted a task, the task would be automatically added

into her HIT queue on MTurk. The worker can either immediately start to work on the

task or she can continue to search for other tasks, and the tasks that she accepted would

stay in her queue until the time allotted for these tasks was reached. Therefore, depending

on how worker i interacted with task t after she accepted it, we recorded some additional

timestamps—if worker i had task t open in her browser ever since she accepted the task, then

the only other timestamp (if any) we collected for the worker on this task is sti, which was

the time for task submission2; on the contrary, if the worker searched for other tasks after

accepting task t (so she didn’t keep task t open in her browser) and then came back to work

on task t later, in addition to the the task submission timestamp sti, we also kept another

sequence of timestamps rti(j), 1 ≤ j ≤ nti, with rti(j) representing the time when worker i

re-entered task t from her HIT queue for the j-th time, and nti was the total number of times

that worker i re-entered task t. Naturally, we have ati < rti(1) < · · · < rti(nti) < sti. We next

2Note that having a task open in the browser doesn’t imply that the worker is working on the task. For
example, the worker can work on one task while keeping other tasks open in her browser, or the worker can
take a break within a task. It is not practical for us to monitor when the worker actually works on the task.
It is also possible that a worker accepts a task but never submits it; she may return the task, or let it expired.
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Figure 4.3: An example for defining metrics of working behavior. In this example,
the worker completes 20 tasks in total, and the log for each task is represented as
a horizontal bar: the leftmost end of each bar represents the task acceptance time;
the rightmost end of each bar represents the task submission time. Each bar may be
further divided into a yellow part and a dark red part. The transition point from
yellow to dark red in each bar (if any) represents the time when the worker re-enters
the task for the last time.

sorted all the tasks that worker i completed according to the increasing order of the task

acceptance time. A break between the subsequent two tasks then refers to the gap between

the time that worker i submitted one task and the time that she entered the next task for

the last time.

Based on the log of worker’s interaction with tasks, we defined the following metrics for

measuring worker’s working behavior:

• queue time (qti): the amount of time elapsed from worker i accepting task t to entering

the task for the last time. When nti = 0, qti = 0; otherwise, qti = rti(nti)− ati.

• dwell time (dti): the amount of time elapsed from worker i entering the task for the last

time to submitting the task. When nti = 0, dti = sti − ati; otherwise, dti = sti − rti(nti).

• number of x-minute breaks: the total number of breaks a worker took that were longer

than x minutes.

• first x-minute break timing: the total number of tasks that had been completed before
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a worker took her first break that was longer than x minutes.

Figure 4.3 gives a visual example on how the above working behavior metrics are defined.

Comparing these metrics across different treatments allows us to thoroughly understand

whether granting more in-task flexibility affects worker behavior in terms of how they process

tasks, including how long they put a task in their queues, how long they dwell on a task,

how many times they need to take breaks, and how early they need to take a long break.

Our hypothesis is that more in-task flexibility allows workers to complete tasks according to

their own pace (e.g., take breaks within tasks if needed and thus increase the dwell time on a

task while decrease the needs for breaks between subsequent tasks). Moreover, with more

in-task flexibility, workers may be able to schedule the accepted tasks in a more efficient way

to minimize possible conflicts (e.g., put tasks with higher levels of in-task flexibility in their

queues for a longer period of time in order to cater for more urgent tasks first).

4.3 Results

In total, 1,999 workers signed up to the sentiment analysis tasks through the recruiting

HIT in the first phase of our experiment. We then assigned each worker to one of the six

treatments uniformly randomly. Among workers who signed up, 1,379 workers actually

accepted at least one sentiment analysis task in the second phase of our experiment. No

significant difference is observed across workers in different treatments in terms of either

their usage of MTurk (i.e., their responses to the survey questions in the recruiting HIT) or

the actual experiment participation rate (i.e., the percentage of signed-up workers in each

treatment who actually participated in the sentiment analysis tasks).

103



(a) Without provision of the completion time estimate (b) With provision of the completion time estimate

Figure 4.4: Retention curves showing the fraction of workers who continued to
accept task after X tasks.

4.3.1 Impact on Worker Engagement

First of all, we examine whether granting workers with more in-task flexibility has any

impact on worker engagement. We hypothesized that with more in-task flexibility, workers

are more engaged in the tasks and thus are willing to work on a larger number of sentiment

analysis tasks (i.e., accept and complete more sentiment analysis tasks). Meanwhile, we also

conjecture that without the explicit estimate on how long it takes to complete a task, workers

may use the time allotted in a task as an approximate for the time cost before accepting the

tasks, which indicates a potential positive interaction effect between time allotted and the

provision of time estimate—the improvement in worker engagement with time allotted can

be larger when time estimate is provided.

Figures 4.4a and 4.4b show the curves on the fraction of workers who accepted at least X

(0 ≤ X ≤ 100) tasks, for treatments without or with completion time estimate, respectively.

Visually, we find that given a fixed X, the fraction of workers who accepted at least X tasks

tend to be always higher in treatments where time allotted for each task is longer, and such

difference is especially significant between workers in the 1-minute treatments and workers in
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# of acceptance
(Model 1)

# of acceptance
(Model 2)

# of submission
(Model 1)

# of submission
(Model 2)

Intercept 4.456***

(0.006)
4.446***

(0.007)
4.388***

(0.006)
4.394***

(0.007)

w/ time estimate -0.021***

(0.006)
-0.002
(0.010)

0.005
(0.006)

-0.006
(0.011)

1 hour 0.009
(0.007)

0.024*

(0.010)
0.013†

(0.007)
0.008
(0.010)

1 day 0.026***

(0.007)
0.039***

(0.010)
0.014†

(0.007)
0.003
(0.010)

w/ estimate × 1 hour -0.030*

(0.014)
0.010
(0.015)

w/ estimate × 1 day -0.028*

(0.028)
0.023
(0.015)

Table 4.1: Negative binomial regressions for the number of tasks a worker accepted
or submitted. Coefficients and standard errors are reported. The statistical signifi-
cance of the estimated coefficient is marked as a superscript, with †, *, **, and ***

representing significance levels of 0.1, 0.05, 0.01, and 0.001 respectively.

the 1-day treatments. This supports our hypothesis that more in-task flexibility improves

worker engagement—with more time allotted in a task, workers tend to increase the number

of tasks that they accept.

We next attempt to test whether the impact of in-task flexibility on the number of tasks

that workers accept is statistically significant. The data on the number of tasks a worker

accepts is highly skewed—as we can see in Figure 4.4, 70%–80% of the workers accepted all

100 sentiment analysis tasks that we offered to them. Therefore, we used negative binomial

regressions to properly analyze these over-dispersed count data, and results are reported in

Table 4.1. In particular, Model 1 on the number of accepted tasks (i.e., the second column of

the table) reports only the main effects of the two factors, time allotted and the provision

of time estimate. According to the regression results, providing extra amount of time in a

task indeed increases the number of tasks a worker accepts, and such increase is statistically

significant when allotting an excessively long period of time (i.e., 1 day) to the 30-second task.

Interestingly, we also find that the main effect of the provision of time estimate is negative,

suggesting that workers tend to accept fewer tasks when an estimate of the task completion

time is presented in the task instruction.
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To have a better understanding on how the provision of completion time estimate affects

the task acceptance, we further consider a second model which includes the interaction

between the two factors (i.e., Model 2 for the number of accepted tasks, shown in the third

column of Table 4.1). Contrary to our conjecture, we find a significant negative interaction

between time allotted and the provision of time estimate, implying that the improvement in

worker engagement (in terms of the number of tasks accepted) is more significant when we

don’t provide a time cost estimate in the tasks.

We provide a few possible explanations for our observations. First, the sentiment analysis

task used in our experiment is quite simple and straightforward, and it is also a common

type of task on MTurk. Hence, it is relatively easy for workers to quickly estimate the time

cost of the task by themselves, either through working on a few of these tasks or checking

the related discussions about these tasks on online forums. As a result, unlike what we have

conjectured, for this particular type of task that we used in the experiment, workers may not

need to use the time allotted in a task to infer how long it will take to complete the task.

Second, in treatments with the completion time estimate, the difference between the actual

time cost of the task and the allotted time to the task is made salient to the workers, yet we

do not explicitly explain why we allot extra amount of time in the tasks. Since it is unclear

to workers why they were allotted such long periods of time for rather short tasks, workers

may start to worry about the potential mismatch between the requester’s expectation and

their own understandings of the tasks, and thus may become hesitate to accept more tasks in

order to minimize their risks. Finally, it is also possible that for some workers, they find the

task time estimate we provide is not consistent with their own experiences and thus decide to

stop accepting tasks due to psychological factors like mistrust to the requester or low levels

of self-efficacy—the latter can be especially true if a worker finds that for her, completing a

sentiment analysis task takes significantly longer than 30 seconds.

In addition to the impact of in-task flexibility on the number of tasks a worker accepted,
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Figure 4.5: Comparison on workers’ average accuracy in different treatments. Error
bars represent standard errors of the means.

we also look into the impact on the number of tasks a worker completed (i.e., submitted).

Again, we conduct negative binomial regressions on the data and results are reported in the

fourth and fifth columns of Table 4.1. Similar to the effects on task acceptance, we also find

that granting extra amount of time in a task leads to an increase in the number of tasks

a worker submits, and such increase is marginally significant. The provision of task time

estimate, however, does not affect the task submission much.

4.3.2 Impact on Worker Performance

Our second goal is to understand the influences of in-task flexibility on worker performance.

Figure 4.5 displays the average accuracy for workers in each of the six treatments in our

experiment, in which we clearly observe a upward trend as more time is allotted in a task,

suggesting that granting more in-task flexibility can also improve worker performance in

the tasks. Meanwhile, we also find that providing a completion time estimate in a task is

associated with a higher worker accuracy, and no interaction effect between time allotted

and the provision of time estimate is observed through our visual inspection. We further

confirm the significance of the worker performance improvement through statistical tests—as

the worker accuracy data is not normally distributed, a two-way ANOVA is not suitable
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here. Thus, to examine the effect of time allotted on worker performance, given a particular

level of time allotted T ∈ {1 minute, 1 hour, 1 day}, we combine the worker accuracy data

in the two treatments with the time allotted level T (and the task time estimate is either

provided or not provided) together. In this way, we get three samples of worker accuracies,

one for each level of time allotted, and we then use an one-way Kruskal Wallis ANOVA test

to examine whether these three samples originate from the same distribution. The test result

suggests that the differences in accuracy are statistically significant across treatments with

different time allotted (p = 0.022). Pairwise comparisons further indicate that workers in

the 1-day treatments (or 1-hour treatments) are significantly (or marginally significantly)

more accurate compared to workers in the 1-minute treatments with p = 0.029 (or p = 0.071).

Similarly, we combine the worker accuracy data in the three treatments with the same value

on the provision of time estimate together, and a Wilcoxon rank-sum test confirms that the

improvement in worker accuracy brought up by the provision of time estimate is statistically

significant (p = 5.080 × 10−5). We conjecture that this is because workers interpret the

provision of time estimate as a signal of the requester’s familiarity with his tasks and thus

workers choose to consciously keep producing high-quality work to satisfy the requester.

4.3.3 Impact on Working Behavior

Finally, we explore the relationship between in-task flexibility and worker’s working

behavior in the tasks (i.e., the ways workers interact with and complete tasks). As we don’t

observe significant differences in working behavior between treatments with or without the

provision of task time estimate, in the following, we focus on studying whether providing

extra amount of time in a task will affect the working behavior of workers. Thus, for each

level of time allotted, we combine the behavior data in the corresponding two treatments

(i.e., one treatment with time estimate and another without), and the analyses are conducted

on the three aggregated samples of behavior data.
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(a) Average Queue Time (b) Average Dwell Time

Figure 4.6: Comparison on the average queue time and average dwell time for
workers in treatments with different levels of time allotted. 4.6a: the fraction of
workers whose average queue time is longer than X; 4.6b: the mean values for worker’s
average dwell time on tasks, and error bars represent the standard errors of the mean.

For each worker, we first calculate her average queue time and average dwell time by taking

an average of the queue time and dwell time for all tasks that she completed. Figure 4.6a

then compares the distributions of worker’s average queue time when the amount of time

allotted in a task varies, while Figure 4.6b demonstrates the mean values of average dwell

time across different treatments. As the figures show, for any given X, the percentage of

workers whose average queue time is longer than X is much higher when the time allotted in

a task is longer, suggesting that workers tend to put tasks in their queues for a longer period

of time if extra amount of time is allotted in a task. In other words, granting workers with

extra time in a task effectively gives workers the flexibility to control when they start working

on the task, which may further allow workers to optimally schedule tasks so that they can

work on more urgent tasks (which can be either other accepted tasks in their queues with

shorter time limits, or tasks outside of the on-demand work like taking care of their kids) first.

Similarly, we also observe that worker’s average dwell time on a task increases with the time

allotted in the task, which may because that with the extra amount of time allotted in a task,

workers can take breaks within a task if needed. The differences in average queue time and
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Figure 4.7: The average number of breaks a worker takes that are longer than X
minutes in treatments with different levels of time allotted. Error bars represent the
standard errors of the mean.

average dwell time across treatments with different levels of time allotted is also statistically

significant according to the results of one-way Kruskal Wallis ANOVA tests (p < 10−26).

We then move on to examine the impact of in-task flexibility on how workers take breaks

between tasks. Figure 4.7 compares the average number of breaks of different lengths that

a worker takes between subsequent two tasks when the time allotted in a task differs. In

general, we find that compared to workers who are assigned to the 1-minute tasks, workers in

the 1-hour or 1-day treatments seem to take much fewer breaks, especially when the length of

the break is relatively short. Taking a closer look at the data, we further observe that when

workers are allotted only 1 minute for the task, they need to take significantly more short

breaks (i.e., breaks between 1 to 5 minutes, p = 5.32× 10−15) and medium breaks (i.e., breaks

between 5 to 10 minutes, p = 0.005), yet the number of long breaks (i.e., breaks that are

longer than 10 minutes) they take is similar to that in treatments with the other two levels

of time allotted. This is consistent with our hypothesis—when workers are assigned with

relatively short period of time in the tasks, they don’t have much in-task flexibility and may

feel quite constrained within the tasks; therefore, it is necessary for them to take more breaks

between subsequent tasks to, for example, recover from fatigue or deal with interruptions
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Figure 4.8: The average number of tasks a worker has completed before she takes
her first break that is longer than X minutes.

in their working environment, becuase taking breaks in the tasks is not realistic. Moreover,

Figure 4.8 further shows that workers in treatments with longer time allotted also take their

first break after completing significantly more tasks. That is, with more in-task flexibility,

workers not only take fewer breaks between tasks, but also take breaks later.

Finally, we study about the relationship between worker’s usage of MTurk and their

working behavior in the tasks. More specifically, given a particular worker, we correlate

data on her usage of MTurk (i.e., number of years using MTurk, number of hours working

on MTurk in the last week, number of income sources out of MTurk) that we collected in

the recruiting HIT with her working behavior (e.g., average queue time, average dwell time,

etc.) in the sentiment analysis tasks, and we attempt to see whether workers with different

characteristics will leverage the in-task flexibility to different degrees. While we don’t find

significant differences in the working behavior for workers with different experience levels

(i.e., number of years using MTurk) or different levels of dependence on MTurk (i.e., number

of income sources out of MTurk), we do observe that workers with various activity levels on

MTurk (i.e., number of hours working on MTurk in the last week) indeed work on tasks in

different ways. For example, workers who worked on MTurk for more than 20 hours in the

last week have significantly longer average queue time and average dwell time compared to
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workers who worked on MTurk for fewer than 20 hours last week, regardless of the amount of

time allotted in the tasks. This implies that workers with higher activity levels on MTurk

are more likely to utilize the in-task flexibility through, for example, scheduling their tasks in

a more optimal way and taking breaks in the task if needed.

4.4 Towards Measuring the Value of Flexibility

In the previous section, we have experimentally studied the impact of in-task flexibility

on the workers. Our experimental results suggest that when workers are granted with more

in-task flexibility, they improve their levels of engagement as well as performance in the tasks,

and workers also adjust the way that they interact with tasks accordingly. In other words,

these results appear to imply that the on-demand, crowd workers value the flexibility within

the tasks, at least to some degree. A natural follow-up question to ask is to what degrees do

the workers value the in-task flexibility. Inspired by the experimental approach for eliciting

individual’s time preference in economics [Frederick et al., 2002, Hardisty et al., 2013], in this

section, we set out to experimentally measure the economic values that workers attach to the

in-task flexibility.

In particular, we designed a survey-based experiment with two treatments. The surveys

were posted on MTurk, and workers who participated in the experiment were randomly

assigned to one of the two treatments upon their arrival at the survey HITs. In both

treatments, we first ask workers to imagine the scenario in which they are asked to complete

a group of sentiment analysis tasks—it takes them roughly 30 seconds to complete each task

and they can complete as many as 100 such imaginary sentiment analysis tasks in total. If

a worker is assigned to the first treatment, she will be informed that the requester of the

imaginary task allot 1 minute for each task and set the price for each task to be 5 cents.

However, the requester doesn’t need the data from the sentiment analysis tasks immediately.
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Therefore, he is willing to allot 1 day to each task so that workers can take breaks in the tasks

if needed. The worker is then asked to indicate her preference in a sequence of five possible

design pairs for this imagined task, where in each pair, the worker is asked to compare

whether she would rather complete each sentiment analysis task within 1 minute for 5 cents,

or within 1 day for x cent(s), where x ∈ {1, 2, 3, 4, 5}. On the other hand, if a worker is

assigned to the second treatment, she will be informed that the requester has set the time

limit for a task as 1 day and the price for a task as 5 cents, but he suddenly needs the data as

soon as possible. Hence, the worker is asked to reveal her preferred task designs in a sequence

of five possible design pairs, where in each pair, the worker is presented with one option

of completing each sentiment analysis task within 1 day for 5 cents and another option of

completing each task within 1 minute for y cents, where y ∈ {5, 6, 7, 8, 9}.

We can then calculate the economic value that workers attach to the in-task flexibility

for each 30-second task in an indirect way. For example, let’s consider a worker in the first

treatment—If she prefers the “1 minute, 5 cents” task design over the “1 day, x cent(s)”

design for all x values, then the worker is not willing to give up any of her financial gains

for the extra amount of time allotted in a task, indicating that she put a value of zero on

the in-task flexibility for this task. As another extreme, if the worker always prefers the “1

day, x cent(s)” design regardless of the value of x, it means that in exchange for the in-task

flexibility, the worker is willing to give up 4 cents or even more financially, implying that the

value of in-task flexibility on this task for her is at least 4 cents. Finally, there is a third

scenario in which there is a value x0 ∈ [1, 4] such that the worker prefers the “1 minute, 5

cents” design over the “1 day, x cent(s)” for x ∈ [1, x0], but she prefers the “1 day, x cent(s)”

over the “1 minute, 5 cents” for x ∈ [x0 + 1, 5]. Suppose in this case, the value of in-task

flexibility is δ. The worker’s preference then suggests that x0 + δ < 5 and x0 + 1 + δ > 5,

that is, δ ∈ (4− x0, 5− x0).

In total, 202 workers were assigned to the first treatment, and for 8 of them, we can
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(a) “1 minute, 5 cents” vs. “1 day, x cent(s)” (b) “1 day, 5 cents” vs. “1 minute, y cents”

Figure 4.9: Estimate of the economic values of the in-task flexibility

not use the method above to compute a valid economic value for the in-task flexibility due

to their inconsistency in the preferences3. Figure 4.9a thus shows the distribution of the

computed economic values of in-task flexibility for the rest 194 workers in the first treatment.

As the figure suggests, 70.1% of the workers has attached a non-zero value to the possible

in-task flexibility that they will be able to get in the task, and 22.7% of the workers are

willing to forego at least 1 cent for this 5-cent sentiment analysis task in exchange for extra

amount of time in the task. When taking the lower bound for each worker’s value of the

in-task flexibility4, we find that the worker’s average value for the in-task flexibility for each

imagined task is at least 0.69 cents. Given that the imagined task is a 30-second task, our

findings suggest that on average, workers are willing to forego a financial compensation of at

least $0.82/hour to get the in-task flexibility.

Similarly, for a worker of the second treatment, when the worker always prefers the “1 day,

5 cents” design, she effectively indicates that the in-task flexibility provided in this design

is equivalent to at least 4 cents for the imagined task; when the worker always prefers the

“1 minute, y cents” design, her value for the in-task flexibility is zero; and when there is a

3For example, a worker may indicate that she prefers “1 day, 2 cents” over “1 minute, 5 cents” while she
also suggests that she prefers “1 minute, 5 cents” to “1 day, 3 cents.”

4For example, if we compute a worker’s economic value for the in-task flexibility to be δ ∈ (1, 2), the lower
bound then is 1 cent.
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y0 ∈ [5, 8] such that the worker prefers the “1 day, 5 cents” design over the “1 minute, y

cents” for y ∈ [5, y0], but she prefers the “1 minute, y cents” over the “1 day, 5 cents” for

y ∈ [y0 + 1, 9], we know that the value of in-task flexibility δ must satisfy the inequalities

5 + δ > y0 and 5 + δ < y0 + 1, and thus δ ∈ (y0 − 5, y0 − 4). Figure 4.9b displays the

distribution of the computed economic values for the 197 workers in the second treatment

(there are 3 workers whose responses are not self-consistent and their data is excluded from

the analysis). Again, we find that 65.5% of the workers has a positive value for the in-task

flexibility, with the average value being at least 1.01 cents. In other words, workers ask for

an additional $1.21/hour in order to give up the flexibility that has already been provided

in the tasks. Comparing the economic values of in-task flexibility that we compute from

workers in the first and the second treatment, we also notice that, interestingly, workers

ascribe more value to the in-task flexibility when they have already “owned” it, even just in

a virtual sense. This is consistent with a prevalent psychological bias, that is, the endowment

effect [Kahneman et al., 1991].

4.5 Discussion

In this chapter, we examine how on-demand workers are influenced by the flexibility

provided within the on-demand tasks. Our experimental results suggest that granting more in-

task flexibility in the on-demand work leads to significant improvement on worker engagement

and performance, and further influences the way workers behave when they work on the

tasks. These results are consistent with the previous findings on the impact of temporal

flexibility for traditional jobs, which imply that flexibility still plays an important role in

influencing workers in the context of the on-demand work, even though it is generally believed

to be already quite flexible. Furthermore, we also conduct a survey to estimate the economic

values that crowd workers attach to the in-task flexibility. Our survey results confirm that a
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significant fraction of workers are willing to forego substantial financial compensations for

the capability to control their own time within the tasks.

There are a few interesting future directions for extending this work. First of all, in this

study, we used a particular type of task (i.e., the sentiment analysis task) to understand the

impact of in-task flexibility on crowd workers. The sentiment analysis task is a common

type of task on crowdsourcing platforms and can be representative for a large number of

simple tasks that mainly require human intuition and judgment (e.g., search query relevance,

image annotation, etc.), hence we believe our results in this study is generalizable to many

other tasks of different types. However, as we have briefly mentioned in Section 4.3.1, it is

also possible that the nature of this particular type of task, to some degree, affects some

of our experimental results, such as the interaction effects between time allotted and the

provision of task time estimate. It is thus an interesting future work for us to explore whether

our findings in this study still hold true for some significantly different types of tasks, such

as tasks that are much more complex and time-consuming (e.g., writing, long behavioral

experiments, etc.).

Furthermore, in this study, we measure the economic value that workers attach to the

in-task flexibility through a survey that asks workers to indicate their preferences in a

hypothetic working environment. Such preference elicited is thus “stated preference,” and it

may not necessarily be consistent with the “revealed preference,” which is decided by worker’s

actual decisions. Another interesting future work is, therefore, to measure the economic

value of in-task flexibility by actually observing worker’s decisions when they are working on

tasks with different flexibility levels. In particular, inspired by [Goldstein et al., 2014], one

possible approach to consider is to estimate the economic value of in-task flexibility as the

compensating differential, that is, the extra amount of money a requester would need to pay

a worker to complete the same number of tasks as she would complete for tasks with more

in-task flexibility.
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Our findings also have important implications for both requesters of labor and workers

in the on-demand economy. For example, from the requester’s point of view, as higher

levels of temporal flexibility within the tasks can lead to improved worker engagement and

performance, when designing the tasks, requesters should consider to provide more flexibility

in the work whenever possible. In fact, it is already suggested in the Guidelines for Academic

Requesters5 that requesters should set the “time allotted” limit for the HITs to an amount of

time much longer than the expected amount of time needed to complete the task. As job

flexibility is a part of job autonomy, our results further hint on the importance for requesters

to acknowledge each worker as an autonomous identity and thus incorporate autonomy into

the work design.

Meanwhile, from the worker’s point of view, we notice that even when we provide

excessively long period of time in a task, there is only a very small fraction of workers who

actually leverage such flexibility (e.g., fewer than 10% of the workers in the 1-day treatments

put a task in the queue for longer than 2 minutes on average). In addition, as we have

discussed in Section 4.3.3, it seems that workers who leverage the in-task flexibility more

are those ones who are more active on the on-demand platform. We conjecture that these

observations are a result of the current common practice, that is, tasks typically have short

time limits and thus workers are “trained” to work in a pace that is as fast as possible. As

we encourage requesters to consider increase the temporal flexibility in the tasks, it is also

beneficial for workers to learn how they can best utilize such flexibility to both increase their

efficiency and reduce their fatigue. One important source of learning is the online forums, as

many highly active workers who is already quite familiar with leveraging the flexibility in the

tasks tend to share their experience on these forums6.

5http://wiki.wearedynamo.org/index.php/Guidelines_for_Academic_Requesters

6For example, there is a discussion thread on the online forum MTurkGrind named “Utilizing Your Amazon
mTurk Queue”, which teaches workers to leverage the flexibility of tasks by effectively scheduling tasks
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As a final note, we also recognize that a potential drawback of providing too much

temporal flexibility in the on-demand work is the possible decrease in the task completion

speed, as many workers may choose to work on other tasks that are more urgent first. We

have not observed such decrease in our experiments—the task completion speed is similar

across treatments with different time allotted—but again, this may be a result of that workers

are “trained” to behave in a way as if the flexibility within the task is limited. Understanding

the long-term effect of providing more flexibility within individual tasks, as well as examining

the trade-off between task flexibility and completion speed, is yet another important direction

for future work.
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Chapter 5

Understanding the Effects of

Financial Incentives

In previous chapters, we aim to better understand how the on-demand economy of today

work, and in particular, we are interested in understanding who the crowd of on-demand

workers are and how they behave in the work. Through a set of experimental studies, we

have showed a number of key characteristics of the workers in on-demand economy: they

have significant temporal variations, value social interactions and desire more flexibility and

autonomy. Some of these characteristics lead us to pay close attention to certain human needs

of on-demand workers (e.g., social needs like sense of belonging, ego needs like autonomy),

which is previously overlooked, and presents useful insights for us to build a more desirable

on-demand economy in the future.

Following this line of thought, in the second part of this dissertation, we ask how can

we make the on-demand economy work better in the future. A variety of factors may come

into play in addressing different kinds of human needs of on-demand workers and therefore

improve the efficiency and sustainability of the on-demand economy. One such factor is

the incentive. Indeed, human beings as they are, on-demand workers can be motivated
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by various intrinsic and extrinsic incentives in completing their work [Benkler, 2002]. As

such, many intrinsic motivations, such as the enjoyment in playing online games [Von Ahn,

2006, Savage, 2012] and the willingness to learn new knowledge [von Ahn, 2013], have been

smartly integrated into the on-demand work environment to incentivize workers. For most

on-demand crowdsourcing platforms like Amazon Mechanical Turk, however, the primary

type of incentive remains to be extrinsic, that is, crowd workers complete tasks in exchange

for monetary compensations.

Workers can be incentivized to exert more or less effort and be influenced by their

psychological biases when the design of tasks or workflows affects these motives. Thus,

a thorough understanding of how incentives affect work quality and worker effort in the

on-demand economy is critical for developing methods to improve the effectiveness of these

incentives. In this chapter, we focus on empirically examining the effects of extrinsic, financial

incentives on workers of on-demand crowdsourcing platforms. Understanding the relationship

between financial incentives and worker performance or productivity is, in fact, a very

classical and fundamental question in the traditional economy. However, there are a few

unique features of the on-demand work environment that make this question relevant again

for the on-demand economy.

First of all, unlike that in the traditional economy, by design, the size of tasks in the

on-demand economy is very small so that workers can make short-term contributions to these

tasks while enjoying high levels of mobility and flexibility. As a result, payments for these

tasks are often provided in the form of piece-rate payments (rather than hourly wage), and

the amount of payment in each task can be quite small (e.g., earning several cents for tagging

an image). In addition, on-demand workers can complete a large number of such small tasks

in a very short period of time, enabling them to subsequently interact with financial incentives

in the tasks in a much higher frequency compared to that in the traditional economy. These

unique features naturally lead one to wonder whether on-demand workers react to small
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piece-rate payments in a similar way as employees reacting to financial incentives in the

traditional economy. Besides, they also suggest the importance of understanding the effects

of financial incentives on work quality and worker effort in the context of a sequence of tasks,

rather than just for each individual task.

Secondly, task switching is a very common practice for on-demand workers. While workers

may actively choose to switch between different types of tasks to diversify their workload or

avoid fatigue or boredom, many task switches are initiated by requesters as a result of the

design of working sessions. For example, a requester may ask a worker to identify whether

a pre-specified object (e.g., automobile or person) exists in each of a set of pictures and

group tasks by the objects of interests; this results in task switches when the “target” object

changes. Moreover, in many citizen science projects, tasks of different types are bundled

into a single working session. For instance, in Cell Slider1, a worker is shown an image of

blood cells and needs to identify the types of cells, count the number of irregular cells and

then estimate the brightness of the stained irregular cell cores; in Citizen Sort2, a worker

classifies the same group of moth pictures according to shape, color and forewing pattern

respectively. One major challenge associated with task switching in the on-demand work is to

ensure work quality for all tasks in a working session. It is well known that workers perform

worse on switch tasks, tasks that follow another task of a different type, than on repetition

tasks, tasks that follow another task of the same type [Rogers and Monsell, 1995, Monsell,

2003]. Therefore, it is straightforward for us to ask what role can financial incentives play to

influence worker performance in these task switching settings.

We present two experimental studies in this chapter to address these questions on the

effects of financial incentives that stem from the unique nature of the on-demand work—the

1http://www.cellslider.net/

2http://www.citizensort.org/
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first study (Section 5.1) explores how workers react to financial incentives in a sequence of

tasks of the same type, while the second study (Section 5.2) examines whether and how

financial incentives can be used to affect worker performance in a sequence of tasks of different

types (i.e., in a task switching setting). In both studies, we focus on understanding the

effects of a particular type of financial incentives, that is, the performance-contingent financial

incentives. By “performance-contingent,” we mean that the amount of reward for a task

depends on the quality of work produced in the task, where the quality is evaluated according

to some metric of interest to the task requester. Such performance-contingent rewards are

often used by requesters to encourage high-quality work from workers, making them a good

candidate to study for the on-demand economy. Our experimental results suggest that in

a sequence of tasks of the same type, workers are not always shown to be sensitive to the

magnitude of performance-contingent financial incentives alone in each individual task, or

in other words, workers don’t necessarily respond to the absolute magnitude of incentives.

Instead, it has been robustly observed that the work quality and worker effort is affected

by the changes of performance-contingent financial incentives in the subsequent tasks, or

the relative magnitude of the incentives. Furthermore, we also find that in a sequence of

tasks of different types, performance-contingent rewards are most effective in improving

worker performance when they are placed on switch tasks in working sessions with a low task

switching frequency. We finally conclude this chapter by discussing the implications of our

findings in Section 5.3.

5.1 Placing Financial Incentives in a Task Sequence

In this section, we ask two questions regarding the effects of performance-contingent

financial incentives on work quality and worker effort in a sequence of tasks of the same type:

(1) How does the magnitude of financial incentive in each individual task alone influence work
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quality and worker effort? (2) How does the work quality and worker effort affected by the

change of incentives in the subsequent tasks?

To answer these two questions, we designed and conducted experiments on Amazon

Mechanical Turk (MTurk), where we placed two tasks of the same type together within

each Human Intelligence Task (HIT), and various types of tasks as well as different levels

of performance-contingent financial incentives were considered. By varying the level of

financial incentives in each task of the HIT and thus controlling the changes of financial

incentives in the task sequence, we created a set of experimental treatments. The effects of

performance-contingent financial incentives were then analyzed by comparing work quality

and worker effort across treatments.

5.1.1 Related Work

Understanding the effects of various incentives in the on-demand crowd work settings is a

quite active and open research area. For example, researchers have compared the produced

work quality on MTurk when 14 different incentive schemes were used, including financial,

social and hybrid schemes [Shaw et al., 2011]. They found that while most of the incentive

schemes had weak effects on the work quality, two schemes which associated individual

worker’s financial incentives with the responses from their peers elicited significantly better

performance from the crowd workers.

A few previous studies focused specifically on examining the effects of financial incentives.

It was demonstrated that for performance-independent financial incentives (i.e., a worker

received a fixed amount of payment per task regardless of how well she performed in the task),

while a larger amount of incentives motivated workers to complete more tasks, the quality

of work in each task was not significantly improved [Mason and Watts, 2010, Rogstadius

et al., 2011]. However, when the actual performance-independent financial incentive a worker

received was higher than the previously contracted value and a portion of the increased
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payment was clearly framed as an unexpected gift from the employers, workers were likely to

reciprocate by exerting higher levels of efforts [Gilchrist et al., 2016].

As for the performance-contingent financial incentives, Harris [2011] studied the worker per-

formance both with and without such incentives and showed that the existence of performance-

contingent financial incentives led to higher work quality. More recently, Ho et al. [2015]

carefully examined when, where and why performance-based payments can help improve

crowd work quality, and they found that performance-based payments were most likely to

encourage high-quality work for tasks that were effort-responsive, that is, tasks that allowed

workers to improve the work quality by exerting more effort. Besides, it was also demonstrated

that canonical economic games conducted on MTurk were comparable to those conducted

in lab settings, suggesting that subjects in both pools responded to performance-contingent

financial incentives in a similar way, although the magnitude of such incentives on MTurk

might be much smaller [Amir et al., 2012]. Different from these studies, in this section,

we attempt to understand not only how the magnitude of performance-contingent financial

incentives in an individual task alone affects the worker performance, but also how the change

of incentive magnitude in a task sequence influences workers.

In a broader context, the relationship between financial incentives and productivity has

been extensively studied in economics and psychology prior to the existence of the on-demand

economy, yet results from lab or field experiments diverge. While it was demonstrated in a

lot of studies that higher level of performance-contingent financial incentives led to increased

productivity [Pritchard and Curts, 1973, Lazear, 2000, Camerer and Hogarth, 1999], there

were also evidences showing that such incentives had little influences on or even hurt the

productivity [Jenkins Jr et al., 1998, Camerer and Hogarth, 1999]. A few explanations for the

negative effects of financial incentives on productivity have been discussed. For example, the

presence of a small financial incentive may cause the decrease of worker’s intrinsic motivation

and further results in poorer performance, which is referred to as the phenomenon of crowding
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out [Gneezy and Rustichini, 2000, Deci et al., 1999, Frey and Jege, 2001, Bowles, 2008]. On

the other hand, excessively large financial incentives could also exert deleterious influences

on work quality, especially for tasks that require mostly intuitions or simple skills, as they

may trigger worker’s overreaction [Ariely et al., 2009].

Different theories were proposed to characterize how workers react to financial incentives

of varying magnitude. For instance, the model of gift exchange in sociology explains that

when the employer shows his kindness by offering a wage that is higher than the market-

clearing value, a worker tends to exhibit positive reciprocity by providing work in excess

of the minimum quality standard [Akerlof, 1982, Dufwenberg and Kirchsteiger, 2000]. The

fair wage-effort hypothesis [Akerlof and Yellen, 1990] in labor economics, which originates

from the theory of equity in social psychology [Adams, 1963], provides another story. It

states that if the actual wage a worker receives is less than the amount of “fair” wage in

her mind, the worker may supply only a fraction of her normal effort levels. These theories

were also supported by different experimental observations—Gneezy and List [2006] found

that workers exhibited considerably higher levels of effort in the first few hours on the job

when they received a “gift” of increasing wage compared to the advertised rate. Cohn et al.

[2014], on the other hand, concluded from their experiments that workers who perceived

themselves as underpaid at the base wage reciprocated the increasing hourly wage with

improved performance, while those who felt adequately paid or overpaid at the base wage

didn’t show significant responses to the wage increases. It is interesting to note that both

these two theories seem to hypothesize that workers interpret the provided financial incentives

by comparing the magnitude of the incentives to some references—the market wage or the fair

wage, and their decisions on how much quality to produce or how much effort to exert in the

work are thus influenced by their judgment on the kindness/unkindness or fairness/unfairness

of the employers according to the comparisons. This is consistent with the well-known

prospect theory, which points out that in decision-making, people are likely to set a reference
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point and evaluate gains and losses against the reference point rather than deliberating over

the absolute outcomes [Kahneman and Tversky, 1979].

While both theories above seem to imply that the work quality and worker effort can

be sensitive to the magnitude of the provided financial incentives, an interesting subtlety

to consider is that workers may not have a clear conception of the market value or the fair

value of their work a priori. Hence, the formation of such conception can be affected by a

prominent psychological bias, the anchoring effect [Tversky and Kahneman, 1974, Chapman

and Johnson, 1994], which describes the common human tendency to rely heavily on the

first piece of information offered (i.e., the “anchor”) in decision-making. In workplaces, the

anchoring effect relates to a commonly observed worker behavior called wage entitlement,

which refers to worker’s belief that they are entitled to their existing pay, no matter how high

it may be, and the existing wage is further used as worker’s internal reference for accessing

the fairness of other wage offers [Bewley, 2007]. In fact, in the post-task survey of Mason and

Watts’s study on the effectiveness of financial incentives in crowdsourcing markets, workers

systematically reported higher “appropriate” compensation levels than the actual payments

they received in the tasks, and the reported compensation level also increased monotonically

with the actual payment, suggesting workers might have used the latter as an “anchor” for

setting the reference point of the appropriate payment level [Mason and Watts, 2010].

5.1.2 Experimental Design

We designed and conducted an online experiment to understand how on-demand crowd

workers react to performance-contingent financial incentives in a sequence of tasks of the same

type. In this experiment, we bundled two tasks of the same type into one Human Intelligence

Task (HIT) and a worker was asked to complete both tasks in the HIT before she got paid.

For each task in the HIT, a worker earned a performance-independent payment of 1 cent,

which made the base payment for one HIT to be 2 cents. Besides, we also offered workers
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with the opportunities to earn performance-contingent bonuses in each task. However, the

magnitude of the performance-contingent bonuses for the subsequent two tasks in one HIT

may or may not be the same. Specifically, we considered four levels of performance-contingent

bonuses: 4 cents, 8 cents, 16 cents and 32 cents.

Treatments. By controlling the level of performance-contingent bonuses in the subsequent

two tasks in the same HIT, we created the following three sets of treatments, defined by the

bonus levels in the two tasks:

• 4 base treatments: 4 – 4, 8 – 8, 16 – 16, and 32 – 32;

• 3 treatments with increasing bonus level: 4 – 8, 4 – 16, and 4 – 32;

• 3 treatments with decreasing bonus level: 8 – 4, 16 – 4, and 32 – 4.

For the four base treatments, as the bonus level in the subsequent two tasks in the HIT

was the same, we were able to investigate whether work quality and worker effort is affected

by the magnitude of performance-contingent financial incentives alone, or in other words,

whether workers react to the “absolute magnitude” of financial incentives. On the other hand,

the three treatments with increasing bonus level and three treatments with decreasing bonus

level enabled us to examine how workers are influenced by the changes of financial incentives

in the sequence, or in other words, how workers react to the “relative magnitude” of financial

incentives.

Tasks. To see whether the effects of financial incentives are dependent on the nature of

tasks, we considered two types of tasks in our experiment:

• The button clicking (BC) task: Two buttons of the same size are displayed on the

screen, with one of them placed on the top while the other one on the bottom. One of

the two buttons is green, which is the “target” button, and the other button is gray.

A worker is asked to click on the target button, which will alternate between the top
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(a) The button clicking task (b) The spotting differences task

Figure 5.1: Interfaces of the two types of tasks in our experiment

button and the bottom button, in a three-minute task session. To start the session,

the worker needs to press the “Start” button. The worker is instructed to click on the

target button as many times as she can, and the amount of time left in the session

is also displayed on the screen. If the worker correctly clicks on the target button for

more than 400 times in the session, she will earn the pre-specified bonus in that task.

• The spotting differences (SD) task: Two pictures are presented on the screen. These

two pictures are almost identical with each other except for five non-obvious places.

A worker is told the number of differences between the two pictures and is asked to

find as many differing places as she can. The worker can spot a found difference by

clicking on it in either picture to mark the difference with a red circle. If she finds any

marked difference to be wrong, she can also deselect it by clicking in the corresponding

red circle again. The worker gets the pre-specified bonus in a task if she spots all five

differences correctly. Two different sets of pictures are used in the subsequent two tasks

in the spotting differences HIT, and the order of their appearance is randomized. Prior

study showed that the difficulty of spotting differences in these two sets of pictures is

similar.

The button clicking task primarily requires the motor skills of a worker. A similar task

was used by Horton and Chilton to estimate worker’s reservation wage in paid crowdsourcing
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markets [Horton and Chilton, 2010], with the buttons in their task being aligned horizontally

on the left and right of the screen. The spotting differences task demands mostly cognitive

skills, as comparing two pictures carefully and finding the differences requires significant

attention and concentration from workers and may also relate to workers’ short-term memory.

The interfaces of the button clicking task and the spotting difference task are shown in

Figure 5.1a and Figure 5.1b, respectively.

Procedure. To understand whether crowd workers react to performance-contingent finan-

cial incentives in a consistent way as time passes by, we conducted the experiment twice: The

experiment was initially launched from October to December in 2012 for the first time. Then,

after three years, we replicated the experiment with the button clicking task from November

to December in 2015, and with the spotting differences task from February to March in 2016.

For both the original and the replicating experiments, to avoid the complication of cultural

differences in perceiving financial incentives, we restricted our experiments to U.S. workers.

Within one experiment, each worker was allowed to participate in at most one button clicking

HIT and one spotting differences HIT so that for either type of tasks, a worker would not be

influenced by multiple bonus treatments. Upon arrival, a worker was randomly assigned to

one of the ten treatments. The worker would then read the instruction in which we explained

our payment rules, and took a qualification test to see whether they understood our payment

rules. The worker could only proceed on to the actual tasks after passing the qualification

test. To guarantee that workers pay attention to the magnitude of performance-contingent

financial incentives in each task, especially the possible changes in the subsequent two tasks,

the amount of bonus in a task was revealed right before each task instead of all together at

the beginning of the HIT. Depending on the type of task in the HIT, the worker would then

click buttons or spot differences in each task. The length for a clicking button task was fixed

to be three minutes. In contrast, the worker could spend as much time as she wanted to find
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differences in the spotting differences task. At the end of the HIT, the worker needed to

complete an exit-task survey where she was asked to compare the bonus in the subsequent

two tasks and identify whether the bonus in the second task was higher than, equal to or

lower than that in the first task.

We decided to keep the magnitude of financial incentives (including both performance-

independent and performance-contingent financial incentives) in the replicating experiment

to be exactly the same as that in the original experiment in order to make sure that results in

these two experiments are comparable. However, we were also aware of the fact that crowd

workers nowadays have a higher expectation on the effective hourly wage (e.g., $6−$22/hour

according to the Guidelines for Academic Requesters3) compared to those in the early years.

In addition, as we discussed in Chapter 3, workers are also willing to share with other workers,

through online forums or other communication channels, about their personal experience

with different tasks and requesters [Martin et al., 2014, Gray et al., 2016]. Therefore, to make

sure that workers in our experiment will not feel like being treated unfairly and to minimize

the possible interference resulted from the external (and potentially negative) discussions

about our experimental HIT and request account, we made two small adjustments when

we replicated the experiment in 2015 and 2016: (1) We explicitly instructed workers not

to discuss the HITs in online forums as they were a part of a scientific experiment; (2) In

addition to the performance-independent base payment and the performance-contingent

bonus, we further provided each worker with a performance-independent bonus when she

reached the end of the HIT. The magnitude of this performance-independent bonus was

computed such that the maximum amount of rewards a worker can earn in a HIT is always

70 cents. For example, if a worker was assigned to the 4 – 4 treatment in the replicating

experiment, the performance-independent bonus she could receive at the end of the HIT is

3http://wiki.wearedynamo.org/index.php/Guidelines_for_Academic_Requesters
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70− (4 + 1)× 2 = 60 cents. As the average completion time for our HIT is 6−10 minutes,

with the performance-independent bonus, our payment implied an effective hourly wage of

$4.2−$7/hour for those workers who participated in the replicating experiment.

Data. In the original experiment in 2012, we recruited 1214 workers for the button clicking

HITs and 1270 workers for the spotting differences HITs. To confirm that workers were

indeed aware of the possible changes of financial incentives in the subsequent two tasks, we

eliminated all data from those workers who gave wrong answers to the bonus comparison

question in the exit-survey. Such elimination left us with 100 valid data points for each of

the 10 treatments in each type of HITs. For the replicating experiment in 2015 and 2016, in

total, 1119 workers participated in the button clicking HITs and 1224 workers participated

in the spotting differences HITs. Similar to that in the original experiment, we eliminated

all data from those workers who incorrectly answered the bonus comparison question in the

exit-surveys. Again, after the elimination, 100 valid data points were preserved for each of

the 10 treatments within each type of HITs . Only the valid data points are used in the

subsequent analysis for both experiments.

To measure the work quality, we recorded the number of times a worker clicked on the

“target” button in the three-minute session for a button clicking task, while the number

of differences that were correctly identified by a worker is used as the quality metric in a

spotting differences task.

As for the worker effort in the task, while there is no straightforward way to differentiate

between the quality of work produced by a worker and her exerted effort in a button clicking

task, we adopted two natural metrics to represent a worker’s effort in a spotting differences

task. Specifically, we considered the log of a worker’s activities in a spotting differences task,

which is a sequence of timestamps. For a worker who identified n ≤ 5 differences correctly in

a task, she had a log of (t0, t1, ..., tn, tn+1), with t0 being the time for her to load the task
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Figure 5.2: Work quality and worker effort in the four base treatments of the
original experiment in 2012.

page, ti(1 ≤ i ≤ n) being the time at which the i-th difference was correctly identified, and

tn+1 being the time of task submission. The first metric for assessing the worker’s effort is the

total time she spent on the task, i.e. tn+1 − t0, and the second metric is the longest elapsed

time between two subsequent timestamps, that is, max {t1− t0, . . . , tn+1− tn}, which we refer

to as longest interval. While our first metric captures the duration of the worker’s effort, our

second metric characterizes the intensity of the worker’s effort, that is, how hard a worker

tries in a task.

5.1.3 Effects of the Magnitude of Rewards Alone

Our first goal is to understand the effects of the magnitude of performance-contingent

financial incentives alone on work quality and worker effort. We start with the results of our

original experiment that was conducted in 2012: The mean values of the work quality metrics

for both the first and the second task in each of the four base treatments are presented in

Figure 5.2a and Figure 5.2b, with Figure 5.2a plotting the values for the button clicking HITs

and Figure 5.2b showing the values for the spotting differences HITs. For worker effort in

the spotting differences HITs, the mean values of the two metrics, total time and longest

interval, are displayed in Figure 5.2c and Figure 5.2d, respectively. Visually, we find that

although the magnitude of financial incentives varies from 4 cents to 32 cents in an individual
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Original Replicating
Metrics Task 1 Task 2 Task 1 Task 2

BC: # of clicks on target 0.82 0.40 0.52 0.31
SD: # of differences spotted 0.33 0.15 0.03 <0.001
SD: total time 0.37 0.29 0.26 0.09
SD: longest interval 0.41 0.24 0.18 0.30

Table 5.1: p-values of the Kruskal-Wallis one-way analysis of variance on base
treatments. Left section: results for the original experiment (2012). Right section:
results for the replicating experiment (2015-2016). p-values smaller than 0.1 are
highlighted in bold.

task, workers exhibit no significant differences in either work quality or worker effort across

different treatments, and such observations are valid for both the first task and the second

task in the sequence. Interestingly, we notice that within each treatment, in the second task,

workers clicked on the target buttons for fewer times in the button clicking HITs or identified

more differences correctly in the spotting differences HITs, compared to their performance

in the first task. Besides, both the total time and longest interval in the second task of the

spotting differences HITs are shorter than that in the first task. These observations suggest

that workers may become fatigued/bored or learn from their experiences when they are asked

to complete tasks of the same type in a sequence.

Our intuition from visual inspection is confirmed by statistical tests. The test we use is

the Kruskal-Wallis one-way analysis of variance (Kruskal-Wallis one-way ANOVA), which is

a non-parametric test of the null hypothesis that multiple empirical samples come from the

same distribution. The goal then is to examine whether the work quality and worker effort

are statistically the same across 4 bonus levels in our base treatments. In particular, consider

the tests on the work quality in the first task of the button clicking HITs as an example.

For each of the four base treatments, we have a sample of 100 data points on the number

of clicks on the target button, and we attempt to understand whether these four samples

originate from the same distribution using Kruskal-Wallis one-way ANOVA. The p-values of

the tests for both the first task and the second task are reported in Table 5.1 (left section).
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Figure 5.3: Work quality and worker effort in the four base treatments of the
replicating experiment in 2015-2016.

As shown in the table, none of the differences in work quality or worker effort are statistically

significant across the four base treatments, which implies that the magnitude of performance-

contingent financial incentives alone affects neither work quality nor worker effort. This

result is consistent with the previous findings on performance-independent financial incentives

which claimed that the magnitude of financial incentives had no significant influences on the

produced work quality [Mason and Watts, 2010, Rogstadius et al., 2011], suggesting that

crowd workers may not adjust their performance according to the absolute magnitude of

financial incentives, regardless of whether the incentives are contingent on the performance.

To understand the robustness of this result, we then move on to the replicating experiment

to check that after three years, whether it is still true that the magnitude of performance-

contingent financial incentives alone has no significant effect on either work quality or worker

effort. Similar to our analysis for the original experiment, Figure 5.3 illustrates the mean

values of work quality metrics and worker effort metrics across the four base treatments for

both the button clicking HITs and the spotting differences HITs in the replicating experiment,

and the p-values of the Kruskal-Wallis one-way ANOVA are reported in Table 5.1 (right

section).

First, we notice that for the button clicking HITs, the conclusion we draw from the

original experiment still holds for the replicating experiment. That is, the magnitude of
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performance-contingent rewards alone has no significant effect on the work quality — across

the four base treatments with different bonus levels, we observe no obvious pattern in the

number of clicks on the target buttons for either the first task or the second task within the

HIT, and such observation is also supported by the statistical test result (see the first row of

Table 5.1 (right section)).

For the spotting differences HITs, however, our results in the replicating experiment is

somewhat mixed. On the one hand, both the upward trend shown in Figure 5.3b and the

statistical significant differences reported in the second row of Table 5.1 (right section) suggest

that the magnitude of performance-contingent rewards actually has an impact on the work

quality in the spotting differences HITs this time. A Tukey post-hoc pairwise comparison

further indicates that the significantly low work quality in the 4–4 treatment contributes

the most to the observed statistical significant differences in work quality across the four

treatments: For the first task, the mean value of the number of correctly spotted differences

in the 4–4 treatment is significantly smaller than that in the 8–8 treatment (p < 0.05) and the

32–32 treatment (p < 0.05); for the second task, the mean work quality in the 4–4 treatment

is significantly lower than that in all other three treatments (4–4 vs. 8–8: p < 0.001, 4–4 vs.

16–16: p < 0.01; 4–4 vs. 32-32: p < 0.05); yet for both the first and the second task, there is

no significant difference in work quality among the 8–8, 16–16 and 32–32 treatment. On the

other hand, we also find that in most cases, how much effort a worker puts into a spotting

difference task in the replicating experiment is still not quite affected by the magnitude

of performance-contingent reward in that task (except that for the total amount of time

a worker spends on the second spotting differences task, there is a marginally significant

difference across the four treatments, p = 0.09), which is in line with our observations in the

original experiment.

Taken together, from both the original experiment and the replicating experiment, we find

that the magnitude of performance-contingent financial incentives alone does not necessarily
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exert any significant influence on either work quality or worker effort. However, compared to

our observations in the original experiment, the slightly different findings we have for the

replicating experiment also suggest that the worker behavior in reaction to the magnitude

of performance-contingent financial incentives alone can change over time. We provide two

possible explanations to this observed change: (1) As time passes by, the MTurk worker

population may have changed significantly hence workers who participated in our replicating

experiment can be fundamentally different from those workers who participated in the original

experiment in spite of all our efforts to control the comparability of the two experiments. In

fact, it is estimated that half of the workers will be replaced in the MTurk worker pool in

about every 7 months [Stewart et al., 2015]. (2) Even if there is no significant change in terms

of the composition of worker population, a worker’s interpretation of the absolute magnitude

of financial incentives can still be adjusted over time, and such adjustment can be influenced

by a variety of external factors, such as the current inflation rate, the increase in federal

minimum wage and the formation of the sense of “fair” payment among more MTurk workers.

Finally, given that we have observed similar results for the button clicking tasks but different

results for the spotting differences tasks in the original and the replicating experiment, we

conjecture that how workers react to the absolute magnitude of financial incentives, as well

as whether and how the effects of financial incentives on worker performance will change over

time, is dependent on the nature of the task.

5.1.4 Improving the Effectiveness of Rewards in a Sequence

Our next goal is to understand how the work quality and worker effort is affected by

the change of performance-contingent financial incentives in the subsequent two tasks in a

sequence, or in other words, whether and how workers react to the relative magnitude of

financial incentives in task sequences. Thus, unless otherwise specified, our analysis in the

following is based on the change in work quality and worker effort from the first task to the
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Figure 5.4: Changes in work quality and worker effort for treatments with increasing
bonus level. Mean values and standard errors of the changes are plotted. Top row:
results for the original experiment. Bottom row: results for the replicating experiment.

second task in a HIT. Specifically, for a metric of work quality or worker effort, the change in

it for a HIT equals the value of the metric for the second task minus that for the first task in

the HIT. Since samples of these changes do not visually deviate from normal distribution,

one-way analysis of variance (one-way ANOVA) and two-sided t-tests, both assuming normal

distribution of errors, are used in the subsequent statistical analysis.

We first examine how the work quality and worker effort in HITs changes with the increase

of bonus levels in the sequence and the results are illustrated in Figure 5.4. In particular,

Figures 5.4a, 5.4c, and 5.4e present the changes in work quality and worker effort for the 4 –

4, 4 – 8, 4 – 16, and 4 – 32 treatments in the original experiment. We see a clear upward

trend for changes in both work quality and worker effort as the bonus level of the second

task increases, except a slight dip for the change in longest interval in the 4 – 16 treatment

of the spotting differences HITs. Figures 5.4b, 5.4d, and 5.4f show the similar results for the

replicating experiment, suggesting that when the performance-contingent financial incentives
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Figure 5.5: Changes in work quality and worker effort for treatments with decreasing
bonus level. Mean values and standard errors of the changes are plotted. Top row:
results for the original experiment. Bottom row: results for the replicating experiment.

increase in the task sequence, workers are likely to exert more efforts and improve their work

quality in the tasks.

Similarly, we next look into how the work quality and worker effort in HITs changes with

the decrease of bonus levels in the task sequence. As shown in Figure 5.5, for both the original

experiment (Figures 5.5a, 5.5c, and 5.5e) and the replicating experiment (Figures 5.5b, 5.5d,

and 5.5f), we find a downward trend for all metrics in both HITs with some occasional

exceptions (e.g., the change in the number of clicks on target in the 8 – 4 treatment of the

button clicking HITs in the original experiment). These results further indicate that when

the performance-contingent financial incentives decrease in the task sequence, workers also

tend to decrease their effort levels and complete tasks in lower quality.

All of these findings provide supporting evidence to a consistent conclusion, that is,

workers in treatments with increasing or decreasing bonus levels do react to the relative

changes of performance-contingent financial incentives, hence produce work of higher (or
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Metrics Original Replicating
Y = 8 Y = 16 Y = 32 Y = 8 Y = 16 Y = 32

BC: change in # of clicks on target 27.86* 46.50*** 49.30*** -9.24 27.17† 23.72
SD: change in # of differences spotted 0.02 0.16 0.30* 0.41** 0.60** 0.43*

SD: change in total time 87.09* 87.35** 94.52** 80.18* 57.51 80.45*

SD: change in longest interval 64.58* 44.29* 55.76* 53.68* 17.35 52.45*

(a) Base treatments vs. treatments with increasing bonus (X – X vs. X – Y)

Metrics Original Replicating
Y = 8 Y = 16 Y = 32 Y = 8 Y = 16 Y = 32

BC: change in # of clicks on target 3.06 -52.15** -64.46*** -76.39*** -70.56** -118.46***

SD: change in # of differences spotted -0.11 -0.37** -0.76*** -0.27† -0.44** -0.07
SD: change in total time 3.79 -68.66* -58.62* 1.56 -38.24 -100.72**

SD: change in longest interval 21.15 -30.86 -42.87† 18.99 -16.19 -70.29*

(b) Base treatments vs. treatments with decreasing bonus (Y – Y vs. Y – X)

Table 5.2: Differences of the mean values for the change in work quality and worker
effort for pairs of treatments with the same bonus level in the first task. For a
pairwise comparison, treatment A vs. treatment B, the reported value for a metric is
the mean change of the metric in treatment B minus the mean change in the metric
in treatment A. X is fixed to be 4. The statistical significance of the two-sided t-test
is marked as a superscript, with †, *, **, and *** representing significance levels of
0.1, 0.05, 0.01, and 0.001 respectively.

lower) quality and exert effort of higher (or lower) levels given increased (or decreased)

amount of rewards in the second task of the HIT. With this conclusion in mind, it is natural

to ask whether it is possible to improve the effectiveness of financial incentives by carefully

designing the magnitude of the rewards in a task sequence.

More specifically, we are interested in answering this question from two perspectives:

First, for two treatments starting with the same amount of reward in the first task, will

workers “recover” their sensitivity to different magnitude of financial incentives in the second

task as the bonus level in the second task differs (e.g., produce higher work quality if the

reward magnitude in the second task is larger)? Second, for two treatments that change from

different bonus levels in the first task to the same bonus level in the second task, will workers

perceive the same amount of financial incentives in the second task differently?
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The pairwise comparisons shown in Table 5.2a and Table 5.2b present the answer to the

first question. Specifically, let X and Y be two bonus levels, X = 4, and X < Y. Table 5.2a

presents the pairwise comparisons of treatment X – X and treatment X – Y, and Y varies

from 8, to 16, to 32. The values reported in the table are the differences in the mean values

of the change in the work quality or worker effort metric between the two treatments in the

pair. In particular, consider the comparison on the change in the number of clicks on the

target in the button clicking HITs as an example. When Y = 8, the value reported in the

table is the mean value of the change in the number of clicks on target in the 4 – 8 treatment

minus the mean value of that change in the 4 – 4 treatment. The statistical significance of

two-sided t-tests is noted as a superscript. Similarly, Table 5.2b compares the change in work

quality or worker effort metrics between treatment Y – Y and the treatment Y – X, with Y

varying from 8, to 16, to 32.

Thus, each of the pairs in Table 5.2a compares a base treatment with another treatment

which starts from the same bonus level as that in the base treatment but increase to a

higher bonus level later. If workers can actually recover their sensitivity to the magnitude

of performance-contingent financial incentives due to the change of rewards in subsequent

tasks, we expect to see positive numbers in this table, which is indeed the case for all but

one comparison in both the original experiment and the replicating experiment. Notably, the

improvement in work quality and worker effort also appear to be statistically significant for

the majority of the comparisons, and for the only exception case (i.e., the change in work

quality for the 4 – 8 treatment is slightly smaller than that for the 4 – 4 treatment in button

clicking HITs of the replicating experiment), the difference is also not statistically significant.

Likewise, each of the pairs in Table 5.2b compares a base treatment to another treatment

with the same reward in the first task but a decreased bonus in the second task. If workers

become more sensitive to the incentive magnitude in the second task of the sequence, we

expect to see negative numbers in this table, which is again mostly true with some exceptions.
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Metrics Original Replicating
Y = 8 Y = 16 Y = 32 Y = 8 Y = 16 Y = 32

BC: change in # of clicks on target 2.54 32.48* 20.77† -37.27* 40.03* 5.89
SD: change in # of differences spotted 0.01 0.10 0.16 0.16 0.32* 0.44*

SD: change in total time 82.97* 49.38† 63.27† 76.46* 43.29 51.64
SD: change in longest interval 82.56* 24.75 34.39* 56.17* 13.99 30.11

(a) Base treatments vs. treatments with increasing bonus (Y – Y vs. X – Y)

Metrics Original Replicating
Y = 8 Y = 16 Y = 32 Y = 8 Y = 16 Y = 32

BC: change in # of clicks on target 28.38 -38.13* -35.93* -48.36* -83.42** -100.63***

SD: change in # of differences spotted -0.10 -0.31* -0.62*** -0.02 -0.16 -0.08
SD: change in total time 7.91 -30.69 -27.37 5.28 -24.02 -71.92*

SD: change in longest interval 3.17 -11.31 -21.50 16.51 -12.83 -47.95†

(b) Base treatments vs. treatments with decreasing bonus (X – X vs. Y – X)

Table 5.3: Differences of the mean values for the change in work quality and worker
effort for pairs of treatments with the same bonus level in the second task. For a
pairwise comparison, treatment A vs. treatment B, the reported value for a metric is
the mean change of the metric in treatment B minus the mean change in the metric
in treatment A. X is fixed to be 4. The statistical significance of the two-sided t-test
is marked as a superscript, with †, *, **, and *** representing significance levels of
0.1, 0.05, 0.01, and 0.001 respectively.

None of the positive differences are statistically significant though. Besides, the decrease

in work quality and worker effort also seems to be statistically more significant for larger

bonus decreases. Combined together, these results provide a confirmative answer to our first

question — given the same initial level of incentives in the first task, the worker become more

sensitive to the magnitude of the performance-contingent financial incentive in the second

task and can then respond to an increased (or decreased) bonus level with a better (or worse)

performance.

Analogically, Table 5.3a and Table 5.3b report comparisons between treatments which

start from different bonus levels but end up at the same bonus level in the second task, and

thus provide insights for our second question above. Specifically, Table 5.3a compares the

base treatment Y – Y to treatment X – Y with increasing bonus, while Table 5.3b compares

the base treatment X – X to treatment Y – X with decreasing bonus. Almost all differences in
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Table 5.3a are positive, suggesting that even though the absolute magnitude of the bonus in the

second task is the same for the two treatments in the pair, when that bonus is increased from

a lower bonus level in the first task, workers tend to exhibit higher levels of work quality and

worker effort. In contrast, the majority of the numbers in Table 5.3b are negative, implying

that when observing the bonus to decrease from a high level to a low level in a task sequence,

workers may perform even worse than that in the case where the bonus level is always low.

Therefore, results in Tables 5.3a and 5.3b further demonstrate that workers may interpret the

performance-contingent financial incentives differently when the reward magnitude changes in

a sequence, even if the absolute magnitude of the performance-contingent financial incentives

is actually the same.

Finally, to reaffirm that the absolute magnitude of the reward for the second task does

not affect work quality and worker effort on the task, but the change of the magnitude of the

reward from the first task to the second task does, we fit all of the data in one experiment

into the following linear model, and repeat this process for both the original experiment and

the replicating experiment:

Mi,2 = C + α ·Mi,1 + β · Bonusi,2 + γ ·∆Bonusi + εi, (5.1)

where M is one of the metrics of work quality or worker effort (i.e., number of clicks on

the target button for a button clicking task, number of differences correctly spotted for a

spotting differences task, total time for a spotting differences task, or longest interval for

a spotting differences task), Mi,1 and Mi,2 are worker i’s value of this metric on the first

and second tasks respectively, Bonusi,2 is the bonus level of the second task in this HIT,

and ∆Bonusi is the change of the bonus level from the first task to the second task, that

is, ∆Bonusi = Bonusi,2 − Bonusi,1. Note that here we consider the value of a metric, rather

than the change in the value of a metric. We include Mi,1 in the model to account for a
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Metric M C Mi,1 Bonusi,2 ∆Bonusi

# of clicks on target in BC task 48.2**

(14.8)
0.81***

(0.04)
0.23
(0.48)

1.66***

(0.36)

# of differences spotted in SD task 1.79***

(0.14)
0.55***

(0.03)
0.004
(0.004)

0.01***

(0.003)

Total time in SD task 168.0***

(14.8)
0.18***

(0.03)
0.48
(0.82)

1.87**

(0.63)

Longest interval in SD task 110.3***

(11.1)
0.11**

(0.03)
0.16
(0.66)

1.15*

(0.50)

(a) Regression results for data from the original experiment

Metric M C Mi,1 Bonusi,2 ∆Bonusi

# of clicks on target in BC task -24.2†

(14.6)
1.01***

(0.03)
0.49
(0.57)

2.39***

(0.44)

# of differences spotted in SD task 2.04***

(0.13)
0.48***

(0.03)
0.000
(0.004)

0.01**

(0.003)

Total time in SD task 152.3***

(14.4)
0.24***

(0.03)
0.40
(0.78)

1.52*

(0.61)

Longest interval in SD task 107.4***

(10.5)
0.14***

(0.03)
0.34
(0.61)

0.78†

(0.47)

(b) Regression results for data from the replicating experiment

Table 5.4: Regression results for linear model (5.1). Estimated coefficients and
standard errors are reported. The statistical significance is marked as a superscript,
with †, *, **, and *** representing significance levels of 0.1, 0.05, 0.01, and 0.001
respectively.

worker’s innate capability on the task. The regression results for all four metrics in the

original experiment and the replicating experiment are shown in Table 5.4a and Table 5.4b,

respectively. As none of the coefficients for Bonusi,2 is statistically significant while all

coefficients for ∆Bonusi are statistically significant for all models, it is clear that the bonus

level of the second task does not affect either work quality or worker effort, but the change of

the bonus level affects both.
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5.2 Providing Monetary Interventions in Task Switch-

ing

In the previous section, we have experimentally studied how workers react to performance-

contingent financial incentives in a sequence of tasks of the same type. In this section, we

study whether and how performance-contingent financial incentives can be used to influence

worker performance in a sequence of tasks of different types, that is, in a task switching setting.

In particular, we consider the case that performance-contingent financial rewards are placed

on a few selected tasks in a working session, and these rewards are referred to as monetary

interventions. The tasks where monetary interventions are placed are called the intervened

tasks, while other tasks in the session are non-intervened tasks. We ask three questions

regarding the effects of monetary interventions in task switching: (1) How do monetary

interventions affect work quality in intervened tasks? (2) How do monetary interventions

affect work quality in non-intervened tasks? (3) Where should monetary interventions be

placed to improve work quality in a more effective way — should monetary interventions be

placed on switch tasks (i.e., tasks that follow another task of the same type) or repetition

tasks (i.e., tasks that follow another task of a different type), and in a working session with

high task switching frequency or low task switching frequency?

We conducted a between-subject experiment on MTurk to answer these questions. Each

worker was randomly assigned to an experimental condition, in which she was asked to

complete a sequence of 96 tasks with two types of tasks interleaving with each other in

the sequence. Experimental conditions varied in either the task switching frequency or

whether and where monetary interventions were used in the sequence. The effects of monetary

interventions were then analyzed by comparing work quality across experimental conditions.
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5.2.1 Related Work

Task switching is closely related to a few other concepts, including multitasking, task

interruption and resumption. Multitasking refers to either performing two or more types of

tasks simultaneously or switching back and forth from one type to another [Salvucci and

Taatgen, 2010, Salvucci et al., 2009]. Our setting in this study is similar to the latter form

of multitasking. Meanwhile, many studies in the human-computer interaction community

explored task switching from the perspective of task interruption and resumption. In these

studies, a subject was typically performing a primary task before being interrupted by a

secondary task, and the effects of the interruption on the primary task were analyzed [Iqbal

and Horvitz, 2007, Mark et al., 2008, Bailey and Konstan, 2006]. Unlike such work, in this

study, we care about the work quality in all types of tasks rather than focusing on a single

(primary) type of tasks.

A prominent psychological effect was consistently observed in previous studies regarding

the worker performance in task switching—workers usually have worse performance on switch

tasks than on repetition tasks [Rogers and Monsell, 1995, Monsell, 2003]. The performance

difference between the switch and repetition tasks is called the switch cost, which is likely to

be a result of the costly cognitive control processes triggered by the task switching (e.g., shift

of attention, retrieval of task goals and rules into working memory, etc.) or task-set inertia,

that is, the proactive interference between the competing old and new tasks (e.g., persistent

activation of the old task and the involuntary inhabitation of the current task) [Mayr and

Kliegl, 2000, Allport et al., 1994, Kiesel et al., 2010]. It is also known that more frequent

task switching demands more cognitive resources, which may be mentally taxing or cause

information overload for workers [Speier et al., 1999]. In contrast, repetition tasks offer

opportunities for workers to develop task-specific skills and strategies over time as a result of

learning and task specialization and thus may lead to increased work quality.

The emphasis of this study is on understanding the effects of performance-contingent
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financial incentives on the worker performance in task switching. Most prior work on the

relationship between financial incentives and the worker performance in the on-demand work

setting, including our own work described in Section 5.1, is based on experimental studies, in

which workers either complete a task only once or complete a sequence of tasks of the same type.

To the best of our knowledge, how workers react to financial incentives when they complete a

sequence of tasks of different types was only studied in the labs. It was observed that if workers

could earn additional rewards based on their overall performance in a working session of tasks

of mixed types, their performance on switch tasks was improved marginally [Nieuwenhuis and

Monsell, 2002]. Different from this research, our work considers an alternative way to provide

monetary rewards in task switching settings—we place performance-contingent financial

incentives on selected tasks in a working session; thus, workers can earn additional rewards

on the intervened tasks as long as their performance in these tasks meets some pre-specified

criteria, yet workers will not be able to earn additional rewards on the non-intervened tasks

regardless of how well they perform in those tasks.

Informing a worker that performance-contingent bonuses will be provided on some selected

tasks, however, could possibly set an implicit performance goal for the worker, which may

further affect her performance on all tasks. There is a large literature on explicit goal

setting which demonstrates that setting specific and challenging goals often leads to better

performance [Locke et al., 1981, Mento et al., 1987, Locke and Latham, 2002]. Furthermore,

when the explicit goals are combined with monetary incentives, the worker performance can

be further improved [Locke et al., 1981, Pritchard and Curts, 1973]. It is thus interesting to

examine whether the implicit goals potentially conveyed by monetary interventions have a

similar effect as the explicitly stated goals. If they do, we expect that monetary interventions

affect worker performance on not only intervened tasks, but also non-intervened tasks.
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5.2.2 Experimental Design

Our experimental design is inspired by two classical task switching experimental paradigms:

predictable task switching, where switches happen in a predictable way after a constant number

of tasks in a sequence, and task cuing, where an explicit cue is presented before each task to

specify the type of the current task [Kiesel et al., 2010].

Tasks. Two types of tasks are used in our experiments: the color naming task and the

word reading task. In a task of either type, a worker will see a stimuli word on the screen,

which is the name of one of the five colors — blue, green, magenta, red and yellow. The word

is displayed in a color that may or may not match the word, and the color is also limited to

the previous five options. For example, a stimuli word “red” can be written in blue. The two

types of tasks are:

• The color naming task (Color): A worker is asked to indicate the color in which the

word is written, regardless of whether or not that matches the word itself. In the above

example, the answer is “blue.”

• The word reading task (Word): A worker is asked to indicate what the word denotes,

regardless of the color it is written. In the above example, the answer is “red.”

In each task, the worker is instructed to report the answer by typing the initial of it in lower

case. For example, the worker can report the answer “red” by typing ‘r’ on the keyboard.

Worker performance in each task is measured in two dimensions:

• Reaction time (RT): The elapsed time between the onset of the stimuli and the worker’s

response.

• Accuracy (or correctness): A binary value indicating whether the reported answer is

correct or not.

These two metrics innately compete with each other as when workers shorten their reaction
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time, they are likely to be less accurate, ceteris paribus.

The two types of tasks were initially used in the Stroop test, which revealed the Stroop

effect, that is, subjects generally spend more time on naming the colors than reading

the words [Stroop, 1935]. They are now widely used by psychologists in studying task

switching [Wylie and Allport, 2000, Gilbert and Shallice, 2002, Allport and Wylie, 1999].

Task Sequences. In our experiment, we put 96 tasks, which include 48 tasks of each type,

in a human intelligence task (HIT). For different task sequences, the two types of tasks switch

at different frequencies.

Specifically, we define a “segment” in a sequence as a consecutive chunk of tasks of the

same type and the length of a segment is the number of tasks in it. Thus, for our experiment,

if the length of each segment in a task sequence is N , there are M = 96/N segments in that

sequence, and the sequence is then referred to as an N ×M sequence. Different types of

tasks are assigned to neighboring segments in a sequence. By varying segment lengths, we

can control the task switching frequency. We considered five task sequences in our study:

4× 24, 8× 12, 16× 6, 24× 4 and 48× 2.

Intervention Treatments. Each worker is asked to complete one of the five task sequences

and receives a performance-independent payment of 3 cents for each task completed. Monetary

interventions are performance-contingent monetary rewards: a worker can earn an extra

bonus of 2 cents on a task with monetary intervention if her reported answer for that task

is correct and her reaction time is less than 1 second. By varying whether and where the

additional bonuses are placed in a sequence, we create three treatments for each of the five

task sequences:

• No Bonus (baseline): No bonus is placed on any task in a task sequence.
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Red  Green … Blue Yellow Red …  Blue Red Magenta … Magenta Green Blue … Red 
 Task # 1 2 … 24 25 26 … 48 49 50 … 72 73 74 … 96 

- R-NI … R-NI S-NI R-NI … R-NI S-NI R-NI … R-NI S-NI R-NI … R-NI 

No Bonus: 

Red  Green … Blue Yellow Red …  Blue Red Magenta … Magenta Green Blue … Red 
 Task # 1 2 … 24 25 26 … 48 49 50 … 72 73 74 … 96 

- R-NI … R-NI S-I R-NI … R-NI S-I R-NI … R-NI S-I R-NI … R-NI 

Switch Bonus: 

Red  Green … Blue Yellow Red …  Blue Red Magenta … Magenta Green Blue … Red 
 Task # 1 2 … 24 25 26 … 48 49 50 … 72 73 74 … 96 

- R-NI … R-NI S-NI R-I … R-NI S-NI R-NI … R-I S-NI R-NI … R-NI 

Repetition Bonus: 

               Color                          Word                              Color                             Word 

Figure 5.6: An illustration of three treatments for the 24×4 sequence. S-NI denotes
a switch task without monetary intervention, R-NI represents a repetition task
without monetary intervention, S-I refers to a switch task with monetary intervention,
and R-I is a repetition task with monetary intervention. The first task of a sequence
is neither a switch nor a repetition task.

• Switch Bonus: Starting from the second segment in a task sequence, a performance-

contingent bonus is offered at the first task in every segment, i.e., bonuses are placed at

all switch tasks.

• Repetition Bonus: Starting from the second segment in a task sequence, a performance-

contingent bonus is offered at a randomly selected non-switch task in every segment,

i.e., a bonus is placed at one random repetition task in each segment (except for the

first segment).

Figure 5.6 gives a graphical example of the three treatments.

We call a combination of a task sequence and an intervention treatment an experimental

condition. Thus, there are 15 experimental conditions in our experiment.

Procedure. We posted our HITs on MTurk on weekdays around 12:00-14:00 and 16:00-

18:00 (Eastern Standard Time) in a week in March 2014. To avoid network latency as well as

cultural differences in perceiving financial incentives, we restricted our HITs to U.S. workers.
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We suggested workers who have difficulties in seeing colors or perceiving color differences not

to take the HIT. Using a desktop or laptop computer with a keyboard to complete the HIT

was recommended. Each worker was limited to take the HIT once.

Upon arrival, a worker is randomly assigned to an experimental condition. The worker

then goes through an instruction page, a task and interface tutorial and a qualification test.

In the tutorial, the worker is instructed to report the answer to each task as quickly and

accurately as possible. If she is assigned to a Switch Bonus or Repetition Bonus treatment,

she is also informed of the opportunities to earn extra bonuses at some tasks in the sequence,

contingent on her answer in those tasks being correct and reported within 1 second. The

worker can only proceed to the actual task sequence after passing the qualification test.

The actual task sequence starts with a task of a random type. For each task in the

sequence, the worker will first see a cue word (i.e., either “Color” or “Word”), shown in white

on the gray background, which indicates whether the current task is the color naming or the

word reading task. For the Switch Bonus and Repetition Bonus treatments, a bonus icon is

displayed together with the cue word if monetary intervention is placed on the current task.

Each cue is displayed for two seconds and then the worker is automatically redirected to

the task page, where a stimuli word is displayed. Both the word and the printing color of

the stimuli are randomly chosen from the five alternatives. The type of the current task is

displayed again on the top of the task page in case of unawareness. Once the worker reports

her answer to the current task, she will be automatically redirected to the cue page for the

next task. Finally, after completing all 96 tasks, the worker is asked to complete a post-task

survey of demographic information.

Each worker in our experiment got a show-up fee of $0.20 and a performance-independent

payment of $2.88 ($0.03×96) after submitting the HIT. Workers in Switch Bonus and

Repetition Bonus treatments may get extra bonuses depending on their performance in those

tasks where monetary interventions were placed.
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Data. We recruited 1305 workers in total from MTurk for our experiment. For each worker,

we recorded: (1) the task type and whether there was a monetary intervention for each task

that the worker worked on in the sequence; (2) the worker’s reaction time for each task; and

(3) the worker’s accuracy for each task.

We noticed that it took some workers an excessively long time to report their answers to

some tasks, which might be due to interruptions in their working environment. To eliminate

the influences of these “outliers,” we excluded the data from a worker if her reaction time for

any of the tasks in her sequence was longer than 20 seconds. Such elimination left us with

1268 valid workers. The data for these workers were then used in the subsequent analysis.

The average age of the valid workers is 30.8, 59.1% of them are male, and all of them use

either a desktop or a laptop computer to complete the HITs. No significant demographic or

equipment difference is observed for workers in different experimental conditions.

5.2.3 Effects on Intervened Tasks

Our first goal is to understand whether introducing monetary interventions in a task

switching setting can incentivize workers to improve their performance on tasks where the

interventions are placed. We thus focus on comparing worker performance on intervened

tasks in treatments with bonuses (i.e., the Switch Bonus and Repetition Bonus treatments)

with worker performance on the corresponding tasks in the baseline treatment (i.e., the No

Bonus treatment). In the following, the Wilcoxon rank sum test is used to evaluate statistical

significance unless otherwise stated.

We first analyze worker performance in terms of reaction time. To get a sense of on

average, how fast workers react to the stimuli word in each task when there are no monetary

interventions, five baseline average reaction time sequences are created using the data from

the No Bonus treatment, one for each of the five task sequences. That is, we consider the

five experimental conditions that combines each of the five task sequences with the No Bonus
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treatment; for each of these experimental conditions, we take all workers who were assigned

to that condition and average their reaction times position-wise. For example, the value at

position i in the baseline average reaction time sequence for the 4× 24 sequence is obtained

by averaging the reaction time for the i-th task across all workers who were assigned to the

experimental condition that combines the 4 × 24 sequence with the No Bonus treatment.

We denote the baseline average reaction time sequence for task sequence s as RTs, where

s ∈ {4× 24, 8× 12, 16× 6, 24× 4, 48× 2}, and RTs(i) refers to the value at position i in RTs,

i ∈ [1, 96].

Worker reaction time in intervened tasks for treatments with monetary interventions is

then compared to that in the corresponding position of the baseline average reaction time

sequence. For example, consider the comparison between the No Bonus treatment and the

Switch Bonus treatment. For any given task sequence s, we use two buckets: the first bucket

collects all intervened, switch task reaction times for all workers in the experimental condition

that combines the Switch Bonus treatment with the task sequence s; and for each reaction

time value that we add to the first bucket, suppose it comes from position x in the task

sequence, we will then put RTs(x) to the second bucket. We then calculate the average

value for both buckets. Figure 5.7a plots the differences of the average reaction time on the

intervened tasks between the No Bonus treatment and the Switch Bonus treatment for all

five task sequences. The differences in reaction time between the No Bonus treatment and

the Repetition Bonus treatment are calculated similarly and plotted in Figure 5.7b. As the

figures suggest, the presence of monetary interventions leads to shorter reaction time for

the intervened tasks, no matter where the interventions are placed. Further statistical tests

report p<0.001 for pairwise comparisons for all task sequences, indicating that the decreases

are significant.

We then examine worker performance in terms of accuracy. Similar to the analysis on

reaction time, for any given task sequence s, we first create the baseline average accuracy
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Figure 5.7: Effects of monetary interventions on reaction time for intervened tasks
and non-intervened tasks. Error bars represent standard errors of the mean.

sequences, ACCs, by taking all workers who worked on the task sequence s in the No

Bonus treatment and averaging their accuracy position-wise. ACCs(i) represents the value

at position i in ACCs. Then, for each worker who worked on s in the Switch Bonus (or

Repetition Bonus) treatment, we put her accuracy in each task into one of the three categories

depending on whether that task appears before, at or after the placement of the monetary

intervention in its segment. Furthermore, for each accuracy value for a task at position x that

we put into one of the three categories for the Switch Bonus (or Repetition Bonus) treatment,

we also add ACCs(x) to the same category for the No Bonus treatment. Finally, by taking

the average of all data in each category, we can see in each treatment how accurate workers

are before, at the time or after monetary interventions being placed in the segments and

thus investigate whether worker’s accuracy improves in the intervened tasks with the extra

bonuses.

Figures 5.8a and 5.8b report how worker’s accuracy changes within a segment for different
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Figure 5.8: Comparison of the average worker accuracy within a segment.

treatments, with Figure 5.8a showing the comparison between the No Bonus treatment

and the Switch Bonus treatment, and Figure 5.8b showing the comparison between the No

Bonus treatment and the Repetition Bonus treatment. Accuracy is plotted cumulatively:

for example, in Figure 5.8b, the average worker accuracy after monetary interventions is

the sum of the average accuracy before interventions (green bar), the accuracy increment at

intervened tasks (orange bar) and the accuracy increment after interventions (purple bar).

Figure 5.8a shows that in general, the orange bar for the Switch Bonus treatment is

longer than that for the corresponding No Bonus treatment, with the 4×24 sequence being

the only exception. This indicates that the average accuracy at the switch tasks improves

significantly (p<0.001) when monetary interventions are placed on these tasks in all but the

4×24 sequence. The exception of the 4×24 sequence may be resulted from workers being

overwhelmed by the mentally-taxing frequent switches and thus find the additional bonuses

more disturbing rather than motivating.

When monetary interventions are placed on repetition tasks, the average accuracy at

these tasks is often not higher than that in the corresponding No Bonus treatment. To see

this, we compare the combined length of the green and orange bars in Figure 5.8b for the

Repetition Bonus and No Bonus treatments. The combined length for the Repetition Bonus

treatment is shorter than that for the corresponding No Bonus treatment (p<0.001), except

for the 48×2 sequence. However, the lower average accuracy at intervened tasks for the
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Repetition Bonus treatment can be largely attributed to the low average accuracy in the

non-intervened tasks before the intervention, i.e., the green bar is shorter in the Repetition

Bonus treatment than that in the corresponding No Bonus treatment for most sequences.

This is due to faster reaction on non-intervened tasks when extra bonuses are used and the

competition between reaction time and accuracy, which we will detail in the next section.

When focusing on the accuracy improvement at intervened tasks and thus comparing the

length of orange bars between the two treatments in Figure 5.8b, we find that with monetary

interventions, the accuracy improvement at the intervened repetition tasks is significantly

larger for sequences with moderate to low task switching frequencies (p<0.05).

To summarize, introducing monetary interventions incentivizes better performance on

intervened tasks — workers complete the intervened tasks not only faster but also with

either higher accuracy or a larger accuracy improvement. Recall that to earn the bonuses

workers need to both react quickly and be accurate. While it may be easy for a worker to

submit a response faster, the improved performance in accuracy suggests that workers are

indeed motivated by the extrinsic financial incentives to improve her performance along both

dimensions. To some degree, the performance-contingent financial incentives even lead workers

to overcome the innate tradeoff between the two performance metrics on the intervened tasks.

Our observations, therefore, imply the effectiveness of performance-contingent rewards in

mitigating switch cost (when placed on switch tasks) or promoting faster learning and task

specialization (when placed on repetition tasks).

5.2.4 Effects on Non-intervened Tasks

We next attempt to understand the effects of monetary interventions on non-intervened

tasks.

The comparisons of the average reaction time for non-intervened tasks in the Switch

Bonus treatment and the Repetition Bonus treatment against that in the baseline No Bonus
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treatment are displayed in Figure 5.7c and Figure 5.7d respectively. Interestingly, we find that

although workers cannot earn extra rewards by completing the non-intervened tasks quickly,

they still show a clear tendency in shortening their reaction time significantly (p<0.001) for

these tasks. On the other hand, while workers are still very accurate, their accuracy decreases

at the non-intervened tasks: for the Switch Bonus treatment, the average worker accuracy for

non-intervened tasks is 93.75% across all task sequences, which is slightly lower (by 0.74%)

than that for the No Bonus treatment; and for the Repetition Bonus treatment, the average

worker accuracy for non-intervened tasks across all task sequences is 91.34%, which is 2.03%

lower than that for the No Bonus treatment. The accuracy decreases for non-intervened

tasks are statistically significant (p<0.001). These results indicate that with the additional

bonuses, workers try to improve their performance in reaction time while maintaining their

performance in accuracy even when monetary rewards are not directly applied to the tasks.

Yet, the competitive nature of the two performance metrics seems to still dominate in the

non-intervened tasks, which means that faster reaction comes with a cost in accuracy for

these tasks.

As monetary interventions lead to decreases in reaction time for both intervened and

non-intervened tasks, we further compare the magnitude of the decrease between these two

categories of tasks. Results are reported in Figures 5.7e and 5.7f. It is clear that no matter

where the monetary rewards are placed, the decrease in reaction time for intervened tasks is

significantly larger (p<0.05) than that for non-intervened tasks, with the 48×2 sequence in

the Repetition Bonus treatment being the only exception (the decrease in reaction time for

non-intervened tasks there is marginally larger, with p=0.077).

We provide a unified explanation for our observations on worker performance in both

intervened and non-intervened tasks: workers treat the performance-contingency of extra

rewards on some selected tasks as an implicit performance goal, which has a similar effect as

an explicit goal. Thus, workers attempt to improve their performance for all tasks in the
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Figure 5.9: Comparison of average worker performance for all 96 tasks in a sequence
across different treatments. Error bars represent standard errors of the mean.

sequence (subject to the innate tradeoff between the two performance metrics), regardless

of whether monetary interventions are placed on the tasks. For the intervened tasks in the

sequence, workers are further incentivized by the extrinsic financial incentives and therefore

improve their performance in those tasks to a larger degree, yielding both a faster reaction

and a higher accuracy (or a larger accuracy increment).

5.2.5 More Effective Interventions

Finally, we seek to gain some insights into how to more effectively use monetary interven-

tions in a task switching setting to improve worker performance.

Figure 5.9a and Table 5.5 report the comparisons of the three treatments in terms of the

average worker reaction time over all 96 tasks for each of the five task sequences. Figure 5.9b

and Table 5.6 present similar comparisons for worker accuracy.

First, we look into the baseline No Bonus treatment. As shown in Figures 5.9a and 5.9b,

when monetary interventions are not available, as task switching becomes less frequent, worker

reaction time gets shorter and worker accuracy also exhibits a downward trend. One-way

analysis of variance (ANOVA) further confirms that the differences in reaction time and

accuracy across task sequences are statistically significant (p<0.001). In other words, without

monetary interventions, by controlling how frequently tasks switch in a sequence, a requester

may trade off better performance in average reaction time for better performance in overall
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Task
Sequences

Reaction Time Mean Values Reaction Time Differences
No Bonus

(NB)
Switch

Bonus (SB)
Repetition
Bonus (RB) SB – NB RB – NB RB – SB

4×24 1.5078 1.3628 1.3193 -0.145*** -0.188*** -0.044***

8×12 1.4355 1.2625 1.2893 -0.173*** -0.146*** 0.027
16×6 1.3904 1.1717 1.2615 -0.218*** -0.129*** 0.090***

24×4 1.2731 1.1976 1.1824 -0.075*** -0.091*** -0.015
48×2 1.2261 1.0725 1.0352 -0.154 -0.191*** -0.037***

Table 5.5: Average worker reaction time in different experimental conditions and
differences of reaction time between conditions. The statistical significance of the
Wilcoxon rank sum test is marked as a superscript, with *, **, and *** representing
significance levels of 0.05, 0.01, and 0.001 respectively. (Unit: seconds)

Task
Sequences

Accuracy Mean Values Accuracy Differences
No Bonus

(NB)
Switch

Bonus (SB)
Repetition
Bonus (RB) SB – NB RB – NB RB – SB

4×24 0.9617 0.9193 0.9193 -0.042*** -0.042*** 0.000
8×12 0.9395 0.9353 0.9178 -0.004*** -0.022*** -0.018***

16×6 0.9442 0.9248 0.9034 -0.019*** -0.041*** -0.021***

24×4 0.9370 0.9458 0.9104 0.009* -0.027*** -0.036***

48×2 0.8973 0.9164 0.9163 0.019*** 0.019*** -0.000

Table 5.6: Average worker accuracy in different experimental conditions and differ-
ences of accuracy between conditions. The statistical significance of the Wilcoxon
rank sum test is marked as a superscript, with *, **, and *** representing significance
levels of 0.05, 0.01, and 0.001 respectively.

accuracy.

When comparing the worker performance in treatments with monetary interventions (i.e.,

the Switch Bonus or Repetition Bonus treatment) with that in the baseline treatment, we have

an interesting observation: while workers can be incentivized to improve their performance in

reaction time significantly regardless of the task switching frequency in the sequences (i.e.,

negative differences in columns “SB – NB” and “RB – NB” of Table 5.5), similar improvement

in accuracy can only be achieved when the task switching frequency is low (i.e., positive

differences in columns “SB – NB” and “RB – NB” of Table 5.6 only appear in sequences with

a low task switching frequency). This observation implies that adding monetary interventions
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to sequences with a low task switching frequency could be more effective: instead of trading

off speed for accuracy or vice versa, workers perform better according to both metrics; in

particular the incentives boost worker’s overall accuracy in the sequence significantly.

In terms of where to place monetary interventions in a task sequence to improve the

effectiveness of the extra bonuses, we next compare the worker performance between the Switch

Bonus treatment and the Repetition Bonus treatment. We find that while both treatments can

effectively improve worker performance in reaction time, placing the performance-contingent

rewards on switch tasks generally leads to better performance in accuracy compared to

providing extra bonuses at repetition tasks (i.e., differences in the “RB – SB” column of

Table 5.6 are mostly negative). This indicates that it is more efficient to use monetary

interventions right at the the switching points. With a closer look, this finding can further be

attributed to two reasons: first, accuracy improvement at the intervened tasks is significantly

larger when bonuses are placed on switch tasks than when they are placed on repetition tasks

(+3.49% vs. +0.34%, p<0.001); second, combining extra bonuses with task switches makes

workers shift focus to the new type of tasks quicker when tasks switch — compared to the

baseline treatment, the average number of tasks it takes for a worker to first submit a correct

answer in a segment is decreased by 0.18 (not significant) for the Switch Bonus treatment

while increased by 0.15 (p<0.05) for the Repetition Bonus treatment, leading workers in the

Switch Bonus treatment to outperform workers in the Repetition Bonus treatment in the

early stage of each task segment (e.g., the average accuracy comparison is 88.52% vs. 85.30%

for the first half of tasks in each segment, p<0.001).

In sum, monetary interventions can be most effective in motivating better worker per-

formance when they are placed at switch tasks in a sequence with a low task switching

frequency. We conjecture that this is due to that monetary interventions are less interruptive

in sequences with a low task switching frequency, and the demand for extra attention, which

can be stimulated using monetary interventions, is at its height on switch tasks.
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5.3 Discussion

We conducted two experimental studies to empirically understand the effects of financial

incentives in the on-demand economy. Our results showed that when workers work on

a sequence of tasks of the same type, the magnitude of performance-contingent financial

incentives alone does not necessarily affect either work quality or worker effort, yet the change

of incentive magnitude in subsequent tasks has been consistently observed to significantly

affect both of them—increasing the magnitude of incentives helps to improve the work quality

and worker effort while decreasing the magnitude hurts. In addition, we found that in a

sequence of tasks of different types, occasionally providing performance-contingent financial

incentives on some selected tasks not only leads to an improved performance in the intervened

tasks, but also cast a spillover effect on the non-intervened tasks. It is also demonstrated

that such monetary interventions are most effective in eliciting better worker performance

when used on the switch tasks in a sequence with a low task switching frequency.

Both studies provided implications for better designing financial incentives in the on-

demand economy by understanding and leveraging the psychological processes of the workers.

For example, our findings in the first study generally supported the conjecture of Mason and

Watts on why simply using financial incentives of larger magnitude didn’t lead to an improved

performance [Mason and Watts, 2010]—they hypothesized the existence of an “anchoring

effect,” that is, a worker may anchored her conception of “appropriate” payment level based on

the actual compensation she received in a task and consistently felt herself being underpaid,

which mitigated her motivation to perform better. Indeed, combining their hypothesis

with the fair wage-effort hypothesis [Akerlof and Yellen, 1990], we provide one plausible

interpretation for our experimental results in the first study: (1) Because a worker always

tends to use the payment in the first task that she encounters in a sequence as a reference

point to form a sense of the “fair” amount of payment in her mind, she is likely to feel equally
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underpaid no matter how large the magnitude of the performance-contingent reward is and

thus exhibits similar performance across the base treatments; (2) With the anchored reference

point of fair payment, a worker can interpret the magnitude of the performance-contingent

financial incentives in the second task by comparing it to the reference point—when it is

higher than the reference point, the worker responds to the “fairer” payment by improving her

performance, otherwise the worker decreases her performance. Notice that this interpretation

is also in line with the prospect theory [Kahneman and Tversky, 1979], which claims that

people make decisions based on the perceived gains and losses against the reference point

rather than the absolute values. In practice, this interpretation suggests that we may leverage

the anchoring effect in the task workflow design to improve the effectiveness of financial

incentives. As for our findings in the second study, the impact of monetary interventions on

worker performance for both intervened tasks and non-intervened tasks lead us to conjecture

that workers may in fact set implicit performance goals for themselves when they notice that

in some tasks, a part of the monetary rewards is dependent on their performance. It is thus

straightforward to further explore how theories in goal setting can inspire us to improve the

effectiveness of financial incentives.

While in this chapter, we focus on studying the effects of performance-contingent financial

incentives, in reality, we may not be able to use such incentives in some cases. For example, the

quality of work for a task may be subjective, not verifiable, or is too costly to be practical to

verify. This requires us to have a better understanding of other forms of financial incentives in

the on-demand economy. One of the alternative form of financial incentives is the combination

of various peer prediction methods [Miller et al., 2005, Prelec, 2004] with financial rewards,

which rewards a worker based on not only her answer but also the answers of her peers. It

will be an interesting future direction to study the effects of this type of financial incentives

both theoretically and empirically.
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Chapter 6

Monetary Intervention Design: An

Algorithmic Perspective

In the last chapter, we have experimentally studied the effects of financial incentives in

on-demand work settings. While these studies provide empirical evidence in support of the

effectiveness of using financial incentives to affect worker performance, it remains unclear how

can we use financial incentives in a working session (i.e., a sequence of tasks) in an efficient

way.

For example, consider a requester who plans to place performance-contingent rewards on

some selected tasks in a working session to encourage high-quality work. From the requester’s

perspective, it is not necessarily always beneficial to provide such rewards, as the potentially

improved quality also comes with an increase in financial cost. Furthermore, even if providing

such rewards is indeed beneficial, the requester still face a series of subsequent decisions such

as how many tasks and which tasks should rewards be placed on. Our findings in the last

chapter clearly suggest that these decisions are crucial in determining the effectiveness of the

financial incentives. Yet, the current common practice among requesters is still to follow some

simple fixed or random schemes to offer a performance-contingent reward on none of the
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tasks, all of the tasks or a number of randomly selected tasks in a working session, and each

worker is also awarded in the same way. Therefore, it is straightforward to ask whether we

can design a more efficient way to place monetary interventions by, for example, dynamically

adjusting the placement of performance-contingent rewards in a working session.

In this chapter, we provide an initial answer to this question by presenting an algorithmic

approach to control financial incentives, which helps the requester to make decisions on

whether and when to offer performance-contingent financial rewards (e.g., bonuses) in a

working session to maximize the overall utility he derives from the session. In particular,

the goal of algorithmically controlling the provision of bonuses in working sessions naturally

comes down to two specific problems: First, how can we quantitatively characterize the

impact of monetary interventions on work quality? Second, how should we trade off quality

against cost?

To address the first problem, we consider to learn statistical models of worker’s reaction

to monetary interventions from the empirical data. For example, given a particular type of

task at hand, suppose a requester gets access to a set of historic data on worker behavior in

working sessions of such task. That is, the requester has the record on whether monetary

intervention is provided as well as the work quality on each task of the working sessions

for a group of past workers. We can then use this historic dataset to train a statistical

model, which characterizes how the quality of on-demand work changes with the provision

of monetary interventions. Such model is especially important for a requester to reason

about how to provide monetary interventions in an efficient way, because it can be utilized

to predict work quality for future workers in their working sessions, for both the cases when

monetary intervention is placed on a task or not placed. Specifically, for a new worker who

starts to work on a task session, after monitoring her performance for a short period of time,

the requester can use the learned model to make a prediction on the worker’s performance

in a particular task, given whether monetary intervention is placed on this task, as well
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as the history of monetary intervention provisions and work quality for all previous tasks

that the worker has already completed in the session. As work quality is usually measured

with discrete levels (e.g., high-quality or low-quality) and is influenced by the provision of

external monetary interventions, this prediction problem is essentially a categorical time

series prediction with exogenous inputs.

To address the second problem of trading off quality against cost, we propose to augment

the learned model with a requester utility function and therefore turn the bonus placement

problem into a problem of utility maximization under uncertainty. Depending on the specific

model that is used, the uncertainty may originate from the stochastic nature of the model or

the varying confidence levels when using the model to predict work quality. We then provide

different algorithms to solve for a utility-maximizing, dynamic policy of bonus placement.

In the following, we first describe related work in Section 6.1. In Section 6.2, we present

a series of seven models from three categories (supervised learning models, autoregressive

models and Markov models) to characterize the impact of monetary interventions on crowd

work quality. Using how well they can predict work quality under monetary interventions

as the evaluation standard, we also conduct an empirical comparison of these models. As

an example, in Section 6.3, we demonstrate our algorithmic approach of dynamic incentive

control based on a particular type of Markov model, the first-order input-output hidden

Markov model. Through randomized experiments on Amazon Mechanical Turk, we show

that our approach significantly improves the requester utility compared to the baseline fixed

or random bonus schemes. To the best of our knowledge, this is the first time that the

effectiveness of algorithmically-controlled bonus schemes is shown with real crowd workers.

Section 6.4 discusses possible extensions and future directions.
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6.1 Related Work

The problem of modeling worker performance in working sessions in the on-demand, crowd

work environment has been explored in a few previous studies. Early work often focuses on

estimating a worker’s inherent capability level (sometimes referred to as the error rate) which

is independent of the working environment, does not change over time and determines worker

performance in the tasks [Whitehill et al., 2009, Karger et al., 2011, Raykar and Yu, 2012].

Recent work, however, suggests that worker performance can be better modeled when taking

its time-variance (e.g., improvement or degradation over time) into consideration [Donmez

et al., 2010, Jung et al., 2014, Bragg and Weld, 2016]. In particular, Donmez et al. [2010]

proposed a Bayesian time series model, assuming that the latent variable dynamics that

governs the change of work quality over time has an uniform offset and correlation, that is

xt = xt−1 + εt. Jung et al. [2014] relaxed this constraint and came up with a generalized

model (LAR) with xt = c + φxt−1 + εt. More recently, Jung and Lease [2015a] designed a

generalized time-varying assessor model (GAM) that is a logistic regression predictor with

features extracted from both generative time-series models (e.g., the estimated φ and c from

the LAR model) and worker’s behavioral evidence, and they showed that the prediction

accuracy on crowd work quality can be significantly improved with this model. Meanwhile,

Bragg and Weld [2016] took a different approach and used a parametric hidden Markov model

to explicitly model the performance degradation over time.

The time-variance of crowd work quality discussed in all the above studies describes the

organic evolvement of worker performance, perhaps due to the learning effect or boredom. In

reality, however, worker performance can also be influenced by some external factors presented

in the working contexts, such as the monetary interventions embedded in the task session.

This naturally leads to the interesting questions of how to explicitly take the impact of

monetary interventions into consideration for modeling crowd work quality, and furthermore,
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how to reward workers in an optimal way such that the requester utility is maximized. To this

end, some researchers have explored possible payment strategies based on specific hypotheses

or theoretical models on how work quality changes with monetary interventions. For instance,

Wang and Ipeirotis [2013] proposed a “payment with reimbursement” scheme based on the

conjecture that the fluctuation of payments in task sequences is undesirable as workers may

interpret a decrease of financial incentives as a punishment. Ho et al. [2014] used the classical

principal-agent model to characterize how a worker makes strategic decisions when provided

with a performance-contingent payment and studied how to adaptively adjust such payment

over time.

Different from these studies, in this chapter, we present an algorithmic approach to reward

workers based on statistical models of worker behavior that are learned from empirical data.

These models are used to predict crowd work quality under monetary interventions, hence

may further provide guidance to the requester for making decisions on bonus placements.

More specifically, we adopt some existing models from the literature such as supervised

learning models and variants of Markov models. We also propose a few new models. In

particular, not many time-series models can be directly applied to the categorical prediction

problems with exogenous input sequence like ours — models like discrete autoregressive

(DAR) and latent autoregressive (LAR) deal with categorical time series predictions without

exogenous inputs [Jacobs and Lewis, 1983, Jung et al., 2014], while models like autoregressive

with exogenous inputs (ARX) deal with predictions with exogenous inputs for continuous

variables [Ljung, 1998]. Hence, we propose two variants of autoregressive models, DARX and

LARX, for our prediction problem, which are extended from the existing models. We further

study the prediction performance of these models in more realistic scenarios, such as when

the requester has limited training dataset or limited ground truth. Similar analyses have

been conducted previously in different contexts, for the prediction of disengagement [Mao

et al., 2013] or predicting temporal work quality without external interventions [Jung and
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Lease, 2015b].

Once the models are learned from the empirical data, we combine them with reasoning

techniques and therefore make decisions on the placement of bonuses in working sessions.

Similar approaches have been used for optimizing the decision making in the on-demand work

for different purposes, such as dynamically controlling worker recruitment and testing [Ka-

mar et al., 2012, Bragg and Weld, 2016], task assignment [Dai et al., 2010] and workflow

switches [Lin et al., 2012]. Besides, Huang et al. [2010] also worked on optimally designing

on-demand work variables, such as how many HITs to post and how many tasks to be bundled

in one HIT, following a similar strategy.

Finally, our work is different from several pricing mechanisms proposed to elicit more (or

faster) work from rational workers given a fixed budget [Singer and Mittal, 2013, Singla and

Krause, 2013, Gao and Parameswaran, 2014]—our goal is to elicit high-quality work, and we

have no assumption on the rationality of workers.

6.2 Predicting Work Quality under Monetary Inter-

ventions

In this section, to address the problem of predicting crowd work quality under monetary

interventions, we enumerate 7 models from 3 different categories, and present an empirical

comparison on the prediction performance of these models. Specifically, we first treat our

prediction as a classification problem and adopt three supervised learning models (random

forests, support vector machine and artificial neural network). Furthermore, we propose two

time-series models (DARX and LARX) that are extended from existing autoregressive models

to incorporate the exogenous inputs. Finally, by assuming that the change of work quality (or

the change of some latent variable related to work quality) is governed by a Markov process,

we consider two variants of the Markov models (controlled Markov chain and input-output
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hidden Markov model) for our prediction. The performance of each model is examined on

three datasets that are collected with real crowd workers from Amazon Mechanical Turk for

different types of tasks, including solving word puzzles, classifying images, and finding typos

in the text.

In addition, requesters often face some practical constraints when predicting crowd work

quality: (1) the “cold start” problem: requesters have very limited training data to start with,

hence their knowledge on how workers react to monetary interventions is quite limited at

the beginning; (2) the lack of ground truth: requesters often get access to the ground truth

for only a certain number of tasks, hence they can only evaluate a worker’s performance

on some tasks in the past when making prediction on her work quality in the current task.

Therefore, to better understand the robustness of the models when facing realistic constraints,

we conduct further experiments to investigate the performance of different prediction models

when the requester has limited training data or limited ground truth.

6.2.1 Prediction Models

Our prediction problem can be formally defined as the following: The requester has

collected a training dataset Dtrain of N workers. Each worker in the training dataset

completes a sequence of T tasks. For each worker i (1 ≤ i ≤ N), the requester keeps a

record of the sequence of monetary interventions provided to the worker ai = (a1
i , a

2
i , · · · , aTi )

as well as the sequence of observed work quality yi = (y1
i , y

2
i , · · · , yTi ). For simplicity, we

consider binary levels of monetary interventions and work quality in this study. That is,

ati ∈ {0, 1}(1 ≤ t ≤ T ) indicates whether a monetary intervention is provided on task t to

worker i, with value 1 (or 0) representing a positive (or negative) answer, and yti ∈ {0, 1}

refers to the work quality of worker i on task t, with value 1 (or 0) representing high-quality

(or low-quality) work. The requester is interested in modeling crowd work quality under

monetary interventions through the training dataset and making predictions for a future
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worker — given the sequence of monetary interventions a = (a1, a2, · · · , al−1) provided to

this worker so far as well as the observed work quality y = (y1, y2, · · · , yl−1), what’s the

worker’s performance yl in the current task (i.e., the l-th task) when monetary intervention

level al is provided?

Supervised Learning Models

We first treat our prediction as a supervised learning problem. Take worker i’s performance

in task t for an example, yti is naturally the label for this training instance. We further extract

a feature set for this instance by focusing on a history window of size L. In particular, the

feature set xti includes:

• current intervention level: ati, whether a monetary intervention is provided on the

current task;

• average intervention level: 1
t−1

∑t−1
j=1 a

j
i , the percentage of tasks with monetary interven-

tions among all previous tasks;

• average performance: 1
t−1

∑t−1
j=1 y

j
i , the percentage of high-quality work in all previous

tasks;

• historical intervention levels: ahi (t− L ≤ h ≤ t− 1), whether monetary intervention is

provided on each of the previous L tasks;

• historical performance: yhi (t− L ≤ h ≤ t− 1), the work quality in each of the previous

L tasks;

• historical intervention changes: ah2
i − ah1

i (t− L ≤ h1 < h2 ≤ t− 1), the differences in

monetary interventions for any two of the previous L tasks; and

• historical performance changes: yh2
i − yh1

i (t− L ≤ h1 < h2 ≤ t− 1), the differences in

work quality for any two of the previous L tasks.

A transformed training dataset is created through extracting the feature-label pair (xti, yti)
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for all workers and all tasks in the original training dataset. A supervised learning model

then simply constructs a function yti = f(xti) that maps the features to the label. We consider

three such model in this study:

Model 1: Random Forests (RF). Random forests [Ho, 1998] is a popular ensemble

learning technique for classification and regression. Briefly speaking, many decision trees

are grown in the random forests. Each tree is constructed by fitting a decision tree to a

random subset of the training data, and a random subset of features are considered for each

split within the tree. The prediction for a testing sample is made by classifying it using each

decision tree in the forest in turn and then taking the majority vote among all trees.

Model 2: Support Vector Machine (SVM). The general idea of support vector ma-

chine [Cortes and Vapnik, 1995] is to map training data points from the original finite-

dimensional space to a higher-dimensional space, and search for a hyperplane to separate

data points from different classes such that the distance between the closest two data points

of different classes is maximized. Kernel functions are often used to construct non-linear

SVM classifiers [Boser et al., 1992]. To make a prediction for a testing sample, we simply

map it to the same higher-dimensional space and assign a label to it according to on which

side of the hyperplane it falls.

Model 3: Artificial Neural Network (NN). Inspired by the biological neural networks,

artificial neural networks are a family of machine learning models that can approximate any

function between features and labels [Hornik et al., 1989]. While various network structure

can be designed based on the understanding of the specific prediction problem, in this study,

we focus on a fully connected multi-layer neural network — in this network, there is a layer

of input neurons, a layer of the single output neuron and one or more layers of hidden neurons

where each neuron in one hidden layer is connected to all neurons in the previous (input or
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hidden) layer as well as all neurons in the next (hidden or output) layer. Specifically for

our problem, each element in the feature set xti activates an input neuron and the single

output neuron produces the label yti . A neuron in a hidden layer takes the weighted sum of

output values from the previous layer as the input, and outputs a value after transforming the

input with an activation function. The weights between any two neurons in the network are

estimated through the training data. The prediction of a testing sample can be completed by

feeding the input neurons with its features, activating hidden neurons in turn and determining

the label until the output neuron is activated.

Autoregressive Models

Next, we introduce two variants of the autoregressive models in time series analysis to

address our prediction problem.

Model 4: Discrete Autoregressive Model with Exogenous Inputs (DARX). We

extend the Discrete Autoregressive (DAR) model [Jacobs and Lewis, 1983] to incorporate the

exogenous inputs. Formally, a DARX model of order p is defined as follows:

yti = Ity
t−Dt
i + (1− It)et (6.1)

where et is a binary variable with Pr(et = 1|ati) = βati , It is a binary variable with Pr(It =

1|ati) = λati , Dt randomly takes a value from the set {1, 2, · · · , p} with Pr(Dt = d|ati) = αdati
,

and ∑p
d=1 α

d
ati

= 1 for ati ∈ {0, 1}. Importantly, notice that in the DARX(p) model, the

probability distributions for random variables et, It and Dt are all conditioned on the

exogenous input ati. This is different from the DAR model where exogenous inputs are not

included as a part. As a concrete example, consider when monetary intervention is provided

to worker i on task t, that is, ati = 1. Then, the DARX(p) model states that, the value of yti

(i.e., whether worker i will submit high-quality work in task t) is related to the previously
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observed work quality with probability λ1 (i.e., when It = 1) and not related with probability

1− λ1 (i.e., when It = 0). When It = 0, yti is determined by an independent binary variable

et, which is equal to 1 with probability β1. On the other hand, when It = 1, yti equals to the

observation d (1 ≤ d ≤ p) steps ago, that is, yt−di , with probability αd1.

The DARX(p) model has 2p + 4 parameters to estimate in total: λa, αda and βa, with

a ∈ {0, 1} and d ∈ {1, 2, · · · , p}. Given the training dataset, we can search for a set of

parameters that best characterizes worker’s reaction to monetary interventions as a population.

To make a prediction for a testing worker with these population-level parameters on her l-th

task, we simply draw random variables el, Il and Dl according to the estimated parameters

and decide the label of the testing sample with Equation 6.1.

On the other hand, parameters of a DARX(p) model can also be estimated in an online

fashion for the individual worker that we are currently predicting on. This enables us to

make more personalized predictions — we may initialize the model with the population-level

parameters, that is, λ1
a = λa, αd,1a = αda and β1

a = βa, and we can update these parameters

over time as we keep observing the testing worker completes more tasks in the session and

obtaining the individual-level model estimates. One way to update the model parameters is

to take a weighted average of the old parameters and the newly estimated individual-level

parameters at each time step. For instance, suppose the testing worker has completed a

sequence of l − 1 tasks and the observed sequences of a and y lead to an individual-level

model with parameters λ′a, αda
′
and β ′a. We propose to update the model parameters as the

following:

λla = (1− γ)λl−1
a + γλ

′

a (6.2)

αd,la = (1− γ)λl−1
a αd,l−1

a + γλ
′
aα

d
a

′

λla
(6.3)

βla = (1− γ)(1− λl−1
a )βl−1

a + γ(1− λ′a)β
′
a

1− λla
(6.4)
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The prediction for the l-th task is made based on λla, αd,la and βla, and a new set of individual-

level parameters will be estimated after we observe the actual work quality yl in the l-th

task. Notice that γ (0 ≤ γ ≤ 1) represents the learning rate for parameter updating: when

γ = 0, the prediction is always made with population-level parameters, and when γ = 1, the

prediction is made with individual-level parameters exclusively.

Model 5: Latent Autoregressive Model with Exogenous Inputs (LARX). The

second autoregressive model variant is extended from the Latent Autoregressive Model

(LAR) [Jung et al., 2014]. Specifically, the LAR model is defined as follows:

zti = c+ φzt−1
i + εti (6.5)

Pr(yti = 1) = 1
1 + e−z

t
i

(6.6)

where εti ∼ N(0, σ2) is a random noise, zti is a latent variable that governs the worker’s

performance, and the observed work quality yti is determined stochastically by zti through

the logistic function. To take the impact of monetary interventions on work quality into

consideration, we propose a generalized LARX model, with an autoregressive order of p and

an exogenous input order of q, by replacing Equation 6.5 with the following formula:

zti = c+
p∑
j=1

φjz
t−j
i +

q−1∑
j=0

θja
t−j
i + εti (6.7)

Equation 6.7 is essentially an autoregressive model with exogenous inputs (ARX) [Ljung,

1998]. Different from the LAR model, the LARX model assumes that the latent variable zti

depends linearly on both its previous values and the exogenous inputs. Given the training

dataset, a population-level LARX model can be learned through expectation-maximization

algorithms with particle filters [Park et al., 2014]. While the population-level model can

be used for prediction, similar to the DARX model, we can also make more personalized
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predictions by updating the LARX model parameters over time (e.g., φlj = (1− γ)φl−1
j + γφ

′
j)

to characterize both the population-level behavior and the individual-level behavior.

Markov Models

Finally, we present two Markov models for predicting crowd work quality under monetary

interventions.

Model 6: Controlled Markov Chain (CMC). Controlled Markov chain includes ex-

ogenous inputs (often referred to as “actions”) into a Markov chain, and with further addition

of reward functions, a CMC will be transformed into a Markov decision process (MDP).

A CMC of order p defines that state transition depends only on the recent p states and

the current input, that is, Pa(Sp, · · · , S1, S0) = Pr(st = S0|st−1 = S1, · · · , st−p = Sp, at =

a) = Pr(st = S0|st−1 = S1, · · · , s1 = St−1, at = a). For our purpose, we take the observed

work quality in each task as the “state.” Thus, the state transition probabilities essentially

represent the distribution of the work quality yti in task t, given the monetary interven-

tion level ati in task t and the observed work quality sequence (yt−pi , yt−p+1
i , · · · , yt−1

i ) in

the past p tasks. A maximum-likelihood estimate of these transition probability parame-

ters can be obtained given the training dataset. For the testing worker, we predict that

Pr(yl = 1) = Pal(yl−p, yl−p+1, · · · , yl−1, 1).

Model 7: Input-Output Hidden Markov Model (IOHMM). Input-output hidden

Markov model [Bengio and Frasconi, 1995] is a variant of the hidden Markov model for

learning the mapping between input and output sequences. An IOHMM of order p is defined

as follows:

• inputs: ati, whether a monetary intervention is provided in task t;

• outputs: yti , the work quality in task t;
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• hidden states: zti ∈ {1, 2, · · · , K}, the worker’s latent state in task t, where K is the

total number of hidden states;

• transition probability: Ptr(zti |zt−1
i , · · · , zt−pi , ati), the probability of transiting to state zti

in task t given the current input ati and state sequence (zt−pi , zt−p+1
i , · · · , zt−1

i ) in the

previous p tasks; and

• emission probability: Pe(yti |zti , · · · , z
t−p+1
i , ati), the probability of submitting work of

quality yti in task t given the current input ati and the state sequence (zt−p+1
i , · · · , zt−1

i , zti)

in the recent p tasks.

An IOHMM can be estimated using the Baum-Welch expectation-maximization algorithm [Ben-

gio and Frasconi, 1996]. To make predictions for the testing worker, we maintain and

update a state belief bl(1 ≤ l ≤ l) at each step, which is the probability distribu-

tion for the worker to stay in different combinations of states in the p tasks before task

l. The value of yl is then computed with bl and al. For example, when p = 1, we

have bl = (bl(1), bl(2), · · · , bl(K)) where bl(k) (1 ≤ k ≤ K) is the estimated proba-

bility for the worker to stay in hidden state k in task l − 1. Then, we predict that

Pr(yl = 1) = ∑K
k=1 bl(k)(∑K

j=1 Ptr(j|k, al)Pe(1|j, al)), and after we observe yl, the state

belief is updated according to that bl+1(j) ∝ ∑K
k=1 bl(k)Ptr(j|k, al)Pe(yl|j, al).

6.2.2 Evaluation Datasets

To examine the performance of different prediction models, we collected 3 datasets from

real crowd workers on Amazon Mechanical Turk:

• Puzzle: consists of 300 workers each completing a sequence of 9 word puzzle tasks in

one HIT. In each task, the worker is shown a 12×12 board filled with capital letters

and a “target” word on the screen. This target word can be placed on the board

horizontally, vertically or diagonally, and for multiple times. The worker is asked to find
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the appearances of the target word on the board as many times as possible. The base

payment for the HIT is 45 cents. The requester provides extra performance-contingent

bonus on 37% of the tasks. When a worker submits a high-quality answer in a bonus

task by pointing out more than 80% of all appearances of the target word, she can earn

an extra bonus of 5 cents1.

• Classify: consists of 220 workers each completing a sequence of 10 butterfly classi-

fication tasks in one HIT. In each task, the worker sees 5 pictures of butterflies and

is asked to classify each picture into three categories of interests: black swallowtail,

monarch and machaon. Example pictures of butterflies in each category are provided

to workers in the instruction, and workers are further encouraged to search online to

better understand the key features for different butterflies. The base payment for the

HIT is 50 cents. 29% of the tasks come with extra bonus. When the worker submits a

high-quality answer in a bonus task by correctly classifying all 5 pictures in that task,

she can earn an extra bonus of 5 cents. The set of butterfly pictures used in the tasks

was taken from [Lazebnik et al., 2004].

• Typo: consists of 80 workers each completing a sequence of 10 typo-finding tasks in

one HIT. In each task, there is a short paragraph of about 200 words. The worker is

asked to proofread it and find out as many typos as possible. The base payment for the

HIT is 1 dollar. In 49% of all the tasks, there are extra performance-contingent bonuses.

If the worker submits a high-quality answer in a bonus task by finding out more than

75% of all the typos, she will earn a bonus of 10 cents. A similar task was used in a

previous study to understand the effects of performance-contingent rewards [Ho et al.,

2015].

1By design, each board in our task contains the target word 11 times (workers are not aware of this fact,
however), which means that a worker can earn the extra reward in a bonus task if she identifies the target
word for at least 9 times.
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6.2.3 An Empirical Comparison of Model Performance

We now report our empirical comparison results on the performance of different models

in predicting the crowd work quality under monetary interventions.

Experimental Settings

Given a dataset, we first randomly take 80% of the workers in it and collect their data as

the training dataset, while the data for the rest 20% of the workers is used as the testing

dataset. For a particular model type (e.g., random forests), we fit a model of that type using

the training dataset, and then use the estimated model to make predictions for each worker

in the testing dataset. Since predicting the work quality in one task often rely on information

about previous tasks, we start making predictions from the fourth task of each sequence.

This process is repeated for 20 times, and the average performance of each prediction model

across the 20 random splits is then reported.

Baselines. For comparison, in our experiment, we include two baseline models that consider

the organic evolvement of worker performance only:

• running accuracy (RA): Pr(yl = 1) = 1
l−1

∑l−1
j=1 y

j, that is, the prediction on the l-th

task is made according to the percentage of high-quality work observed in the previous

l − 1 tasks; and

• latent autoregressive (LAR): the time-series model proposed by Jung et al. [2014]2.

Metrics. We use 3 metrics to evaluate the performance of a prediction model:

• accuracy: the percentage of tasks in the testing dataset for which the prediction is

correct;

2Although GAM is proposed as an improvement of LAR in [Jung and Lease, 2015a], we can not use GAM
as a baseline because GAM is tailored to their specific dataset.
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• F1 score: the harmonic mean of precision and recall, i.e., F1 = 2·precision·recall
precision+recall ; and

• log loss: − 1
Ntest

∑Ntest
j=1 yj log(pj) + (1− yj) log(1− pj), where Ntest is the total number

of predictions made for the testing dataset, yj is the true label of the j-th sample, and

pj = Pr(yj = 1) is the predicted probability of high-quality work for the j-th sample.

Intuitively, the higher the accuracy, the better the model. As some of our datasets are

imbalanced3, we provide the F1 score for further reference. For prediction models that

generate probabilistic labels (e.g., RA, LAR, DARX, LARX, CMC and IOHMM), in order

to calculate accuracy and F1 score, we assign a binary label to a testing sample according

to a predefined threshold of 0.5, that is, ŷj = 1 when pj > 0.5. Log-loss describes not only

whether the prediction is accurate but also whether the prediction is confident, with a smaller

value indicating a better model.

Model Selection. Model selection is conducted through cross validation. Specifically, we

partition the training dataset into 5 folds, pick each of the five folds to test while using the

rest four folds to train models. The model setting with the highest average performance

across the five folds (according to log loss) is then selected and a final model is trained with

the whole training dataset using this setting.

We fix the size of history window L = 3 for all supervised learning models. For RF,

we fix the number of trees to be 1,000 and tune on the minimum number of samples on a

leaf; for SVM, we tune on the choice of kernel function (e.g., linear, polynomial, radial basis

function, sigmoid); and for NN, we tune on the choice of activation function (e.g., logistic

sigmoid, hyperbolic tan, rectified linear), the number of hidden layers (1 or 2) and the number

of neurons in each hidden layer. For autoregressive models, we experiment with different

learning rates γ ∈ {0, 0.01, 0.05, 0.1, 1} for both DARX and LARX. While we also tune on

3The percentages of tasks with high-quality work in the Puzzle, Classify and Typo datasets are 76.8%,
55.5% and 63.4%, respectively.
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Figure 6.1: Performance comparisons for all prediction models on the three datasets
(Top row: accuracy; middle row: F1 score; bottom row: log loss). Means and standard
errors of the mean are reported given 20 random splits of training and testing data.

the autoregressive order (p ∈ {1, 2, 3}) for DARX, to have a direct comparison between LAR

and LARX, we set p, q = 1 for LARX. Finally, for the Markov models, we experiment with 3

types of CMC with p ∈ {1, 2, 3} and 4 types of IOHMM: first-order IOHMMs with different

number of hidden states K ∈ {2, 3, 4}, and a second-order IOHMM with K = 2.

A Comparison on Prediction Performance

Figure 6.1 compares the prediction performance of all 9 models (2 baseline models and 7

proposed models) on the three datasets. We first observe that the 7 proposed models almost

always outperform the 2 baseline models on all evaluation metrics. For each dataset, the

best-performing proposed model obtains a 2.2%−8.2% improvement on accuracy and F1 score

over the baseline models, and the log loss is also significantly decreased, especially compared

to the running accuracy model. This suggests that when monetary interventions are provided

in working sessions, it is necessary to explicitly model the impact of monetary interventions
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Metric Dataset RA LAR SVM NN DARX LARX CMC IOHMM

Accuracy
Puzzle 0.025*** 0.029*** 0.007*** 0.004* 0.013*** 0.008*** 0.007** 0.005†

Classify 0.030*** 0.050*** 0.013** 0.007** 0.016*** 0.010** 0.004 0.011**

Typo 0.017* 0.017* 0.007 -0.001 -0.001 -0.009 -0.008 0.009†

F1 score
Puzzle 0.020*** 0.023*** 0.005*** 0.003* 0.010*** 0.005** 0.006*** 0.004*

Classify 0.049*** 0.061*** 0.018*** 0.011*** 0.016*** 0.013*** 0.010*** 0.021***

Typo 0.023*** 0.023** 0.011* 0.000 0.001 -0.008 -0.006 0.011*

Log loss
Puzzle -0.535*** -0.055*** -0.021*** -0.003 -0.030*** -0.028*** -0.015*** -0.003

Classify -0.719*** -0.059*** -0.018*** -0.004 -0.023*** -0.018*** -0.010*** -0.014***

Typo -0.586*** -0.031*** -0.041*** -0.023*** -0.046*** -0.033*** -0.100** -0.066***

Table 6.1: Performance comparison between random forests (RF) and other pre-
diction models. The differences in mean values for each metric are reported. The
statistical significance of paired t-test is marked as a superscript, with †, *, **, and
*** representing significance levels of 0.1, 0.05, 0.01, and 0.001 respectively.

in order to characterize the temporal crowd work quality accurately and confidently.

Among all prediction models, the random forests model seems to outperform other models

as its high performance has been consistently observed across all datasets. In fact, random

forests is the best-performing prediction model according to all three metrics on the Puzzle

and classify dataset, and it is also the best-performing model on the Typo dataset according

to the log loss value. Table 6.1 presents a detailed comparison between random forests and

other models. In particular, given a specific metric, we have evaluated that metric 20 times

for each prediction model as there are 20 random splits of training and testing data. Thus, for

each model, we obtain a performance vector with 20 elements. To compare the performance

of random forests with another model, we take the average for the corresponding performance

vectors of both models and compute the difference in the average values (e.g., average accuracy

of random forests − average accuracy of DARX), which are reported in Table 6.1. We further

use paired t-test to examine whether these differences are statistically significant, and the

results are noted as superscripts in Table 6.1. As we can see in the table, compared to

other models, random forests almost always has a significantly higher accuracy (i.e., positive

differences for accuracy), higher F1 score (i.e., positive differences for F1 score) and lower log

loss (i.e., negative differences for log loss), and none of the differences in unexpected directions

(e.g., negative differences for accuracy) are statistically significant. These results suggest that
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in practice, the random forests model gives high prediction performance for various types of

tasks and thus is a good candidate model to use for requesters who are interested in making

predictions on crowd work quality. We leave the problem of understanding why the random

forests model is consistently accurate for future study.

A closer look at the estimated random forest model further provides us with a few

practical insights for understanding the role of monetary interventions on worker performance.

On the one hand, we find that the average performance is the most important feature for

predicting work quality in the current task; on the other hand, it is observed that among

all intervention-related features (i.e., current intervention level, average intervention level,

historical intervention levels, historical intervention changes), the average intervention level

is the most informative one for the prediction.

Prediction with Limited Training Data

Next, we examine the performance of different models when the requester has limited

training data to start with. To mimic the realistic scenario for the requester to obtain more

training data over time, given a particular training dataset, we first randomly take 5% of the

workers in it and train the models using only the data from these workers. After examining

the performance of these models on the testing dataset, we pick another random 5% of the

workers in the original training dataset who are not previously selected, and combine their

data with the data from the first 5% workers to create a training dataset that consists of 10%

of the workers in the original training dataset. Following the similar process, we construct

two more training datasets, with 20% and 50% of the workers in the original training dataset,

respectively4.

4For the typo dataset, we only construct two datasets with 20% and 50% of the workers in the original
training dataset (the number of workers in the these two training datasets are 13 and 32, respectively) because
the total number of workers in this dataset is relatively small.
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Figure 6.2: Performance comparisons for all prediction models on the Puzzle
dataset when training data is limited. The solid and dashed gridlines are the
performance references for the RA and LAR models, respectively (training datasets
are not required for these two baseline models).

Figure 6.2 illustrates the performance of different models on the puzzle dataset when

the models are estimated from the 5%, 10%, 20%, 50% and the full training datasets. The

performance of the prediction models improves as the amount of training data increases —

with the training data from only 5% of the workers (i.e., 12 workers), all the 7 proposed

models are actually inferior to the baseline LAR model according to all three metrics. Some

models are especially sensitive to the size of the training dataset. For example, when the

training data is very limited, SVM and NN suffers from a significantly lower accuracy and F1

score, while CMC and IOHMM models have very high log loss values. On the other hand,

once the size of the training dataset has been increased to include 20% of all workers (i.e., 48

workers) in the original training dataset, almost all proposed models outperform both RA

and LAR on all metrics. When the size of the training dataset further increases, while the

prediction performance of different models keeps improving, the marginal benefit of extra

training data also decreases. Importantly, we notice that even though the model is trained on

only a fraction of the workers in the original training dataset, the random forests model still

presents better prediction performance than other models in most cases, which suggests the

robustness of this model against the limited training data. Similar results are also observed

in the classify and typo datasets.

Therefore, as a practical implication, a requester may consider to use the LAR model to
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predict crowd work quality in task sessions at the initial stage when they just start to recruit

workers to work on their tasks. After collecting a small training dataset (e.g., a dataset of

about 50 workers), the requester can switch to models that explicitly consider the impact

of monetary interventions, especially the random forests model, to obtain more accurate

predictions with higher confidence.

Predictions with Limited Ground Truth

Finally, we consider the scenario when the requester only has access to limited amount of

ground truth. Ground truth information is quite valuable in crowd work because in many

cases, the requester will not be able to assess the work quality in a task without the ground

truth. So far, we have assumed that the requester knows the ground truth to all his tasks

hence he can evaluate the work quality for every task in a task session, and all the seven

proposed models rely on the observation of past work quality (i.e., the sequence y) when

making predictions on work quality in the current task. To understand how the prediction

performance of different models are influenced when this assumption is violated, that is, when

the requester can only check the work quality for a limited number of tasks in the session, we

conduct a new set of experiments.

In particular, given a specific split of training and testing data, prediction models are

learned using the full training dataset as previously described5. When making predictions for

workers in the testing dataset, we fix the first three tasks in each worker’s session to be tasks

with ground truth in order to obtain an initial record of the worker performance. Then, for

the rest of the tasks in the session, we randomly select a certain portion (r) of them to be

5We assume that the requester can still evaluate the work quality on every task in the training dataset.
This assumption is realistic, for example, if the requester bundles multiple tasks with ground truth into a
single session and provide such task sessions to workers in the initial phase when the training dataset is
collected. Models estimated from such training dataset can be used to predict work quality on tasks without
ground truth when tasks with or without ground truth are similar (e.g., have similar difficulty levels).
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tasks with ground truth, hence work quality is only observable for these tasks. We vary this

percentage, that is, r ∈ {0%, 20%, 40%, 60%, 80%, 100%}, and examine the performance of

our prediction models in each of these cases when the ground truth is limited to different

degrees.

For the simplicity of illustration, in this experiment, we focus on the two baseline models

and three of the proposed models — RF, LARX and IOHMM, one from each category. For

IOHMM, the lack of ground truth can be taken care of by simply updating the state belief in

a different way when work quality is not observable6. For other models, we take a Monte

Carlo approach to address the prediction problem: We maintain a set of M = 100 work

quality sequences Q = {q1, q2, · · · , qM}, where qm = (q1
m, q

2
m, · · · , ql−1

m )(1 ≤ m ≤ M) is a

sequence of “simulated” work quality for all the l − 1 tasks provided to the worker so far.

To forecast the worker’s performance on the l-th task, we first make a prediction with each

of the M work quality sequences and then take an average of all M predictions. That is,

Pr(yl = 1) = 1
M

∑M
m=1 pm, where pm is the predicted probability of high-quality work on task

l assuming that qm is the observed work quality sequence for the past l − 1 tasks. After the

prediction, if the ground truth for task l is available hence the requester can actually decides

the work quality yl, we update qm by setting qlm = yl; otherwise, we sample a work quality

ŷl according to Pr(ŷl = 1) = pm, and then update qm as (q1
m, q

2
m, · · · , ql−1

m , ŷl).

Figure 6.3 plots for each of the 5 models, the change of average prediction performance

as the amount of tasks with ground truth increases in the Puzzle dataset. We find that

RF, LARX and IOHMM models almost always make more accurate predictions with higher

confidence compared to the baseline RA and LAR models. Among RF, LARX and IOHMM,

the RF and IOHMM models are more robust when the requester has limited access to the

6For example, when the order of the IOHMM is p = 1, the state belief is updated according to the formula
bl+1(j) ∝

∑K
k=1 bl(k)Ptr(j|k, al) if the requester doesn’t have ground truth for the l-th task, rather than

according to bl+1(j) ∝
∑K

k=1 bl(k)Ptr(j|k, al)Pe(yl|j, al).
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Figure 6.3: Performance comparisons for different prediction models on the Puzzle
dataset when ground truth is limited.

ground truth information. In particular, the RF and IOHMM model outperforms the two

baseline models as well as the LARX model regardless of how small the fraction of tasks with

ground truth is, and the prediction performance of RF and IOHMM when only 20% of the

tasks has ground truth even exceeds the performance of the baseline models when the work

quality is always observable for all tasks. Similar results are observed on other datasets, and

they provide further supporting evidence for using the random forests model to predict crowd

work quality under monetary interventions — it can not only make consistently accurate

predictions for various types of tasks or given small set of training data, but also presents

robust performance under limited supervision.

6.3 Controlling the Provision of Monetary Interven-

tions Dynamically

In this section, we demonstrate our algorithmic approach to dynamically decide the

provision of monetary interventions based on the statistical models of worker behavior that

we learn from the empirical data. As an example, we show how can we algorithmically control

the placement of performance-contingent bonuses in working sessions when the first-order

input-output hidden Markov model is used to characterize the impact of monetary interventions.

While in Section 6.2, we find that the random forests model performs the best for predicting
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crowd work quality under monetary interventions in general, we choose to demonstrate our

algorithmic approach with the input-output hidden Markov model (IOHMM) due to its nice

connection with partially observable Markov decision process (POMDP), a mathematical

framework for modeling decision making under uncertainty, which we will detail later in

this section. Embedding other statistical models, such as the random forests model, into

our algorithmic monetary intervention control framework, is therefore an interesting future

direction that we will briefly discuss in Section 6.4.

6.3.1 Making Bonus Decisions with IOHMM

Similar as that in Section 6.2, we assume that the requester has collected a historic dataset

on worker behavior in working sessions. For each task in a particular worker’s working session,

the requester records whether a bonus is provided and the worker performance in it. With

the historic dataset for a group of workers, a first order IOHMM for this worker population

can be learned through an expectation-maximization algorithm [Bengio and Frasconi, 1996].

Given the learned IOHMMM to describe the impact of bonuses on work quality in a

working session, we next solve the problem of deciding whether or not to place a bonus on

each task for a new incoming worker in her working session.

To quantify the requester’s tradeoff between work quality and financial cost, we assume

that the requester obtains a utility of wh (or wl) when he gets a high-quality (or low-quality)

answer, while the economic cost for paying a performance-contingent bonus is c. We further

assume that the requester has a quasi-linear utility function U = whNHQ + wlNLQ − cNB,

where NHQ (or NLQ) and NB represents the number of high-quality (or low-quality) answers

elicited and the number of times a performance-contingent bonus is incurred, respectively.

We consider the scenario when the requester can continuously make observations on worker

performance over time (i.e., the requester has access to the ground truth information for all

tasks), and we are interested in dynamically controlling the placement of bonus in a working
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session of T tasks in an online fashion given the observed worker performance. That is, we

keep making decisions on whether the requester should provide a bonus to a worker in her

next task given the history of inputs and outputs in all tasks that the worker has completed

so far in the session.

In particular, for a worker who has completed tc tasks, we estimate the distribution of

her current state as b(tc) (i.e., the “state belief”) based on M. We define EUmax(b, a, l)

as the maximum expected utility a requester can obtain in the next l tasks given that

the current state belief is b = (b(1), · · · , b(K)) (K is the total number of hidden states

estimated in the IOHMM), the input level for the next task is a, and input levels for

later tasks follow the optimal policy. Thus, the optimal input level for the next task is

atc+1 = argmaxa∈{0,1}EUmax(b(tc), a, T − tc) — when atc+1 = 1, we offer a bonus on the next

task; otherwise, we don’t.

EUmax(b, a, l) can be calculated recursively. Specifically, suppose the worker is currently

in state k (1 < k < K). The requester’s expected utility in the next task if he places an input

a on it can be computed as:

R(k, a) =
K∑
i=1

Ptr(i|k, a) · (Pe(0|i, a)wl + Pe(1|i, a)(wh − I(a = 1)c)) (6.8)

Naturally, the requester’s expected utility in the next task when his current state belief about

the worker is b and the next input is a can be denoted as:

R(b, a) =
K∑
k=1

b(k)R(k, a) (6.9)

When there is only one task left in the session, that is, l = 1, EUmax(b, a, l) = R(b, a);

otherwise, we will need to consider both the immediate utility the requester will be able to

obtain in the next task, as well as the maximum expected utility that the requester will be

able to obtain in the later tasks, averaging on the possible outcomes that the requester may

188



observe in the next task:

EUmax(b, a, l) = R(b, a) +
∑

y∈{0,1}
(
K∑
k=1

b(k)
K∑
i=1

Ptr(i|k, a)Pe(y|i, a))V (b′
a,y, l − 1) (6.10)

where V (b, l) = maxa∈{0,1}EUmax(b, a, l) and b′
a,y is the updated state belief if the input for

the next task is a and the observed output is y, which can be computed as the following:

b
′

a,y(k) ∝
K∑
i=1

b(i)Ptr(k|i, a)Pe(y|k, a) (6.11)

And finally, in preparation for the decision making in future tasks, we need to update the

belief state after implementing the input level atc+1 and observing the actual output level

ytc+1, that is, b(tc + 1) = b
′

atc+1,ytc+1 .

Heuristic Solutions

It turns out that the decision making problem above is equivalent to solve a finite-horizon

partially observable Markov decision process (POMDP), with “action” corresponding to

“input” in M and the reward of taking action a in state k being R(k, a) as defined in

Equation 6.8. In practice, finding exact solutions for POMDPs are often computationally

intractable [Papadimitriou and Tsitsiklis, 1987]. Therefore, we list a few heuristic algorithms

to solve the problem approximately.

Algorithm 1: n-step look-ahead. When making decisions for whether to place an

extra bonus on the next task, we look ahead for at most n tasks. That is, atc+1 =

argmaxa∈{0,1}EUmax(b(tc), a, n′), where n′ = min(n, T − tc). A similar strategy is used

in [Dai et al., 2010] for optimal control of crowdsourcing workflows.

Note that if a worker’s hidden state ztc after completing tc tasks as well as her states in
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the future tasks can be accurately identified, the finite horizon POMDP degenerates into a

finite horizon MDP, for which we can calculate the optimal policy efficiently. In particular:

Qt(k, a) = R(k, a) +
K∑
i=1

Ptr(i|k, a)Vt−1(i) (6.12)

Vt(k) = max
a∈{0,1}

Qt(k, a);V0(k) = 0 (6.13)

πt(k) = argmax
a∈{0,1}

Qt(k, a) (6.14)

where Qt(k, a) (referred to as the “Q-function”) is the maximum expected utility to obtain

when taking action a in state k with t steps to go, Vt(k) is the maximum expected utility

when the current state is k and there are t steps to go, and πt(k) is the optimal MDP policy

on state k when the length of the horizon is t. The optimal MDP policy can be computed

with the value iteration or policy iteration algorithm. We thus consider two algorithms that

leverage the solution for the underlying MDP of the POMDP problem:

Algorithm 2: MLS-MDP. We infer the most likely sequence (MLS) of hidden states up

to the current task (i.e., ˆZ1:tc = (ẑ1, · · · , ẑtc)) using the Viterbi algorithm [Viterbi, 1967] and

estimate ztc as ẑtc . The input level for the next task atc+1 is then set to be πT−tc(ztc), that is,

the optimal MDP policy on state ztc when the length of horizon is T − tc.

Algorithm 3: Q-MDP. We first calculate QT−tc(k, a) for the underlying MDP, which

is the Q-function value for taking action a on state k with T − tc steps to go. Then,

atc+1 = argmaxa∈{0,1}
∑K
k=1 pkQT−tc(k, a), with pk being the k-th element of b(tc) [Littman

et al., 1995].
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6.3.2 Experimental Evaluation with Real Crowd Workers

To examine whether our algorithmic approach of placing bonuses can effectively improve

requester utility in working sessions in the real on-demand work environment, we designed

and conducted an online experiment on MTurk.

Experimental Settings

In this experiment, we used the word puzzle tasks as described in Section 6.2.2. In

particular, each worker completed 9 tasks in a working session (i.e., one HIT). A worker

earned a performance-independent reward of 5 cents in each task, that is, the base payment

for the HIT was 45 cents. In addition, we also informed the worker that some tasks in the

session are “bonus tasks” (specified with a bonus icon), in which she may earn an extra bonus

of 5 cents if she submits a high-quality answer to it by pointing out more than 80% of all

appearances of the target word.

Corresponding to the two steps in our algorithmic approach, we divide our experiment

into two phases.

In the first phase, we collected a training data set by recruiting 50 MTurk workers to

participate in our experiment. For each of the 9 tasks that a worker completed in the HIT,

we randomly set it as a bonus task with a 20% chance; whether that task was a bonus task

and whether the worker submitted a high-quality answer to it (i.e., found out the 80% of all

appearances of the target word) was recorded. We then learned an IOHMM to understand

the impact of bonuses on worker performance in the word puzzle task sequences using the

collected data set. Specifically, we ran the expectation-maximization algorithm with 100,000

random restarts, and each run was terminated after convergence or 500 iterations, whichever

was reached earlier. In searching for a parsimonious model, we experimented on a range of

values for the number of hidden states (K = 1 ∼ 7) to train different IOHMMs, and the

IOHMM with the maximized Bayesian information criterion (BIC) score [Schwarz et al.,
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1978] was selected to be used in the second phase. In our experiment, K = 2 for the selected

IOHMM.

The second phase of our experiment is the testing phase, in which we had 6 experimental

treatments and each treatment corresponded to one bonus scheme. In particular, we included

3 dynamic bonus schemes that were designed according to our algorithmic approach using

different heuristics (i.e., 2-step look-ahead7, MLS-MDP and Q-MDP). When these schemes

were used in treatments, we kept track of a worker’s performance in the session and used the

learned IOHMM to strategically make a decision on whether to offer an extra bonus to the

worker on the next task. As a comparison, we also considered 3 fixed or random baseline

bonus schemes: not placing bonus in any task (No Bonus), always placing bonuses in all

tasks (All Bonus) and randomly choosing 50% of the tasks to place bonuses (50% Bonus).

The utility parameters we used in the experiment are wh = 0.15, wl = 0 and c = 0.058.

To make sure the IOHMM learned from the training phase would be useful for the testing

phase, we recruited workers from the same pool by running our second phase experiment

exactly 2 weeks after the first phase experiment around the same time. Each worker was

randomly assigned to one treatment and 50 workers were recruited for each treatment. All

workers in a treatment were paid according to the bonus scheme of that treatment. We again

collected data on the presence of bonus and work quality for each task and each worker.

Our experiment was limited to U.S. workers and each worker was allowed to take the HIT

only once.

7We set n = 2 to balance between performance and efficiency based on simulations for workers who indeed
behave according to the learned IOHMM.

8c was set to be 0.05 as the bonus magnitude used in the experiment is $0.05. We set wh = 0.15 and
wl = 0 to ensure that a dynamic bonus scheme doesn’t become a No Bonus or All Bonus scheme.
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Interpreting the Learned IOHMM

The IOHMM we learned from the training dataset is as follows: the initial state belief is

estimated as b(0) = (0.67, 0.33), suggesting that at the beginning of the working session, 67%

of the workers start from state 1 while the rest 33% start from state 2. To further understand

what states 1 and 2 are, we look into the estimated emission probability matrices:

E0 =

 0.10 0.90

0.88 0.12

 , E1 =

 0.13 0.87

0.61 0.39



The first and second row of the matrices corresponds to state 1 and 2, respectively; and the

first and second column of the matrices represents the probability for submitting low-quality

work and high-quality work, respectively. Therefore, we find that when workers are in state

1, when a bonus is not provided in a task, she will submit high-quality work 90% of the time

(hence submit low-quality work 10% of time). Meanwhile, when a bonus is provided in a

task, a worker in state 1 will submit high-quality work 87% of the time. In other words,

workers in state 1 almost constantly submit high-quality work regardless of whether the

monetary intervention is presented in a task or not. In contrast, if a worker is in state 2, only

12% of her submissions is of high-quality if no bonus is provided, but using an additional

performance-contingent bonus, she can be incentivized to submit high-quality work 39% of

the time.

Furthermore, the transition probability matrices are estimated as follows (round to 2

decimal places):

T 0 =

 0.92 0.08

0 1

 , T 1 =

 1 0

0.09 0.91


The first and second row corresponds to state 1 and 2 at time t, and the first and second

column corresponds to state 1 and 2 at time t+ 1, respectively. Interestingly, we find that
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Figure 6.4: The requester’s utility across 6 treatments in the second phase MTurk
experiment.

when we don’t provide bonus in a task, state 1 workers (i.e., workers who constantly submit

high-quality work) may “slack off” and switch to state 2 with a small probability of 0.08, yet

they will stay in state 1 if a bonus is provided in the task. In addition, if we don’t provide

bonus in a task, state 2 workers will stay in state 2, but with a small chance of 9%, they may

be incentivized to transit to state 1 and start to constantly submit high-quality work when a

bonus is placed on a task.

Comparing the Requester Utility under Different Bonus Schemes

Figure 6.4 compares the overall utility a requester derives from all 50 workers in the

working session across the 6 treatments of our second phase experiment. As we can see in the

figure, among the 3 baseline bonus schemes, the best scheme is not to pay bonus on any task

at all. Yet, following our algorithmic approach, the 3 dynamic bonus schemes (i.e., 2-step

look-ahead, MLS-MDP and Q-MDP) lead to an increase of 3.11%, 27.22% and 12.89% in the

requester utility, respectively, compared to the No Bonus scheme. To see whether the utility

improvement is material, we decompose the overall requester utility in each treatment into

the number of high-quality answers the requester elicits (hence the economic benefits) and the

cost the requester pays to encourage better performance (see the table in Figure 6.4). Results
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No Bonus 50% Bonus All Bonus

2-LA 1 0.007 <0.001
MLS-MDP 0.03 <0.001 <0.001
Q-MDP 0.38 <0.001 <0.001

Table 6.2: p-values of the Wilcoxon rank-sum tests for pairwise comparisons.

suggest that the requester can elicit more high-quality work with lower cost by applying our

dynamic bonus schemes. For example, compared to the 50% Bonus scheme, a requester using

the 2-step look-ahead scheme obtains a similar number of high-quality answers with a 77.9%

saving in money; while a requester following the MLS-MDP (or Q-MDP) scheme elicits 19.3%

(or 11.2%) more high-quality answers with roughly a quarter (or a half) of the cost.

The statistical significance of the improvement in utility brought by our algorithmic

approach is further examined through Wilcoxon rank-sum tests. Specifically, we compute

the utility a requester obtains from each worker in every treatment. Thus, in total, we have

6 samples of requester utility with 50 data points in each sample. We conduct pairwise

comparisons to test whether a pair of samples have the same mean value, and the p-values

of the tests are reported in Table 6.2. Almost all pairwise comparisons are statistically

significant at the p = 0.05 level, which suggests that our approach helps the requester to

improve his utility.

Finally, to get a qualitative intuition of how our dynamic bonus schemes work, we pick a

few exemplary workers from the treatment in which the MLS-MDP bonus scheme is used and

take a close look at how they are awarded in the working session. Figure 6.5 displays for each

of the 4 selected workers, whether a bonus is provided and whether her submitted answer is

of high quality for each task in the working session. The comparison between worker A and

worker B first suggests that our algorithmic approach can effectively differentiate “diligent”

workers from “lazy” workers and reward them differently: For a diligent worker (worker A, a

worker who is likely to stay in state 1) who always submits high-quality answers, there is
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Worker Inputs & Outputs in the Working Session 

A 
Bonus?  ✗   ✗   ✗   ✗   ✗   ✗   ✗   ✗   ✗ 

High-quality?  1   1   1   1   1   1   1   1   1 

B 
Bonus? ✗  ✓  ✓  ✓  ✓  ✓  ✓  ✓  ✓	
  

High-quality? 0	
   	
   	
   	
  0	
   	
   	
   	
  0	
   	
   	
   	
  0	
   	
   	
   	
  0	
   	
   	
   	
  0	
   	
   	
   	
  0	
   	
   	
   	
  0	
   	
   	
   	
  0	
  

C 
Bonus? ✗ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗	
  

High-quality? 0 0 0 1 1 1 1 1 1 

D 
Bonus? ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✗ ✗	
  

High-quality? 1 1 0 0 1 1 1 1 0 

Figure 6.5: Examples for offering bonus to a worker in the working session based
on the MLS-MDP bonus scheme.

no need for the requester to place extra bonuses in the working session; however, for a lazy

worker who can be responsive to financial incentives (worker B, a worker who is likely to

stay in state 2), the requester keeps offering bonuses with the hope that he may increase the

work quality through providing additional motivation to the worker9. In fact, the MLS-MDP

bonus scheme strategically focuses on incentivizing lazy workers — on average, the requester

offers a bonus on 6 tasks to a worker who performs well in at most half of the tasks in the

working session, while for a worker who performs well in more than half of the tasks, the

requester offers a bonus on only 0.49 tasks. Furthermore, our algorithmic approach also

seems to offer bonuses at the right timing. On the one hand, for a worker who starts a session

with unsatisfying performance (worker C), the requester keeps placing bonus on each task to

incentivize better performance until the worker stabilizes in submitting high-quality answers;

on the other hand, for a worker who slacks off from her initial good performance (worker D),

the requester provides extra incentives in time to bring back hard working from the worker.

9Since the bonus is performance-contingent, offering bonus per se is not costly; the cost will only be
incurred when the work quality in a bonus task meets the predefined standard.
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6.3.3 Examining the Robustness through Simulation

The performance of the dynamic bonus schemes in our MTurk experiment suggests the

promise of algorithmically controlling the provision of financial incentives in on-demand work.

However, one may wonder that following our algorithmic approach, whether the high requester

utility can always be obtained in various worker populations where workers potentially behave

in different ways. To understand the robustness of our approach, we further ran simulations

on two synthesized datasets and each dataset was generated according to a predefined worker

behavior model.

Specifically, given a particular worker behavior model, in the training phase, we generated

a dataset of 3,000 workers — each worker completed a session of 50 tasks (20% of them were

randomly selected as bonus tasks) and decided her performance in each task probabilistically

according to the given model. In the testing phase, we considered the same 6 bonus schemes

as those in our MTurk experiment. Six groups of testing data were thus generated: each

group was assigned to a unique bonus scheme and was composed of 100 workers; each worker

completed a session of 10 tasks and was paid according to the bonus scheme of her group,

while her performance in each task was controlled by the same behavior model as that used

for generating the training dataset. The requester’s utility under a specific bonus scheme

was calculated as the sum of utilities that the requester derived from all 100 workers of

the corresponding group, with wl and wh set to be 0 and 1, respectively. We repeated the

simulation 30 times and reported the mean value of the requester’s utility for each scheme.

Model 1: Workers with Two Capability Levels

In our first worker behavior model, we assume that when a performance-contingent bonus

is placed (or not placed) in a task, the probability for worker i to submit a high-quality answer

in a task is acchi (or accli). This model is consistent with previous empirical observations that

the existence of performance-based bonuses can affect the worker performance [Harris, 2011,
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(a) Population 1 (Uniform)
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Figure 6.6: The requester’s utility when workers have two capability levels in
reaction to the placement of bonus. Error bars are omitted as they are too small.

Ho et al., 2015].

We constructed two different worker populations based on this worker behavior model.

To test the performance of different bonus schemes when a requester’s willingness to reward

workers differs, we also varied the economic costs of the performance-contingent bonus c

(i.e., the magnitude of bonus) from 0.1 to 0.5 in the simulation. Figure 6.6a demonstrates

the simulation results for a population that is composed of two types of workers: for the

first type, accli = 0.5 and acchi = 0.9; while for the second type, accli = 0.8 and acchi = 0.9.

Each worker in the population is drawn uniformly randomly from the two types. Similarly,

Figure 6.6b corresponds to another population where each worker draws her accuracy from

Beta distributions: accli ∼ Beta(2, 2) and acchi ∼ Beta(6, 2). As the figures suggest, for both

populations, when the magnitude of bonus is small (or large) enough such that adding a

bonus is always beneficial (or too costly), the dynamic bonus schemes lead to similar requester

utility as the All Bonus (or No Bonus) scheme does. However, when the bonus magnitude is

moderate, the dynamic bonus schemes robustly result in higher requester utility compared to

any single baseline bonus scheme.
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Model 2: Workers Influenced by Reference Payment Levels

Both previous literature and our own work as described in Section 5.1 suggest another

possible worker behavior in reaction to financial incentives in a working session. That is, a

worker maintains and updates a reference point of “appropriate” payment level when she

completes tasks in a working session and decides her performance in each task by comparing

the provided payment with the reference of that time [Popescu and Wu, 2007, Akerlof and

Yellen, 1990]. To see how our algorithmic approach performs when workers indeed behave

in this way, we define the second worker behavior model. In particular, we assume that

each worker behaves according to an IOHMM, with the hidden state zt corresponding to the

reference payment level rzt in the worker’s mind in the t-th task10. Each worker i is further

characterized by her skill level αi and her responsiveness to financial incentives βi, and the

emission probability in task t is parameterized as Pe(1|zt, at) = 1
1+e−αi−βi(a

t−r
zt

) . Intuitively,

the larger αi or βi is, the worker is more skilled or more responsive to rewards hence more

likely to produce high-quality answers.

For manageability, we assume in the simulation that each worker has K = 3 hidden

states (i.e., 3 discrete reference payment levels), that is, r = (r1, r2, r3) = (0.2, 0.6, 1.2). Each

worker updates her reference payment level in the working session according the transition

probability matrices:

T 0 =


0.8 0.15 0.05

0.3 0.6 0.1

0.2 0.4 0.4

 , T 1 =


0.4 0.4 0.2

0.1 0.5 0.4

0.05 0.1 0.85


where the (i, j)-th element of matrix T a represents the probability for a worker to update

her reference payment level from ri to rj given the current input level a, i.e., Ptr(j|i, a).

10The reference payment level is defined relative to the magnitude of the bonus, e.g., rk = 0.5 means that
in state k, the worker considers a half of the current bonus as an appropriate payment.
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Figure 6.7: The requester’s average utility increase (in percentage) when following
a dynamic bonus scheme rather than the best-performing baseline scheme; workers
are influenced by their reference payment levels in mind. Shaded (Unshaded) bars
indicate that the best-performing baseline scheme is the “No Bonus” (“All Bonus”)
scheme in that condition.

Furthermore, we assume that there are 3 possible skill levels for a worker, i.e., αi ∈

{0, 1, 3}, and each worker i draws her skill level according to the categorical distribution

pα = (p1
α, p

2
α, p

3
α), where p1

α + p2
α + p3

α = 1 and p1
α (or p2

α, p3
α) represents the probability that

αi = 0 (or 1, 3). Similarly, we also consider 3 levels of responsiveness to financial incentives,

that is, βi ∈ {0, 1, 3}, and each worker draws her βi according to another categorical

distribution pβ = (p1
β, p

2
β, p

3
β). Varying pα and pβ thus provides us the flexibility to construct

a number of populations in which various types of workers are mixed in different proportions.

For each population and 4 selected bonus magnitude (i.e., c = 0.05, 0.1, 0.15, 0.2), Figure 6.7

displays the utility difference (in percentage) a requester obtains by following a dynamic bonus

scheme (averaged over the 3 dynamic schemes) over following the best-performing baseline

scheme to control bonuses in the session: on the one hand, the best-performing baseline

scheme differs across various populations and magnitude of bonus, suggesting that following

a single baseline bonus scheme can’t guarantee a high requester utility in all conditions; on

the other hand, following our dynamic bonus schemes, the requester can consistently obtain

similar or higher utility than what he could have obtained by following the best-performing

baseline scheme, which again implies that the improved performance of our approach is

robust.
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6.4 Discussion

In this chapter, we first model the impact of financial incentives on worker performance

in the on-demand work environment using quantitative models. We present a wide range of

models from 3 categories, including supervised learning models, variants of autoregressive

models and Markov models. We further conduct an empirical comparison on the performance

of these models in predicting crowd work quality under monetary interventions for different

types of tasks, as well as in different realistic scenarios, such as when the training data is

limited or the amount of available ground truth information is limited. In addition, based on

one particular type of statistical model of worker behavior (i.e., the first-order input-output

hidden Markov model), we propose an algorithmic approach to dynamically control the

provision of monetary intervention in on-demand working session. Our MTurk experiment

and simulation results suggest that our approach can robustly lead to significant improvement

in requester utility compared to several fixed and random bonus schemes, which are the

common practice of today.

There are many interesting future directions for this work. First of all, previous studies

have shown that worker’s behavioral traces in crowdsourcing tasks, such as how long they

stay in a task and how they interact with the task interface, can be effective in predicting

worker performance [Rzeszotarski and Kittur, 2011, Sameki et al., 2015]. It is therefore an

interesting future work to examine whether these behavioral traces can be integrated into the

current models to further improve the prediction performance on crowd work quality under

monetary interventions.

Secondly, while in Section 6.3, we demonstrate our algorithmic approach to control the

provision of monetary intervention in working sessions based on the input-output hidden

Markov model, in fact, all the statistical models in Section 6.2 can be used as the empirical

worker behavior model and hence be incorporated into the algorithmic incentive control
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framework. In particular, given any model that we describe in Section 6.2, we can take the

n-step look-ahead algorithm to decide the placement of bonuses by first predicting work

quality in the next n tasks using the given model and then selecting the bonus level for the

next task that maximizes the expected utility for the next n tasks. In Section 6.2, we have

identified the random forests model to be an excellent model for requesters to use to predict

work quality in practice. It will be interesting to empirically examine that, compared to

other statistical models, whether the improvement in prediction accuracy brought up by the

random forests model can further guide requesters to place bonus in a more intelligent way

and hence increase their utility.

Our algorithmic approach of incentive control has a few limitations, though. For example,

currently, our approach leads to a policy that provides more bonus opportunities for workers

with lower accuracy. This may incentivize workers to strategically game with our reward

policy, or drive high accuracy workers away in the long term. Furthermore, this may raise

ethical concerns—our approach essentially provides a “personalized” bonus scheme to each

worker based on her past performance, and such “differential pricing” strategy naturally leads

one to ask how we can ensure the fairness of payment in the on-demand work environment,

especially given that workers may talk to each other as shown in Chapter 3. In short term, the

concerns for worker’s strategic behavior and complains about payment fairness may not be

obvious, because workers have limited understanding on how exactly the underlying algorithm

for incentive provision works. In addition, workers also need to have an accurate estimation

on how well they perform in each task in a session to fully understand the mechanics of

our dynamic bonus policy. However, as workers interact with the algorithm for a long time,

their knowledge about the algorithm will inevitably improve. Therefore, it is necessary

for us to understand the long-term impact of our algorithmic approach and explore more

incentive-compatible, sustainable monetary intervention control approach in the future (e.g.,

by providing high accuracy workers with more work opportunities or higher bonus levels).
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Another limitation of our current algorithmic approach is that we currently assume the

requester has the access to the ground truth information for all tasks and thus can monitor a

worker’s performance over time for all tasks that she has completed. In reality, the requester

may only have limited ground truth information, which leads to another interesting future

direction of designing algorithmic approach for incentive placement when the requester can

only conduct spot check, that is, checking the work quality in a few selected tasks. In that

case, the requester needs to not only decide when to place monetary interventions in a working

session, but also when to check the work quality in the working session.

Finally, although in this chapter, we focus on discussing our algorithmic framework to

optimize the placement of monetary interventions in the on-demand work sessions, the same

models and algorithms can actually be extended to different contexts of deciding the provision

of any external interventions in the on-demand work, such as the provision of performance

feedback [Dow et al., 2012], the switch of workflows [Lin et al., 2012] and the deliver of

communication messages [Segal et al., 2016]. The optimization goal can also generalize from

increasing the requester utility to other dimensions of interests, such as improving the worker

engagement.
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Chapter 7

Designing for Intrinsic Motivation: A

Case Study on Curiosity

So far, we have been focusing on studying how financial incentives can be used to

increase the extrinsic motivation of workers in the on-demand economy. It’s very natural

and straightforward to consider using extrinsic incentives like financial rewards to motivate

workers in the on-demand work environment, becuase it is a common practice to compensate

labor with money. Recently in both the research community and the industry, however, there

is an increasing attention on promoting intrinsic motivation in the incentive design of the

on-demand work. The hope is that by integrating intrinsic motivation and providing a truly

enjoyable and inherently satisfying work experience to on-demand workers, we may be able

to obtain higher levels of engagement and performance from workers. Therefore, on the

basis of various types of intrinsic motivations, a wide range of incentive mechanisms have

been proposed and studied in different contexts of on-demand work, including both paid

crowdsourcing markets and volunteer-based platforms like citizen science projects [Raddick

et al., 2013, Rotman et al., 2012, Shirk et al., 2012]. For example, it has been showed that

framing tasks as something meaningful to do [Ariely et al., 2008, Chandler and Kapelner,
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2013, Rogstadius et al., 2011, Shaw et al., 2011], applying gamification elements like points,

badges and leaderboards [Feyisetan et al., 2015, von Ahn and Dabbish, 2008, Bowser et al.,

2013, Cooper et al., 2010], and inserting “micro-diversions” (i.e., breaks during which workers

can engage with an enjoyable, task-irrelevant activity) in a long (1+ hours) sequence of

tasks [Dai et al., 2015] can all exert a positive impact on worker engagement and productivity.

There are also numerous attempts to engineer virtual reward systems [Easley and Ghosh,

2013], provide social comparisons and visualizations [Grevet et al., 2010, Huang and Fu, 2013,

Kinnaird et al., 2013, Marlow and Dabbish, 2015, Rashid et al., 2006], and introduce direct

communications [Segal et al., 2015] in order to encourage crowd participation.

Despite all these effort on designing intrinsic motivation for the on-demand work, there

is one kind of intrinsic motivation that is commonly observed in our daily life from early

childhood education to scientific discovery, but has not been explored in the on-demand

work settings yet. This intrinsic motivation is curiosity, which is defined as “the desire to

know, to see, or to experience that motivates exploratory behavior directed towards the

acquisition of information” [Litman, 2005]. Therefore, in this chapter, we present a study

which examines the potential for curiosity as a “new” type of intrinsic motivational driver to

incentivize crowd workers in the on-demand economy. In particular, our study is inspired

by information gap theory [Loewenstein, 2005], a contemporary model of curiosity which

posits that curiosity arises due to a gap between what one knows and what one wants to

know. According to this theory, when people are made aware of this gap in their knowledge,

they become curious and engage in information-seeking behavior to complete their knowledge

and resolve the uncertainty. This innate desire to satisfy one’s curiosity suggests a way to

design and structure on-demand work: if tasks can be designed to stoke one’s curiosity, and

completing the task provides the requisite information to satisfy that curiosity, then the

requesters may be able to create a more enriching experience for workers.

We report results from a set of experiments in which we explicitly incorporate mechanisms
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to induce curiosity in workers performing an audio transcription task. Importantly, the

curiosity stimuli are related to the task itself, creating a synergy between completing the

task and satisfying one’s curiosity. Our results indicate that curiosity can be an effective

means of motivating on-demand workers. In particular, we operationalize the concept of

curiosity in the task interface design using ideas from information gap theory and show that

workers are more likely to complete more tasks, while maintaining a high level of accuracy,

when presented with curiosity-inducing stimuli. A closer look at the experimental data

further suggests that the magnitude of the effects of curiosity interventions are influenced by

both the personal characteristics of the worker and the nature of the task—it is observed

that individual workers respond differently to curiosity interventions, and there is also an

interaction between curiosity interventions and the task characteristics (e.g., the inherent

interestingness of the task), implying that the effects of curiosity interventions are larger for

tasks that are less interesting.

7.1 Related Work

Curiosity is an old, yet critical, concept in the psychology of motivation. Various

exploratory or information-seeking behaviors have been defined as “curiosity.” For example,

animals’ orienting response (i.e., their immediate response to changes in their environment,

such as change in illumination or unusual sound) is considered “perceptual curiosity,” whereas

humans’ desire for information and knowledge is categorized as “epistemic curiosity” [Berlyne,

1954a]. Trait curiosity is a persistent personality attribute, while curiosity aroused by

external situations is called state curiosity, which is the focus of this study. Curiosity can be

triggered by stimuli that are novel (e.g., unexpected changes or violated expectations [Kang

et al., 2009]), conflicting (i.e., arousing two or more incompatible responses), uncertain

(i.e., leading to outcomes that one is not sure about), and complex (e.g., presenting variety
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and diversity) [Berlyne, 1954a]. Although curiosity has been consistently recognized as an

important influence on behavior [Loewenstein, 2005], there is no single, agreed-upon model

to characterize curiosity’s motivational nature [Silvia, 2014]. Instead, psychologists have

proposed a number of theories [Berlyne, 1960, Speilberger and Starr, 1994, Festinger, 1954,

Litman, 2005, Berlyne, 1960, 1954a,b, Naylor, 1981, Silvia, 2014] to explain curiosity and

people’s information seeking behavior.

The Information Gap Theory

In this study, we focus on one well-established theory of curiosity, Lowenstein’s information

gap theory [Loewenstein, 2005]. This theory posits that curiosity arises when there is an

information gap between what one knows (knowledge baseline) and what one wants to know

(information goal). The information goal is subjective, meaning that the same stimuli will

arouse different levels of curiosity for each person, depending on the individual’s perception

about what she does or does not know.

More formally, information gap theory represents information as a unidimensional concept

quantified by an entropy coefficient, I = −∑n
i=1 pilog2pi. Given this, an individual’s knowledge

gap can be measured by the difference between the entropy of the information goal and

knowledge baseline. This quantification of information is approximate and serves as a crude

proxy that nonetheless provides a way to make predictions about how curiosity might increase

or decrease depending on the availability of information, and an individual’s perception of

the knowledge gap. Our research adopts a common methodology [Loewenstein, 2005], which

only considers ordinal predictions (e.g., “curiosity will increase with information”), and does

not attempt to measure the precise magnitude of the information gap.

Using this formulation, curiosity is expected to increase with the accumulation of informa-

tion, as it creates a sudden shift of attention from focusing on the known (i.e., the existing

information) to the unknown (i.e., the missing information). Inspired by approach-gradient
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theory [Miller, 1959, Koffka, 1935] and Gestalt psychology [Metzger, 2006], the theory further

predicts that the motivation to seek information becomes most intense as one approaches the

answer, creating the urge to “complete” the picture. This is used to explain why curiosity

is greater for insight problems (where a single piece of information may resolve the entire

problem) than for incremental problems (where a single piece of information only provides

small progress towards a solution). For example, in a series of experiments, subjects were

shown a list of vocabulary words, and asked to evaluate for each word whether they knew

the definition, knew the definition only by the tip-of-their-tongue, or did not know the

definition [Litman et al., 2005]. Their results showed that individuals were most curious

about those tip-of-their-tongue vocabulary words, for which they had some, but not complete,

knowledge. In other words, people are unlikely to be curious about information on a topic

that they have zero or complete knowledge of, while curiosity is at its height when the

information gap becomes quite small, but is not completely closed.

A second implication is that people are more likely to become curious if they have prior

knowledge about a particular domain, since a higher knowledge baseline creates a smaller

information gap. Indeed, Jones [1979] found that knowledge about a particular domain is

correlated with curiosity in that domain, and Berlyne [1954a] found that questions about

more familiar entities evoke greater curiosity.

Finally, curiosity requires attention to the information gap: to induce one’s curiosity, the

information gap must be salient, so that the individual can recognize that some information

is missing. Also, people will only expose themselves to curiosity-inducing stimuli if there

is a non-trivial chance that their curiosity will be satisfied, and without long delays. Based

on these two implications, Lowenstein suggests that one way to induce curiosity is to ask

people to make guesses, which makes the information gap more salient and accurately

perceived [Loewenstein, 2005]. The curiosity-inducing designs that we propose and evaluate

in this study are based on these key insights.
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Practical Applications and Related Constructs of Curiosity

The idea of withholding information to induce the sense of curiosity, which we will describe

later in the design of curiosity interventions for the crowd work, have been broadly studied

and applied in various settings such as games [Malone, 1981], software engineering [Wilson

et al., 2003], interactive designs [Gaver et al., 2003, Tieben et al., 2011], business [Anderson,

2009, Menon and Soman, 2002] and education [Markey and Lowenstein, 2014, Pluck and

Johnson, 2011, Schmitt and Lahroodi, 2008, Zion and Sadeh, 2007]. For example, the toy

company HotWheels designs “mystery cars” for which the identities are unknown until

purchase to boost sales, and the social media company LinkedIn binds the upgrade to the

premium account with the reveal of hidden profiles of one’s followers [Anderson, 2009]. Some

of the methodologies for stimulating and sustaining curiosity in the classroom include the

use of questions, and problem-solving sessions where students each hold partial information,

thus requiring them to exchange information in order to accomplish a joint task [Pluck and

Johnson, 2011, Schmitt and Lahroodi, 2008, Zion and Sadeh, 2007].

In academic research, curiosity is a distinct construct, though closely related to reinforce-

ment schedules [Gollub, 2001, Zeiler, 1977], as well as goal-setting theories of motivation

[Locke and Latham, 2002], which have been studied in several social computing contexts [Bee-

nen et al., 2004, Grevet et al., 2010, Zhu et al., 2012]. The idea of suspense [Caplin and

Leahy, 2001, Langer, 2014] is a close counterpart to curiosity, with the key difference being

the level of emotional engagement with the uncertain outcome.

7.2 Experimental Design

To understand the how curiosity can possibly be used as an intrinsic motivator in the

design of on-demand work, we conducted a experimental study on Amazon Mechanical Turk

(MTurk). In the following, we describe the operationalization of the concept of curiosity in
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task interface design using ideas from the information gape theory, the task that workers

were asked to perform in the study, the curiosity interventions that we designed, specific

hypotheses driving our study, and various analysis methods we employed.

7.2.1 Operationalizing Curiosity

The central idea in this research is to embed curiosity-inducing designs in task interfaces

of the on-demand, crowd work to improve worker engagement and performance. Guiding our

designs are the two primary tenets of information gap theory: curiosity can be induced if (1)

people are aware of a salient information gap in their knowledge, and (2) people are provided

with a means to help them close the gap. Using these constructs as a foundation, we created

curiosity interventions which consist of three design concepts:

• Information goal: To induce curiosity, we create an information gap by posing a

question that is relevant to the current task at hand.

• Gap salience: To make workers aware of what they do not know, we prompt them to

guess the answer to the question.

• Incremental reveal: To help workers close the gap, we reveal information as workers

progress with their tasks.

We refer to interfaces that employ these three design concepts as curiosity-inducing stimuli,

and use them to examine the effects that curiosity can have on crowd workers. In this study,

we focus exclusively on curiosity-inducing stimuli that support audio transcription tasks,

which we will describe in more detail later. Audio transcription task is a good candidate

for this study because it is a common type of task on on-demand work platforms that

is non-trivial, and at times difficult, for the inexperienced. Hence, effective motivation is

especially needed to engage workers. In addition, transcription is a highly decomposable task,

as an audio clip can be broken down into arbitrarily small units, which enables us to stoke
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workers’ curiosity by using each unit as a piece of the “puzzle.” For example, we may reveal

one more sentence after each task to complete the story, or one more clue about the identity

of the person being discussed in the article. Such techniques are used in the design of our

curiosity interventions.

7.2.2 Task and Procedure

The task used in all of our experiments is audio transcription. The audio files were created

by a colleague reading an excerpt from articles drawn from a variety of sources (e.g., novels,

editorials, news, textbook). Each audio file is cut into 30 individual audio transcription

tasks, which vary in length and difficulty. We then combine the 30 transcription tasks for

the same audio file in a fixed, but not sorted, order, and bundle them into one HIT (Human

Intelligence Task).

In the HIT, workers are asked to perform at least three transcription tasks for a base pay

of 45 cents, but can quit at any point thereafter by clicking on the “stop now” button, which

brings them to a questionnaire. If workers choose to continue after the 3rd task, they earn

a 1-cent bonus for completing each additional transcription task. We indicate that all 30

transcription tasks in the HIT come from the same article. A progress bar present on the

interface shows how many tasks are remaining. This design is common for studying intrinsic

motivation in paid crowdsourcing environment (e.g., as used in [Chandler and Kapelner,

2013]) — that is, by implementing a low payment scheme, we can infer that the reasons

for workers to continue are intrinsically, rather than extrinsically, motivated. In addition,

we avoid variable payments to minimize confounding motivations such as anticipation for

surprise bonuses.

Workers are randomly assigned to one of the experimental conditions (described in the next

subsection) as they sign up for the HIT. All our experiments follow a between-subject design,

that is, our system ensures that each worker takes our study only once. The HIT is restricted
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(a) Baseline (b) Question Only (c) Narrative

(d) Ordered Photo (e) Scrambled Photo

Figure 7.1: Five experimental conditions with varying curiosity interventions

to U.S. workers only. In this work, we are mostly interested in state curiosity and population-

level effects; hence, we do not differentiate workers based on personal characteristics or prior

experience.

7.2.3 Experimental Conditions: Control and Treatments

As mentioned previously, our curiosity-inducing stimuli consist of three design elements

— information goal, gap salience and incremental reveal. By varying which of these three

design elements are used, we created the following set of control and treatment conditions, as

depicted in Figure 7.1.

• Baseline (Control): Workers are not presented with any curiosity-inducing stimulus.

• Question Only: Workers are presented with a task-relevant question to induce curiosity,

and the ability to guess the answer, but without any incremental reveal of information

that would provide a hint to the answer.
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• Narrative: Workers are presented with a task-relevant question, the ability to guess

the answer, and a visual representation of the article in which the sentences, except the

ones that the worker has transcribed, are obscured (i.e., blacked out).

• Ordered Photo: Workers are presented with a task-relevant question, the ability to

guess the answer, and a partially obscured photo (e.g., the subject of the article) as a

hint to the answer. The picture is divided into a 8× 8 grid. Two more cells are revealed

after each audio segment is transcribed, with the full photo revealed at the last (i.e.,

30th) task.

• Scrambled Photo: Workers are presented with a task-relevant question, the ability

to guess the answer, and a partially obscured and scrambled photo (e.g., the subject of

the article) as a hint to the answer. The grid size and method of reveal is the same as

in the ordered photo condition.

The task interface provides an audio player and a textbox to support transcription. For

all conditions except the baseline, the task-relevant question is present and serves as an

information goal. To make the information gap created by this question more salient, the

interface includes a textbox for workers to enter guesses, and continually displays their most

recent guess. We do not provide any accuracy feedback on the guesses, and only reveal

the correct answer when the worker reaches the end. The information that is incrementally

revealed in the narrative, ordered photo, and scrambled photo conditions serves to reduce

the information gap by providing hints to the answer.

7.2.4 Research Questions and Hypotheses

Our study aims to answer three research questions (Q1—Q3).

Q1: Can crowds be motivated by curiosity? We hypothesize that curiosity interventions

will affect worker retention and performance in a positive way:
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[H1] Workers will complete more tasks if they are presented with a curiosity-inducing

stimulus.

[H2] Workers will have a higher probability of completing all 30 tasks if they are presented

with a curiosity-inducing stimulus.

[H3] Workers will have similar or better performance (in terms of work quality) if they are

presented with a curiosity-inducing stimulus.

Q2: How do individuals respond differently to curiosity interventions? Lowenstein suggests

that guessing draws attention to the knowledge gap and may lead to increased curiosity;

hence we are particularly interested in understanding how guessing behavior (e.g., whether

workers make a correct guess, incorrect guesses, or no guess at all) correlates with the effects

of curiosity interventions. We hypothesize that:

[H4] Workers who make a correct guess will complete more tasks, have a higher probability

of completion, and have similar or better performance (in terms of work quality) than

workers who make an incorrect guess or make no guesses.

Q3: What are the interactions between task characteristics and curiosity interventions? In

particular, when the article to transcribe is inherently interesting in and of itself, workers may

be eager to know more about it, even without curiosity interventions. In contrast, if the article

is not interesting, workers are likely to be indifferent, thus requiring explicit interventions to

induce their curiosity. Therefore, our final prediction is:

[H5] The effect of a curiosity intervention is larger when the intervention is combined with

a task that is less interesting.
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Figure 7.2: Pilot study: Paired comparison of articles

7.2.5 Choice of Article

To study Q1—Q3, our first goal is to select a small number of articles that span a wide

range in terms of how inherently interesting they are. We considered five candidate articles

drawn from diverse sources — an essay about the famous tennis player Roger Federer, a

health article on salt and cholesterol, a blogpost about imposter syndrome, a case study from

a marketing textbook, and an excerpt from a novel.

We recruited 98 workers from MTurk to perform a series of 10 paired comparisons of the

articles (as depicted in Figure 7.2) as a pilot study. In each task, workers see two articles

side-by-side. Each article has all its content blacked out except for 3 randomly chosen

sentences. We then ask workers to decide which of the two articles they would like to fully

reveal. After 10 rounds of comparisons, we determine the article that each worker wants to

reveal the most, and ask her to explain why she finds the article most interesting.

Given each worker’s full ranking of the articles, we assign each article an “interestingness”

score, defined as nbest - nworst, where nbest is the number of workers who voted the article

to be the one they most want to reveal, and nworst is the number of workers who voted the

article to be the one they least want to reveal. Using this formulation, the interestingness of
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the imposter syndrome, health and Federer articles are 12, 10 and -22, respectively, indicating

that on average, the health and imposter syndrome articles are most inherently interesting,

while the Federer article is the least interesting.

An analysis of the textual responses suggests that the reasons for an article being interesting

fall under two broad categories: relevance and intrigue. Some workers found an article to be

interesting because it was relevant to them in some way (e.g., “My family has a history of

health problems so I would love to read this article,” “I used to work in marketing and am

interested in online marketing and branding.”). In contrast, other workers were intrigued by

the revealed sentences (e.g., “It hooked me after I read ‘raw energy’. It seemed intriguing,”

“I’m curious to know what it’s all about. Who is the boy? Why is he pretending?”, “The

sentence started with some mysterious voice the protagonist hears. It kind of made me want

to know more about what that voice was about.”).

7.2.6 Analysis Methods

Table 7.1 summarizes the data we use in our analysis, which include worker-initiated

actions during the task (e.g., quitting, guessing) as well as responses from the questionnaire.

The description column describes the measurement details for the task data and the actual

questions/statements associated with the questionnaire data.

In order to capture other factors that may influence retention and performance, we applied

a common technique in psychological research to quantify intrinsic motivational factors, and

used these factors as covariates in the analysis when appropriate. Specifically, we measure

motivational factors using the Intrinsic Motivation Inventory (IMI) [Ryan, 1982], a scale that

measures factors related to enjoyment (how much workers enjoy transcription), competence

(how competent workers think they are at transcribing) and effort (how much effort workers

put into the tasks). As shown in Table 7.1, workers are asked to rate on a 7-point Likert scale

about how much they agree with a set of statements related to these three dimensions. For
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Task Data Description

Condition The experimental condition the worker is assigned to
Quit Index The number of tasks the worker completes before quitting
Error Rate The total number of errors the worker makes, divided by the total number of

words in the ground-truth transcriptions
Earliest Correct Guess The number of tasks the worker completes before making a correct guess

Questionnaire Data Description

Enjoyment Mean value of Likert scale (1-7) responses for the following statements:
· This task did not hold my attention at all. (Negative)
· While I was doing this task, I was thinking about how much I enjoyed it.
· This task was fun to do.
· I thought this was a boring task. (Negative)

Competence Mean value of Likert scale (1-7) responses for the following statements:
· I think I did pretty well at this task, compared to other workers.
· After working at this task for a while, I felt pretty competent.
· This is a task that I couldn’t do very well. (Negative)

Effort Mean value of Likert scale (1-7) responses for the following statements:
· I didn’t put much energy into this. (Negative)
· I tried very hard on this task.
· It was important to me to do well at this task.

Why Quit Did you choose to stop before reaching the end (i.e., the 30th task)? If so, why?
Why Persist Did you stop as soon as you first thought of stopping? If not, why did you

persist and continue doing more tasks?

Table 7.1: Data Summary

each dimension, we then average the workers’ responses (reversing the scores for the negative

statements) and use the mean value as the summary statistics for that dimension.

Dependent Variables. Quit index (i.e., how many tasks the worker performed before

stopping) is used as our dependent variable to understand the effects of curiosity interventions

on worker retention, and error rate (i.e., the percentage of errors the worker made in the

transcription tasks, as defined in Table 7.1) is used as our dependent variable to understand

the effects of curiosity interventions on worker performance.

Independent Variables. The experimental condition the worker was assigned to and the

article that the worker was transcribing serve as the independent variables, i.e., factors that

are believed to influence worker retention and performance.
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Statistical Methods. For high-level descriptions of worker retention and performance, we

use descriptive statistics (e.g., mean, median) when they are appropriate. We also provide

histograms and retention curves to visualize the number of workers who quit or remain after

each task.

To examine the effects of curiosity interventions on how many tasks a worker completes and

how well a worker performs in the tasks, we conduct one-way analysis of variance (ANOVA)

or a Kruskal-Wallis test, depending on whether the residuals are normally distributed. Both

tests allow us to measure whether there are any statistically significant differences across

conditions in terms of the mean (or median) of the metric that is being examined.

To examine the effects of curiosity interventions on how likely a worker completes all

tasks, we first use a proportion test, which allows us to measure statistically significant

differences between conditions in the proportion of workers who completed all 30 tasks. We

apply Bonferroni correction to account for the bias introduced by multiple comparisons.

By treating whether a worker completes all tasks as a binary variable, we further use a

generalized linear model (GLM) [McCullagh and Nelder, 1989] with logit link function (also

known as the logistic regression model) to model the probability (or odds) of completing all 30

tasks in different conditions. Specifically, to compare the completion probability in conditions

with curiosity-inducing stimuli against the baseline condition, we set the baseline condition as

the reference. We also control for the influences of other intrinsic motivational factors, such

as enjoyment, competence and effort, in our GLM — as an ANOVA on each of these factors

suggests that there is no significant difference in them across experimental conditions, we feel

comfortable to include them as covariates in our regression model. The fit of each GLM is

assessed graphically using the residual plots and other quantitative approaches, including the

Hosmer and Lemeshow test [Hosmer and Lemeshow, 1980] and Osius-Rojek test [Osius and
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Rojek, 1992], two common goodness-of-fit tests for logistic regression models.1

7.3 Results

7.3.1 Effects of Curiosity Interventions on the Crowd

We start our analyses from answering our first research question, that is, can crowd be

motivated by curiosity? Since the Federer article generated the least interest, we selected this

article as the worst case scenario to understand whether curiosity interventions affect worker

retention and performance. Accordingly, in our experiment, the task-relevant question is

“Can you guess who this article is talking about?”, and the photo we use in the ordered photo

and scrambled photo conditions is the photo of Roger Federer. We recruited 100 workers

for each condition, and gathered data from a total of 500 participants. We found 4 workers

who were obvious spammers and filtered out these suspicious cases, leaving 496 workers for

further analysis.

Effects on Worker Retention

To understand how various curiosity interventions affect worker retention in the transcrip-

tion tasks, we first plot a histogram showing the number of workers who quit after a certain

number of tasks across five experimental conditions (Figure 7.3). To further illustrate the

difference in retention, Figure 7.4 shows the the retention curves of each condition plotted

against the baseline.

As can be seen in Figure 7.3 and Figure 7.4, in general, the majority of the workers either

chose to quit when they completed fewer than half of all transcription tasks (i.e., quit before

the 15th task), or kept working until they completed all tasks (i.e., quit after completing

1Statistically significant results are reported as follows: p < 0.001(***), p < 0.01(**), p < 0.05(*),
p < 0.1(·).
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Figure 7.3: Histogram showing the number of workers who quit after completing X
tasks in each experimental condition.

the 30th task). Table 7.2 further shows the median, mean, and standard deviation for the

number of completed tasks in each experimental condition. The disagreement between means

and medians as well as the large standard deviation again indicate the two-sided skew in the

distributions of the number of completed tasks, for which measures of center are not the best

characterizations. Nevertheless, we still find that workers in experimental conditions with

curiosity-inducing stimuli tend to complete a larger number of tasks compared to workers in

the baseline condition, which is consistent with our prediction in H1. ANOVA shows that the

effects of curiosity interventions on the number of completed tasks is marginally significant,

F (4, 491) = 2.17, p = 0.07.

To take a closer look, we first focus on workers who decided to quit before they were

halfway through the whole HIT. We find many of them actually quit after they completed the

4th, 9th or 13th task. Interestingly, the sentences that the workers were asked to transcribe

in the 5th, 10th and 14th task are among the longest and most complex sentences in the

whole article, implying that workers may have decided to quit because they were deterred by

the difficulty of the transcription tasks.

It appears that one of the benefits conferred by presenting curiosity-inducing stimuli on
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(c) Ordered Photo vs. Baseline
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(d) Scrambled Photo vs. Baseline

Figure 7.4: Retention curves showing the number of workers who continue working
on the tasks (i.e. “survive”) after completing X tasks.

task interfaces is that it nudges workers to persist through difficult spots in the task sequence,

to get to the tipping point where they feel the urge to complete the whole HIT. Indeed, as

shown in Figures 7.4b and 7.4d, while 11% of the workers in the baseline condition quit after

the 9th task, only 2–3% of workers in the narrative and scrambled photo conditions did so.

The same pattern was not observed in the question only or ordered photo conditions.

Next, we shift our focus to workers who completed all tasks to understand the effects

of curiosity interventions on completion (H2). Table 7.2 shows the percentage of workers

who completed all 30 tasks in each condition. Compared to the baseline, most other

conditions have a larger percentage of workers who completed all 30 tasks, with the question

only condition being the only exception. Two-sided proportion test results suggest that
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Conditions Median Mean (SD) Completion Rate

Baseline 13 15.86 (10.38) 31%
Question Only 13 15.97 (9.76) 29%

Narrative 17.5 18.85 (11.14) 47%
Ordered Photo 13 16.45 (10.88) 36%
Scrambled Photo 18 19.03 (11.04) 47%

Table 7.2: Summary of quit index in different conditions.

the difference in the percentage of completion across conditions is statistically significant,

χ2(4, N = 496) = 12.56, p = 0.02, yet none of the pairwise comparisons against the baseline

condition is statistically significant under the multiple comparison test with Bonferroni

correction.

We get a better understanding of the effects of different curiosity interventions on com-

pletion using a generalized linear model (GLM), by taking into account the influences of

other intrinsic motivational factors such as enjoyment, competence and effort. Our GLM

is a reasonable fit as we find no obvious pattern when the residuals are plotted against the

independent variables and fitted values, and the results for both Hosmer and Lemeshow test

and Osius-Rojek test also support our graphical assessment, χ2(8, N = 496) = 5.88, p = 0.66

and z = 0.86, p = 0.39, respectively.

Table 7.3 reports the results for the GLM. Here, we find that when a curiosity-inducing

stimulus is present, workers are more likely to complete all 30 tasks in all cases (i.e., the

estimated coefficient β̂ is positive) compared to workers in the baseline condition. Holding

all other explanatory variables constant, workers in the narrative (and scrambled photo)

condition have a significantly higher estimated odds to complete all tasks that is e0.98 = 2.65

(and e0.88 = 2.41) times as large as that for workers in the baseline condition, while the

increase of estimated odds to complete all tasks in the question only and ordered photo

condition is not statistically significant. Interestingly, we also find that enjoyment and

self-reported competence both have a significant impact on the likelihood of completing all

the tasks — the more a worker enjoys the tasks and/or feels competent at the tasks, the
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Model Parameters

Variable β̂ Std. Error t p-value
Question Only 0.10 0.32 0.31 0.75

Narrative 0.98 0.31 3.10 1.91× 10−3 **
Ordered Photo 0.47 0.32 1.49 0.14

Scrambled Photo 0.88 0.31 2.81 4.91× 10−3 **
Enjoyment 0.19 0.10 1.91 0.06 .

Effort 0.02 0.11 0.21 0.83
Competence 0.52 0.11 4.85 1.24× 10−6 ***

Table 7.3: GLM for the probability of completing all 30 tasks in each condition,
with the baseline condition being the reference.

more likely she will complete all tasks, which is quite intuitive.

Why Quit? Why Persist?

By looking into the questionnaire data, where workers explain their reasons for quitting

and persisting despite initial urges to quit, we gain more insights into the diverse factors that

may contribute to whether and how our curiosity interventions influence worker retention.

In general, we find a few major categories of reasons for quitting: low payment (“The pay

is low for the time it was consuming”), task difficulty (“I chose to stop because there came a

point where I was having difficulty with understanding some of what was being said, and I

didn’t want to transcribe incorrectly”), lack of engagement (“I was bored and did not know

who they were talking about”), and external factors (“I was interrupted by someone at my

door”).

As for persisting to work, the major reasons cited are payment (“I wanted to make more

money from the bonuses”), learning (“It was good practice, I felt I was getting better as I

went on”), and a completionist attitude (“I don’t like leaving things half-finished”).

Importantly, we notice that when curiosity-inducing stimuli are present, many workers

actually cite curiosity as their primary reason for continuing to work on the tasks. For

example:
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• “I wanted to see if I could figure out the player’s name.”

• “I persisted because I was curious about how the article would unfold.”

• “I was addicted to transcribing the next sentence to reveal the article’s subject, and

once I knew who the article’s subject was, I just wanted to complete the article.”

• “I wanted to know who the article is about. It was like getting a puzzle piece and

putting it all together.”

• “I thought of stopping several times, but my desire to do a good job, earn the maximum

bonus, and to be frank, my curiosity kept me going.”

In other words, our curiosity interventions are shown to be effective on many workers as they

become eager to find out the answer to the question, and they also take the satisfaction of

their curiosity into the consideration when making the cost-benefit analysis on whether to

continue or not.

Furthermore, the lessening or lack of curiosity plays a role in why workers quit. Some

workers cited their inability to guess the answer to the question (“I had no idea who it

could be and stopped caring”) or their certainty about the answer (“I thought I had already

figured out who it was talking about and didn’t want to transcribe any more”) as reasons

for quitting. In other words, when curiosity cannot be satisfied or if curiosity dies, workers

would end up quitting. This is in line with Loewenstein’s observations [Loewenstein, 2005] —

the accumulation of new information may cause the information goal (what one wants to

know) to change, or the objective value of the missing information to decrease (because one

can infer the answer), thus diminishing curiosity. In other words, curiosity increases with

information, but curiosity may also die as the gap is dynamically re-adjusted in light of new

information.
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Effects on Worker Performance

The median error rates in baseline, question only, narrative, ordered photo and scrambled

photo conditions are 4.29%, 3.91%, 3.55%, 3.96% and 3.54%, respectively. While workers seem

to perform better in experimental conditions with curiosity-inducing stimuli, the Kruskal-

Wallis test results suggest that the difference in error rate across conditions is actually not

statistically significant, χ2(4, N = 496) = 6.85, p = 0.142. Our findings on worker performance

supports hypothesis H3, that is, workers are able to maintain a high level of accuracy when

presented with curiosity-inducing stimuli. Meanwhile, we also notice that the error rate in all

experimental conditions is already very low, which implies that the space for performance

improvement can be very limited. Further examination on task duration shows that each

transcription task takes around 1 minute to complete on average, and there are no statistically

significant difference across conditions, F (4, 491) = 0.52, p = 0.72.

7.3.2 Individual Differences in Reaction to Curiosity Interventions

Next, we move on to examine how do individuals respond to curiosity interventions

differently. The information gap theory predicts that making guesses leads to increased

curiosity. Hence, in this study, we are particularly interested in understanding the differences

in worker’s guessing behavior when curiosity interventions are presented and their connection

to worker retention and task performance. Specifically, we make comparisons across three

groups of workers in experimental conditions with curiosity-inducing stimuli: workers who

made correct guesses to the question, workers who made incorrect guesses, and workers who

made no guess. Since the correct answer to the question (i.e., the word “Federer”) is revealed

at the 25th sentence for the first time, we restrict our attention to guessing behavior before

that task.

2An one-way ANOVA is not suitable here due to the non-normally distributed residuals.
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Metrics Correct Guess Incorrect Guess No Guess

Quit Index Median 30 11 12
Mean (σ) 22.63 (9.84) 13.60 (10.03) 12.57 (8.69)

Completion % 62 24 15

Error Rate Median 0.03 0.05 0.04
Mean (σ) 0.04 (0.04) 0.06 (0.04) 0.05(0.03)

Table 7.4: Retention and performance by guessing behavior.
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Figure 7.5: Retention curves: correct, incorrect and no guesses.

Among 397 workers, 149 workers made a correct guess, 117 made incorrect guesses

and 131 did not make a guess. Table 7.4 and Figure 7.5 report the comparison across

these three groups of workers. Results show that curiosity interventions affect workers

who made correct guesses the most, as they complete significantly more tasks (t(247) =

7.35, p = 2.82 × 10−12 and t(270) = 6.04, p = 5.16 × 10−9 with Bonferroni correction), are

significantly more likely to complete all tasks (χ2(1, N = 266) = 36.33, p = 3.32× 10−9 and

χ2(1, N = 266) = 28.74, p = 8.30× 10−8 with Bonferroni correction), and are more accurate

in their transcriptions (t(116) = −14.63, p = 4.4× 10−16 and t(130) = −17.15, p = 4.4× 10−16

with Bonferroni correction) than workers who made incorrect guesses or no guess.

A variety of reasons can account for these differences. First, we observe that correct

guessers made their first guesses (median at task 1) as well as their first correct guesses (median

at task 5) quite early, suggesting that they might have certain prior knowledge about the tennis

player Federer and hence were more curious. Second, correct guessers self-reported higher

levels of competence in the questionnaire than incorrect guessers (t(236) = 3.15, p = 0.002),
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implying that they had more confidence in their performance than incorrect guessers. Our

conjecture is that the effects of curiosity interventions can vary depending on individual

worker’s level of prior knowledge as well as actual and perceived competence.

7.3.3 Interactions between Task Characteristics and Curiosity In-

ternventions

Finally, we look into how the effects of curiosity interventions are influenced by task

characteristics, such as the inherent interestingness of the tasks. Our previous experiment

shows the effects of curiosity interventions when the task itself is not interesting (i.e., the

Federer article is the least interesting article according to our pilot study). We now repeat our

experiment for the health and imposter syndrome articles — the two articles that generated

most interests among workers in our pilot study — to understand how the effects of our

curiosity interventions may differ. In particular, we include three experimental conditions for

each of these two articles: baseline, question only and narrative. The task-relevant questions

we pose for the health and imposter syndrome articles are “Is salt good or bad for you?” and

“What psychological condition is the article talking about?”, respectively.

We recruited 100 workers per condition per article and randomly assigned them to one

of the three experimental conditions. As in the previous experiment, workers are asked to

complete at least 3 tasks to get the base payment of 45 cents. After the 3rd task, workers may

choose to stop at any time or complete more tasks in exchange for an extra 1-cent bonus per

task. We explicitly prevent workers in our previous experiment (who worked on transcribing

the Federer article) from participating in this experiment, and each worker is only allowed to

take this experiment once.

Figure 7.6 illustrates the number of workers who quit after a certain number of tasks for

the three articles. Visually, we can see that the proportion of workers who completed all the
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(c) Imposter syndrome article

Figure 7.6: Histogram showing the number of workers who quit after completing X
tasks: variation between different tasks (i.e. different articles).

tasks is much higher for the health and imposter syndrome articles. In addition, for these two

inherently interesting articles, the completion rates across experimental conditions appear to

be similar.

To validate our visual intuition, we combine our data in all three tasks and again create

a GLM with logit link function to model the probability of completing all tasks, with

the baseline condition and the Federer article as the reference. In particular, we use task

(i.e., the article used for the transcription) as an independent variable, and the interaction

terms between tasks and curiosity interventions are also included in the model. Significant

interaction terms then imply that the effects of curiosity interventions depend on the tasks.

Both visual examination on the residual plots and the two goodness-of-fit test results suggest

that our model is a reasonable fit. Results for this GLM is shown in Table 7.5.

As expected, compared to workers performing the less interesting task (i.e., transcribing the

Federer article), workers in more interesting tasks are more likely to complete all tasks, even

without explicit curiosity interventions (i.e., the estimated coefficient β̂ is positive for both the

imposter syndrome article and the health article), and this difference is statistically significant

for the task of transcribing the imposter syndrome article, t(881) = 4.27, p = 1.93 × 10−5.

Furthermore, while introducing curiosity interventions improves the probability of completion

in the question only and narrative conditions for the Federer article (i.e., in both cases,

the estimated coefficient β̂ is positive), almost all the estimated coefficients for interaction

228



Model Parameters

Variables β̂ Std. Error t p-value
Question Only 0.09 0.32 0.27 0.79

Narrative 0.95 0.31 3.07 2.16× 10−3 **
Health Article 0.12 0.32 0.38 0.71

Imposter Article 1.33 0.32 4.27 1.93× 10−5 ***
Question Only × Health Article 0.35 0.44 -0.79 0.43

Narrative × Health Article -0.29 0.43 -0.68 0.50
Question Only × Imposter Article -0.18 0.44 -0.42 0.68

Narrative × Imposter Article -1.10 0.43 -2.53 0.01 *
Enjoyment 0.19 0.07 2.50 0.01 *

Effort 0.01 0.08 0.17 0.87
Competence 0.47 0.08 6.02 1.76× 10−9 ***

Table 7.5: Generalized linear model: 3 articles

terms between tasks and curiosity interventions are negative, showing that the curiosity

interventions are more effective for inherently uninteresting tasks, which is consistent with

our hypothesis H5.

7.4 Discussion

In this chapter, through an experimental study, we highlight that stimulating curiosity

can be an effective way to incentivize the on-demand, crowd workers. Specifically, we find a

close relationship between curiosity and worker retention and performance — given curiosity

interventions, workers completed more tasks, while maintaining a high level of performance.

Furthermore, we find that workers who made a correct guess complete a significantly larger

number of tasks with significantly higher quality than those who made incorrect guesses or

no guess. Finally, the effects of our curiosity interventions also depend on the characteristics

of the tasks; namely, the effects are larger when the interventions are introduced to tasks

that are less interesting.
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Why Are Some Interventions More Effective?

Some interventions (e.g., narrative and scrambled photo) seem to be more effective than

other interventions (e.g., question only and ordered photo) in incentivizing crowd workers. In

the question only condition, while we create an information goal and make the information

gap salient by allowing workers to make guesses, we do not explicitly provide any information

to help workers answer the question. Thus, the fact that question only is not as effective as

other interventions indicates that simply setting an information goal, without providing the

means for workers to satisfy their curiosity in the interim, is not an effective approach.

A related question is why the ordered photo condition is not that effective. We found

that workers in the ordered photo condition attempted to make their first guesses and figured

out the answer to the question much earlier than workers in other conditions – the medians

are 2, 5 and 4.5 for the number of tasks completed before the first guess, and 5, 21 and

24 for the number of tasks completed before the first correct guess for the ordered photo,

narrative and scrambled photo conditions respectively. There are also more workers who

made a correct guess (68%) in the ordered photo condition than any other conditions (i.e.,

43%, 58% and 54% for the question-only, narrative and scrambled photo condition). That is

to say, compared to other conditions, workers in the ordered photo condition are given too

much information that enables them to satisfy their curiosity early on, making the effects of

the curiosity interventions there virtually not any different from the question only condition,

where workers are not given any information at all. This reflects the subtlety in designing

curiosity interventions as information can be a double-edged sword: Too little information is

not enough for inducing curiosity, yet too much information could satisfy one’s curiosity too

soon and diminish curiosity. In general, both personal characteristics (e.g., prior knowledge)

and beliefs (e.g., how certain one is about the answer) can influence the effectiveness of

curiosity interventions.
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Design Space and Generalizability

Our curiosity interventions consist of three design elements — a question that is answerable

by the information contained in a series of tasks (which serves as the information goal), a

mechanism for eliciting guesses (which increases the salience of the information gap), and an

incremental reveal of information (which closes the information gap as workers do more tasks).

This conceptual approach is quite general, and is applicable to any setting in which the

employer/requester has some basic knowledge about the task data. For example, the question

can be about (i) a feature/property shared by some or all tasks, e.g., the neighborhood that

a set of images depict, (ii) the global picture of how the individual tasks fit together, e.g., a

design task where the identity of the larger system is not revealed until all the submodules

are completed, (iii) some global statistics computed from individual data points gathered

from the tasks, e.g., a counting task where participants assess the number of flowers on a

herbarium specimen, each of which contributes a data point towards testing the hypothesis

“flowering time is becoming earlier over time due to effects of climate change.” The idea is to

obscure by hiding or scrambling certain information that is incrementally revealed as tasks

are being completed, and by making the obfuscation salient such that people notice and

become curious about the missing information.

Our work demonstrates that information gap theory can be operationalized to affect the

behavior of crowd workers. However, the generalizability of the specific designs that we

explored in this study, i.e., the use of scrambled photo and obscured article, is limited to

transcription tasks and situations where the answer to the question has a visual representation

(e.g., the article is about Roger Federer).

In practice, the design elements are knobs that can be tuned — the particular choice of

questions, feedback mechanisms for responding to guesses, or the frequency of information

reveal all have subtle impacts on the extent to which workers feel curious. Additional knobs

include: (1) questions that reveal a different type of information, such as social comparison
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statistics (e.g., “how much do your transcriptions agree with other workers”); (2) the number

of curiosity stimuli to present, that is, whether we create one primary information gap or

bite-sized information gaps that are routinely revealed and satisfied (e.g., giving workers a

new puzzle to solve when they guessed the answer correctly); (3) the amount and complexity

of information to present (e.g., varying the number of cells to reveal and the extent to which

the photo is scrambled); and (4) whether or not to provide regular accuracy feedback about

the guesses to further increase the attention to the knowledge gap. It is thus an interesting

future work to develop techniques that automatically create curiosity-inducing stimuli by

tuning design parameters so that we may not only induce but also sustain curiosity, or even

adapt curiosity interventions to account for individual differences in knowledge and interest.

Ethical Implications

Prior work has explored non-monetary mechanisms to motivate workers on paid on-

demand work platforms like crowdsourcing markets, e.g., by offering micro-diversions [Dai

et al., 2015] or providing an altruistic purpose for the task [Chandler and Kapelner, 2013,

Shaw et al., 2011, Ariely et al., 2008, Rogstadius et al., 2011]. On the one hand, one can

argue that these intrinsic motivators (e.g., enjoyable activities during breaks, a meaningful

purpose, the desire to read the entire article) serve as extra payment, that is, workers are

rewarded with a valuable experience. On the other hand, these mechanisms for increasing

the intrinsic motivation of extrinsically motivated workers raise ethical concerns — workers

may, unknowingly, be doing more work for less pay. In this study, we chose task-relevant

questions as curiosity stimuli because we want workers to feel a sense of engagement with

the task at hand. Nevertheless, curiosity interventions would find a more natural home in

volunteer-based on-demand work settings such as citizen science projects, where the goal is to

stoke people’s curiosity about science in addition to collecting data to facilitate discoveries.
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Chapter 8

Conclusion

The rise of the on-demand economy in the past few years has led to dramatic changes in

our society—it creates new buesiness patterns which enable an efficient and direct matching

between supply and demand; it pushes the boundaries of the modern computing and in

particular, artificial intelligence technologies; it expands scientific discovery and expedites

scientific advancement remarkably. While the on-demand economy has demonstrated its

practical importance and potential with its rapid growth in numerous domains around the

globe, scientific understandings and rigorous design principles for it are only in their infancy.

Many people still perceive the on-demand economy as a black-box approach to soliciting

labor from a crowd of workers in an on-demand manner, without much idea about how it

works or how it can work better.

This dissertation opens up the black box of on-demand economy, both to obtain a

fundamental understanding of what happens behind the scenes, and to explore effective

interventions and techniques to make it better. Investigations in this dissertation are conducted

through a particular platform—Amazon Mechanical Turk, which is one of the leading and

most widely used on-demand crowdsourcing platforms.
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8.1 Summary of Contributions

In Chapters 2, 3 and 4, I focus on understanding the on-demand economy of today, with

an emphasis on understanding who the crowd of on-demand workers are and how they behave

in work. Chapter 2 investigates the temporal dynamics of the crowd of on-demand workers,

not only in terms of how the demographic composition of the crowd changes over time but

also with respect to the variations in the economic behavior, cognitive abilities and styles, and

personality that workers who are available at different times of day exhibit. These results are

especially relevant to scientific researchers who conduct crowd-based studies on on-demand

platforms, as the observed temporal dynamics implies that when researchers launch studies on

these platforms at different times, they may in fact approach to sub-populations of subjects

with significantly different characteristics and may even obtain different results for their

studies. Chapter 3 reveals a substantial communication network hidden inside the crowd of

on-demand workers. Being able to recover this communication network helps us to depict a

typical working scene for a significant portion of on-demand workers, which is in stark contrast

to stereotype impressions: instead of working independently, these workers intensively interact

with a large number of “co-workers” through both online discussion forums and other one-on-

one channels so that they are effectively working in a collaborative community. Importantly,

such communication may confer some informational advantage to workers allowing them

to find out valuable work earlier, as well as providing emotional support to help workers

through the ups and downs in their daily work. Chapter 4 challenges the common perception

of on-demand work being fully flexible, and identifies worker’s desire for more flexibility in

on-demand work, especially more freedom to decide how to allocate time within an individual

task and across different tasks. In fact, with more flexibility being provided in the on-demand

work, workers are able to efficiently schedule their workload so as to work at their own pace,

which leads to higher levels of engagement and performance. Furthermore, the majority
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of on-demand workers are willing to forego some financial compensations for the ability to

control their own time in on-demand work, implying the significant values that workers attach

to the flexibility of on-demand work.

In Chapters 5, 6 and 7, I study possible improvements to the design of on-demand work

to enable a more efficient and sustainable on-demand economy in the future. I approach this

problem from the perspective of devising effective incentives for on-demand work. Chapter 5

shows how financial incentives can be used in a most effective way to elicit high performance

from on-demand workers given the presence of certain psychological biases of workers. For

example, in a sequence of tasks of the same type, the increase of incentive magnitude over

subsequent tasks matters more for motivating workers compared to the absolute magnitude

of incentive in each individual task, as workers may anchor their perception of appropriate

payment levels on the incentive that they first receive in the sequence. In settings where tasks

of different types interleave with each other, placing financial incentives at the switching points

where task types change leads to the largest improvement in worker performance as it helps

to reduce the switch cost to a large degree. Chapter 6 highlights an algorithmic framework

to guide requesters to dynamically decide whether and when to offer extra monetary rewards

in a session of on-demand tasks, in order to encourage high-quality work while taking the

financial cost of rewards into consideration. The two major building blocks of this algorithmic

framework is a quantitative model to predict work quality under monetary intervention and an

online planning algorithm to make near-optimal decisions under uncertainty. The feasibility

of algorithmically controlling financial incentives in an on-demand work environment is also

showed on real on-demand task sessions for the first time. Finally, Chapter 7 explores the

potential of incorporating curiosity as a new type of intrinsic motivator in the on-demand

work through clever designs of task interfaces. Inspired by the information gap theory of

curiosity, three key elements of this task interface design—information goal, gap salience

and incremental information reveal—are proposed to create synergy between completing the
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on-demand work and satisfying one’s curiosity. It is showed that interfaces employing these

curiosity-inducing design elements lead to improved worker engagement without degrading

performance, indicating curiosity as an effective means to motivate on-demand workers.

8.2 Connections between Chapters

While each chapter in this dissertation presents one or more independent studies, there

are many notable connections between chapters, both within each of the two components of

the dissertation and between them. Connecting perspectives and results in different chapters

together, therefore, provides unique opportunities for examining the on-demand economy

from a more integrated view, which can help us to better summarize our existing findings as

well as identify interesting directions for further study.

For example, taking results in Chapters 2 and 4 together leads to a more comprehensive

view of how flexible workers are in the on-demand economy. On the one hand, the observed

temporal dynamics of on-demand workers in Chapter 2, especially in terms of their demo-

graphic compositions at different times of day, is a clear indicator suggesting that on-demand

workers have some degree of flexibility. On the other hand, results in Chapter 4 show that the

level of flexibility on-demand workers have is not enough, especially in terms of the ability to

control their own time within each task. As an analogy, current on-demand workers are like

employees in traditional jobs who enjoy an extreme version of flextime, so they can determine

when to work and how long to work at their own will. However, once they start to work,

each task that they work on imposes a tight deadline on them, making it not uncommon for

workers to “rush for deadlines” as they have little freedom to schedule the work in a way that

they find most comfortable. Results in these two chapters, therefore, urge us to think about

what levels of flexibility can be afforded with this new form of on-demand work, and to what

degree we can free workers from the “micro-management” in the work and provide them with
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more control of their own work. One important element to consider in working towards this

goal of empowering on-demand workers with more flexibility is to cultivate among workers a

“habit” of leveraging the flexibility. To that end, encouraging workers to communicate with

one another, either through online forums or other one-on-one channels (Chapter 3), may be

helpful, because workers can share with each other their experience and best practices on

how to efficiently schedule work given the extra flexibility provided in the work.

As another example, one may conjecture that social interactions among on-demand workers

may have played a role in shaping the temporal dynamics of the crowd when considering

Chapters 2 and 3 together. One possible scenario is that a small group of workers has

a “collective” working schedule so that each worker of the group works at the same time,

possibly in the same physical space. As different groups may have different schedules (e.g.,

an east-coast group has a different schedule than a west-coast group), it is natural to expect

that on-demand workers who are available at different times of day are partly composed of

different subsets of these worker groups. For workers who decide their own working schedules,

being able to communicate with other workers through online forums can also give them

a sense of virtual social community. As a result, these workers may tend to work at times

when the other workers that they are familiar with are also online, again contributing to the

temporal dynamics of the crowd. Moreover, the observed temporal differences in worker’s

economic behavior may also be related to the connections among workers. Take worker’s

incentivized decisions in the public goods game as an example. One possibility is that how

much a worker is willing to put in the public account in a game is partly decided by how

much the worker cares about the welfare of other workers at that time, which can be largely

influenced by the degree of familiarity among workers of that time. Even more, it is also

possible that workers of certain time slots can actually initiate intensive discussions among

themselves about their strategies in the game so as to coordinate their actions and generate

more social welfare in the game. So clearly, connecting Chapters 2 and 3 together opens up a
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set of new directions to explore for verifying each of these conjectures.

Chapters in the second component of the dissertation, the incentive design for on-demand

work, are also interconnected. The empirical understandings of worker’s reactions to financial

incentives (Chapter 5) provide the basis for the algorithmic framework of dynamically

controlling financial incentives in on-demand work (Chapter 6). One of the most important

insights that experimental studies in Chapter 5 offer is that the worker performance in a

task is not only decided by the incentive in this task, but also incentives in some of its

surrounding tasks in the work session. Such insight guides us to quantitatively characterize

the effects of financial incentives on workers in the context of a task workflow, rather than

for individual tasks in Chapter 6. Different from the extrinsic, financial incentives discussed

in Chapters 5 and 6, Chapter 7 focuses on the design of intrinsic motivation like curiosity,

but it still reveals some similar observations. We find that when designed appropriately,

incentives—be it extrinsic or intrinsic—can be used to motivate higher effort and performance

from the population of on-demand workers (Chapters 5 and 7). In the meantime, it is also

worthwhile to note that individuals respond to incentives in different ways (Chapters 6 and 7).

For example, as shown in Chapter 6, some workers can consistently submit high quality work

in a task even without extra financial incentives while others need the additional rewards to

perform well; and in Chapter 7, it is found that curiosity interventions are most effective for

workers who can make correct guesses to the question that is presented on the task interface

and intended to induce curiosity. These observations on the heterogeneity in worker’s reaction

to various incentives suggest that in the future, instead of seeking for an one-size-fits-all

incentive to motivate all workers, perhaps a more effective approach is to identify what

motivates one the most for each worker and provide a personalized motivation, tailored to

the needs of each individual.

Results in the first (i.e., understanding crowd behavior, Chapters 2, 3, 4) and second

component (i.e., design extrinsic and intrinsic incentives, Chapters 5, 6 and 7) of the
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dissertation mutually influence each other as well. More specifically, various characteristics of

the crowd behavior that are identified in the dissertation suggest new perspectives to consider

when designing incentives for on-demand work in the future.

For instance, the observed temporal dynamics of the crowd in Chapter 2 offers a new angle

for examining the incentive design in on-demand work: Are the effects of various incentives

the same throughout a day? Can it be more effective to adopt different incentive mechanisms

at different times of day? For example, consistent trends have been identified in the change

of people’s mood throughout a day1. Thus, it can be interesting to investigate whether and

how interactions between the emotion of on-demand workers and incentives vary at different

times of day.

Knowledge on social interactions among workers (Chapter 3) presents both opportunities

and challenges for the incentive design of on-demand work. On the one hand, knowing

that there are connections between workers opens a set of new possibilities in structuring

incentives. One possibility is to reward workers not only for their own contribution in a task

but also for routing tasks to other workers with necessary skill sets or information [Zhang

et al., 2012]. Another option is that instead of decomposing complex work into micro-tasks

and assign them to multiple (and possibly unrelated) workers, requesters may allow a group of

interconnected workers to accept the complex work together and reward them as a team. On

the other hand, since workers can talk to each other, cautions should be used when providing

incentives to individual workers in different ways (e.g., the dynamic bonus policy presented

in Chapter 6). This is because workers may feel being treated unfairly if they compare

with each other the rewards they receive, and workers may even collectively reverse-engineer

the underlying mechanism for incentive provision and attempt to game the system. It is

therefore important to take into account the ethical justification and strategy-proofness of a

1See http://www.ccs.neu.edu/home/amislove/twittermood/ for an example.
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personalized incentive mechanism when designing it.

Lastly, Chapters 5, 6 and 7 explore how effective extrinsic and intrinsic incentives can

be devised given the current common practice of task design, that is, a number of tasks are

organized into a work session while workers don’t have much control over their working time

in the session. As showed in Chapter 4, granting workers with more flexibility in each task

of the session leads to higher worker engagement and performance and thus may lower the

requirement for additional extrinsic or intrinsic motivation needed in the work. However,

with more flexibility, workers may switch back and forth among many different work sessions

to optimally schedule their workload, and the possible interference between work sessions

leaves the effects of extrinsic and intrinsic incentives in one particular work session unclear.

Therefore, further research is needed to thoroughly study whether flexibility and incentives

complement or impede each other, and how requesters can effectively incentivize workers in a

session while taking worker’s desire for more flexibility into consideration.

8.3 Future Directions

Taken together, chapters in this dissertation present a close examination at the on-

demand economy from two perspectives—understanding crowd behavior and designing

effective incentives. While findings in this dissertation provide fresh views and redesign ideas,

they have only scratched the surface of a new area of study that calls for a comprehensive

understanding of on-demand economy as well as a thorough exploration of its vast design

space, and plenty of questions remain open.

First, this dissertation mainly approaches the problem of understanding the on-demand

economy from the perspective of understanding the workers (i.e., the supply of labor) in it,

using a particular on-demand platform—Amazon Mechanical Turk—as an example. A more

comprehensive view of the on-demand economy, however, should span all different parties
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in it, including workers, requesters (or customers, i.e., the demand of labor) and platforms

which can come with different formats ranging from online labor marketplaces to mobile apps.

Therefore, there are many interesting research questions one can ask about requesters and

platforms in the on-demand economy. For example, who are the requesters in the on-demand

economy? Why do they choose to use on-demand labor? How much do they rely on the

on-demand labor? How do they allocate their work to and interact with workers? Answering

these questions will lead to a more precise picture of the demand of labor in on-demand

economy. In the meantime, various platforms in the on-demand economy have been observed

to play different roles: some platforms (e.g., Uber) actively match the supply and demand,

while others simply provide a common virtual space where demand can meet with supply.

The latter can be further divided into subcategories depending on whether the exchange

of labor is driven by the demand (e.g., Amazon Mechanical Turk, where requesters post

tasks and workers accept) or centered around the supply (e.g., Fiverr, where freelancers list

they skills and customers search for the ones suitable for their needs). It is thus interesting

to develop a taxonomy of on-demand platforms and to understand the commonalities and

differences between different platforms: How does the the setup of a platform shape the

behavior of workers and requesters on it? What kind of on-demand work fits a particular

type of platform well? What are the unique challenges for each type of platforms?

Perhaps an even broader question to ask is with this rapid growth of on-demand economy,

where are we going next? Without a doubt, the on-demand economy has commenced a

transformation of work which affects the types of work we do and the very basics of how

work is organized. Over ten years ago, Malone [2004] argued in his book The Future of Work

that the development in information technology had pushed down the communication cost

dramatically, which enabled businesses and organizations to adopt a “decentralized” structure

with loose hierarchies and more democracies, leveraging outsourcing to scale, and setting

up internal markets for information aggregation. I would like to argue that with the rise of
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on-demand economy, we may envision a future where work is not necessarily associated with

businesses or organizations. Much higher liquidity may be observed in various aspects in

the future of work, such as for whom people work, of whom “businesses and organizations”

are composed, and even the change of an individual’s role between being the supply or the

demand of labor. More specifically, instead of working for one particular employer for years,

workers in the future may switch between employers at a much faster pace, or even work

for multiple employers at the same time. Likewise, businesses and organizations, which are

formed (probably in a virtual sense through digital approaches) to fulfill some goals of the

requesters of labor, may no longer keep the same structures and groups of workers all the time,

but adaptively adjust and update according to the needs of work. Work may be presented in

the form of “projects.” A small group of workers who are familiar with each other’s expertise

and get along well may work as a team and work on projects from different requesters together

from time to time. Requesters may assemble and reassemble their workforces from both

individual workers and worker teams to fulfill the goal of each project. Moreover, a worker

in one project could easily start her own “business” and act as a requester, hiring other

workers to help her complete the project. In some sense, the future of work may share many

similarities with how the film industry works today, but only with much shorter cycles and

more geographically distributed, digitally coordinated, and rapidly adjusting.

There are many challenges in realizing such a vision. For workers to smoothly transit from

one work to another, a reliable, cross-platform reputation system is needed to signal the skills

and quality of a worker. Computational methods can be helpful in helping workers reduce the

search cost for finding suitable work (e.g., through task recommendation), quickly navigate

the new work (e.g., get familiar with their responsibilities and their “co-workers” in one

project), and effectively improve skills or expand skill sets over time. Innovative mechanisms

are required for supporting the development of workers at different stages of their “careers”

(e.g., a new worker with very few reputation records vs. a well-established worker with
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excellent reputation) as well as worker’s transition between on-demand work and traditional

jobs. On the other hand, software and tools need to be developed to allow requesters to

monitor the status of all their projects or quickly make changes to their management in each

project as needed (e.g., [Retelny et al., 2014, Valentine et al., 2017]). For requesters who are

in their “startup” stage to get a quick start, modules of work and templates of workflows

from other requesters with similar goals could be provided.

But perhaps one of the most central problems that requesters concern is how to design

the work in a way to attract and retain workers, especially in this future work environment

where workers can easily come and go. To this end, it can be particularly valuable to

revisit numerous topics on work design in industrial psychology, organization psychology

and management literature. Lessons from these literature can provide guidance on how

various concepts and theories for work design in the traditional economy can be applied in

the on-demand work, as well as how the limitations of traditional models can be reduced

and what kind of new models can be afforded by the new form of work. At the core of

on-demand work design, however, lies the deep concern for humanity and respect for human

values. The ultimate question requesters may want to ask in thinking about the design of

their work is what matters the most to their potential workers as people. Findings in this

dissertation have provided some answers, such as social interactions, flexibility and autonomy,

and motivation. Many others are awaited to be explored, including recognition, creativity,

feeling of competence, and sense of purpose.

And for on-demand platforms as well as the entire society, special attention should be

paid to a number of ethical and policy challenges raised by the on-demand economy to ensure

a sustainable future of work. Notable ones include guarantees of fair income for on-demand

workers, improvement in the transparency of work (e.g., what’s the actual purpose for a

particular on-demand task?), clarification on intellectual properties (e.g., who owns the

intellectual property for software developed by the crowd?), protection in privacy (e.g., how
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user data on on-demand platforms are stored?), and the reinvention of a social security and

benefit system that adapts to the new ways of working.

For computer scientists, there could not be a better time to contribute their wisdom in

shaping the future of work. First of all, the rise of on-demand economy offers an unprecedented

opportunity for data science research. For example, computational social scientists can use

large-scale online experimentation to collect the right data through on-demand platforms

to understand worker behavior and study work design. Results of these experiments may

further reflect certain human needs, values and biases that can be generalized to many

other contexts. Meanwhile, the huge amount of data accumulated in on-demand economy

over the years also allow data scientists to reason and learn from the existing data, such as

identifying distinctive behavior patterns, analyzing organizational structures and processes,

and providing recommendations and decision supports for workers and requesters. Moreover,

by eliciting human intelligence through on-demand platforms, computer scientists have

achieved remarkable progress in artificial intelligence, which may eventually free humans

from boring, repetitive work and leave them with more creative, challenging tasks. To

facilitate progress towards this goal, better knowledge is required for fully utilizing the

“human intelligence”—what else humans can help with AI other than contributing their basic

human knowledge and judgment like determining whether a cat is included in a picture?

Promising candidates include human intuition [Kim et al., 2017], human expectations, and

human values [Bonnefon et al., 2016]. And when computers can really complete some tasks

on behalf of humans, one may envision a future in which artificial intelligence and human

labor are integrated seamlessly—the work in the future may be jointly completed by a huge

cluster of computers, some on-demand labor, and perhaps only a small group of in-house

employees who are experts in certain domains. By that time, coordinating computers with

humans of mixed expertise will present new challenges to computer scientists, such as how to

automatically divide the labor among different parties, how to control the workflow in an
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adaptive way and how to effectively share information in a team of machines and humans.

In summary, the advent of on-demand economy has brought us with many changes, and

there are yet more to come. It is estimated that in 2015, 8% of Americans have earned

money by serving as on-demand labor on online platforms [Smith, 2016a]. It is predicted that

following the current growth rate, by 2027, nearly 1 in 3 American adults will transition to

online platforms to support themselves with on-demand work [Suri and Gray, 2016]. If this is

real, we’d better to be prepared now, starting from peeking into the black box of on-demand

economy to understand how it works, and to explore how it can work better.
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