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Repeated Decision Making under Uncertainty

Horse-racing gambling Financial investment Choosing tariff schemes




The Environment Learning Problem

O

» Nrandom variables, M options

» Each random variable X. follows a stationary distribution.

e At the beginning of each period t, the DM chooses an option
Y,=j.

» At the end of each period t, the DM observes all x; and
obtains a utility of U, = fj (x{, X3, ..., X,

e Goal: Maximize U+ U, +...+ Uy




Research Questions

O

e Can we quantitatively model the actual human behavior in
an environment learning problem?

e Does there exist a robust model to describe an average
DM’s behavior in various environments?

* How is the heterogeneity among individual DMs influenced
by the environment?




Human Subject Experiment

O

Recruit MTurk workers to choose electricity tariff schemes repeatedly.

Today is March 1, 2015
Belpw.isyourelectrcity usage for Eebruary 20] 50

You chose Option B for February 2015

- e Review electrlclty bIHS Of

oy | 101 [ 02 [ 2020 | the previous month
Nght| 64 [ 03 [ 1920 |

Total: 39.40

Your current account balance is g Choose a tariff SCheme for
rNow. please choose a tariff scheme for March 2015: the Current month

1
: @ A. Flat-rate: $0.25/kWh for electricity usage at any time throughtout the day.
1 © B. Cheaper in the day: $0.20/kWh for daytime usage; $0.30/kWh for night time usage.




Experiment Treatments

O

4 electricity usage conditions
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2 default option conditions: with/without

8 treatments
800 workers in total, 100 workers per treatment

Each worker makes 24 choices in a row
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Two-Component Models

O

A
€ . *
t T* J€J
e-Greedy ri=¢ Vil Py
M—|J"] J
' aof
- X Pt exp(Bi;)
15 Logit 3T ST eon(pit,)
= o
8 . [ J=Yt1
- . — (1—m)exp(Bat) .
D) Single Hurdle i =9 a2 j# Y1
N g k ZJ"#Yt—l emp(ﬁu;,)
[ 1—7m)ex B'&t- :
: o 2(4,4 )emZiﬂaij) J=Y
Double Hurdle 7=19 1_niuaisat ,
( Jexp(Ba;) %
>M  exp(Bat,) J# Y
\ Jjg =1 J
Last-K TDRL Bayesian
O O -O >
Inference




Two-Component Models
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The Best Two-Component Model

O
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TDRL (or the best Last-K) + Double Hurdle best captures
the average human DM'’s behavior




The Best Two-Component Model

O
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TDRL (or the best Last-K) + Double Hurdle best captures
the average human DM’s behavior in all environments!

Human DMs display recency bias and status-quo bias!




Two-Component Model vs. Rules of Thumbs

O
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The activation of rules of thumbs is context-dependent!

TDRL + Double Hurdle is robust against various environments!




Summary

O

» We try to quantitatively model the actual human behavior
in an environment learning problem in a principled
manner.

e Our results show that an average DM’s behavior can be
robustly described by a two-component model (TDRL +
Double Hurdle) across various environments.

» The average DM are also shown to be subject to recency
bias and status-quo bias.




