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ABSTRACT

Biased language is prevalent in today’s online social media. To
reduce the amount of online biased language, one critical first step
is to accurately detect such biased language, ideally automatically.
This is a challenging problem, however, as the annotated data nec-
essary for training a biased language classifier is either scarce and
costly (e.g., when collected from experts), or noisy and potentially
biased on their own (e.g., when collected from crowd workers). The
biased language classifier built based on these annotations may thus
be inaccurate, and sometimes unfair (e.g., have systematic accu-
racy disparities across texts with different political leanings). In this
paper, we propose a novel method, CLEARE, for biased language de-
tection, in which we utilize self-supervised contrastive learning to
enhance the biased language classifier—we learn a robust encoder of
the textual data through solving a min-max optimization problem,
so that the encoder could help achieve the best classification per-
formance even if the worst data augmentation strategy is selected.
Extensive evaluations suggest that CLEARE shows substantial im-
provements compared to the state-of-art biased language detection
methods on several benchmark datasets, in terms of improving
both the accuracy and the fairness of the detection.
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1 INTRODUCTION

Today, biased language (e.g., language that is offensive, prejudiced,
or hurtful) is increasingly widespread in the online social media,
which makes the rapid detection and mitigation of online biased
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language a urgent need. However, due to the rapidly increasing
magnitude of text resources on the Internet, it is impossible for
human content moderators to traverse all the possible biased text
manually [60]. In light of this, researchers have started to develop
machine learning solutions, for instance, language models, to auto-
matically detect the biased texts [46, 68].

However, obtaining a high-performing biased language detector
is still quite challenging today. This is because the differences be-
tween biased texts and non-biased texts is often quite subtle [47, 48].
Thus, in order to train a model to automatically classify biased lan-
guage, the quality requirement for annotations is high. To meet this
requirement, a common approach adopted in previous studies [47]
is to hire linguistic experts to offer their professional judgement,
which usually will result in a set of high-quality annotated dataset
of small scale, and it is usually exceedingly costly. An alternative
approach to get annotations at a large scale is to outsource them to
crowd workers (i.e., crowdsourcing). However, crowd workers’ an-
notations are usually noisy, and sometimes reflect their own biases
in interpreting the text. For instance, it is showed that people’s par-
tisanship significantly shapes their views of texts on social media,
resulting people to believe texts aligning with their own political
stance as non-biased and texts not aligning with their stance as
biased [24]. Building a biased language detector based on these
noisy and biased annotations may not only lead to an inaccurate
detector, but perhaps an unfair detector that have systematic per-
formance discrepancies across texts of different subgroups, such as
text reflecting different political leanings [64, 66].

To deal with the issues of data scarcity, data noise, and data
biases in biased language detection, a natural idea is to utilize self-
supervised contrastive learning to enhance the biased language
classifiers. Specifically, self-supervised contrastive learning can be
used to learn the latent representation of the text data through
data augmentations—which directly addresses the data scarcity
concerns—and it also has the promise of capturing the subtle se-
mantic information embedded in the text data that is beyond the
signals provided by the direct supervision (i.e., the labels). However,
applying self-supervised contrastive learning in the context of bi-
ased language detection is not as straight-forward as it seems, since
if the data augmentation strategies are not chosen appropriately,
the classifier may get misled by pairs of original and augmented
texts that actually would have been associated with different labels.

Thus, in this paper, we propose a novel approach, Contrastive
Learning with Robust Encoder (CLEARE), for biased language de-
tection. In CLEARE, we aim to learn a robust encoder of the textual
data via self-supervised contrastive learning, and the encoder is
robust in the sense that it will ensure the best classification per-
formance even if the data augmentation strategy is adversarily
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selected to confuse the encoder. We turn the problem of learning
this robust encoder into a min-max optimization problem. We then
solve this problem by alternating between updating the encoder
and supervised learning model parameters given a fixed data aug-
mentation policy, and updating the data augmentation policy given
a fixed set of model parameters.

We examine the effectiveness of CLEARE via a series of evalu-
ation studies. In the first set of evaluations, on three banchmark
datasets, we find that CLEARE consistently outperforms a wide
range of baseline approaches in making accurate classification of
biased language. Through two sets of simulation studies, we also
find that the advantages of CLEARE over other baseline approaches
are robust when we vary the size of the training dataset or as we
change the levels of noise in the labels. Moreover, in a second set
of evaluations, we conduct both simulation and real-world studies
(with annotation data collected from crowd workers from Amazon
Mechanical Turk) to explore the performance of CLEARE in ad-
vancing fair detection of biased language. Our results suggest that
compared to the baseline approaches, CLEARE increases the equal-
ity of classifier performance on different subsets of texts which
reflect different political leanings. In other words, CLEARE leads to
fairer biased language detectors.

Our contributions can be summarized as follows:

o Methodological: We developed a novel contrastive learning
framework for biased language detection. It has the potential
to address the issues of data scarcity, data noise, and data
biases, which are prevalent in biased language detection.

o Experimental: We conducted extensive experiments to demon-
strate that the proposed method substantially outperforms
the state-of-the-art methods on several benchmark datasets
with respect to multiple evaluation metrics (e.g., accuracy,
fairness).

o Dataset: We constructed a biased language annotation dataset,
which was annotated by crowd workers with different politi-
cal leanings’; this dataset can serve as a valuable benchmark
for researchers to study annotation bias and evaluate the
biased language detector’s fairness levels across texts of dif-
ferent political leanings in the future.

2 RELATED WORK

Biased Text Mitigation. Biased text mitigation is an important
problem in the NLP domain, which involves biased text classifica-
tion [1, 18] and debiased text generation [45, 64, 67]. For biased
text classification, traditional methods utilize handcrafted features
or linguistic and lexical rules [3, 18, 27, 43, 57]. With the rise of
deep learning, many deep neural models have been developed for
classifying biased texts in an end-to-end manner [15, 37, 39, 46, 68].
For debiased text generation, some works [6, 32, 65, 66] consider
it as the style transfer task [14, 17], which aim to reduce the “bias”
dimension in the sentence style embedding through the supervised
training with parallel corpus. However, the “bias” dimension is
often entangled with other features and can hardly be separated
from other dimensions without impairing the fluency or content of
text [5, 22]. Recently, some works [25, 31, 41] proposed two-step

!This dataset is publicly available at https://github.com/ZhuoranLu/Bias-detection-
annotation.
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approaches to improve debiasing quality. These methods firstly
identify bias in the text, and then generate modification based on
results of the first step. Since the accurate and robust classification
of biased texts can be a key step for high-quality automatic text
debiasing, our work focuses on biased text classification.
Contrastive Learning. Contrastive learning has gained increased
interests among researchers in recent years. Its main idea is to
empower the model to pull similar instances closer to each other
in the embedding space, while pushing different instances away
from each other [13, 53, 59]. Self-supervised contrastive learning
has been widely applied in computer vision [4, 23, 34, 35, 50], where
data augmentation is utilized to allow the model to learn compact
and discriminative features. More recently, many efforts have been
taken to extend contrastive loss from the self-supervised setting
into the supervised setting [12, 20, 56], where label information
is leveraged— instances of the same class are treated as “positive”
examples while instances of different classes are treated as “nega-
tive” examples. In the NLP domain, supervised contrastive learning
is incorporated in pre-training and fine-tuning of language mod-
els for a variety of downstream tasks, including machine transla-
tion [38], out-of-distribution detection [69], fine-grained classifica-
tion [49, 62], sentiment analysis [19, 26], metaphor detection [28],
and sentence embedding [9, 11, 29, 61]. However, for detecting bi-
ased texts, annotations (i.e., labels) can be scarce, noisy, and even
biased in themselves. Therefore, utilizing supervised contrastive
learning (which only relies on the label information) to differentiate
biased and non-biased texts may fall short in performance; new
methods are needed to improve the biased text classifier’s perfor-
mance beyond what can be learned solely from the labels. To the
best of our knowledge, we are the first to utilize self-supervised
contrastive learning to address the problem of learning biased text
classifers from scarce, noisy, and biased annotations.

3 METHODOLOGY

In this section, we outline our algorithmic approach for biased
language detection.

3.1 Problem Setup

We start by formally defining the biased language classification
problem. Given a dataset D = {(x;, yi)}ﬁl, where x; € X is the
input text and y; € {0, 1} is the binary label representing whether
the input text x; is biased (1 means it is biased), we aim at learning
amodel y = h(x), which can be used to classify whether any input
text x is biased or not. To do so, we typically first need to apply
anencoder fy : X —» Z € RIXIXd o map the input texts into a
feature space Z, where 0 is the parameters of the encoder and d
is the dimension of the feature space. Then, another function (pa-
rameterized by w) M, : Z — P will be used to map the encoded
features into probabilities in the probability space to indicate the
chance for the texts to be biased (e.g., M, can be a multilayer per-
ceptron). That is, Pr(y = 1|x) = M, (fp(x)). A common approach
for learning 6 and w is to search through the parameter space to
find the optimal combination of 6 and w that can minimize the
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cross-entropy loss:

K

lee(0,0) = = " yilog (Mo (fy )+ (1-yi)log(1-Ma (o (x))
i=1

o)

3.2 Enhancing the Encoder with Supervised
Contrastive Learning

The quality of the biased language classifier learned through min-
imizing the cross-entropy loss function largely depends on the
quality of the encoder function fy. Directly fine-tuning pre-trained
text encoders may not be optimal given the subtle semantic differ-
ences between some biased and non-biased texts—texts that are
close to each other in the pre-trained embedding space may in fact
have different labels. To enhance the classifier’s ability to distin-
guish text instances of different classes (i.e., biased, non-biased),
an intuitive thought is to utilize the supervised contrastive learn-
ing [12, 69] to conduct representation learning, i.e., learn a better
encoder. Specifically, given the dataset D = {(x;, y;) }fi 1» the super-
vised contrastive loss function for learning the optimal parameters
0 of the encoder is formulated as:

K
b == T O o8

i=1 seS(i)

exp(sim(z;, zs)/7)
Y exp(sim(zy, zn)/7)

neN (i)

@

where z; = fp(x;) is the embedding feature vector of x;, S(i) is the
collection of the index of text instances in O with the same label
as x; (i.e., the “positive set”), N (i) is the collection of the index of
text instances in O with different labels than x; (i.e., the “negative
set”), sim(-, -) is the function for measuring the similarity between
two instances (e.g., the cosine similarity), and 7 is the temperature
hyper-parameter for controlling the similarity between negative
instances and positive instances. Using this supervised contrastive
loss, we are effectively searching for the optimal encoder fj that
can pull together text instances belonging to the same class, while
simultaneously pushing apart instances from different classes in
the embedding space.

Finally, we can incorporate the loss function of the encoder into
the overall loss function of the classifier to simultaneously learn 6
and w. For example, the final loss function of the classifier with the
enhancement from supervised contrastive representation learning
can be :

Uscl_enhanced (0, @) = fee(w, 0) + atscr(6) ®3)
where a > 0 is weight parameter.

3.3 Enhancing the Encoder with Self-supervised
Contrastive Learning

Enhancing the encoder with supervised contrastive learning may
encounter some limitations when being applied in practice: First,
when the ground-truth labels are collected from experts, the size
of the training dataset D is often relatively small due to the high
annotation costs of experts. This limited supervision may imply
that the supervised contrastive loss function could only bring about
a rather small improvement in optimizing fy. On the other hand,
when the ground-truth labels are collected from the crowd, the
labels can be very noisy and sometimes even reflect the crowd
annotators’ own biases. This, again, would limit the benefits of
utilizing supervised contrastive learning to enhance the encoder.
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One possible approach to alleviate the problems stated above is
to enhance the encoder with self-supervised contrastive learning
instead. Different from supervised contrastive learning, in which
the label information is directly utilized to generate the positive and
negative sets of an instance, self-supervised contrastive learning
utilizes data augmentation techniques to generate the positive set
of an instance, while all other data instances are put in the negative
set. The intuition here is that given a text instance x, after applying
an augmentation operation to it and thus slightly modifying it into
x’, x’ should still be closer to x in the embedding space (hence
belong to the positive set of x) compared to any other text instances
(which belong to the negative set). Following suggestions made by
the recent works [33, 42], we consider multiple different types of
augmentation operations instead of a single operation to increase
the diversity of the augmented data, which is believed to bring
about better performance of self-supervised contrastive learning.

More specifically, let O be a set of augmentation operators, where
each operator 0 € O is a commonly used text augmentation map-
ping 0 : X — X. For example, O could contain operators like
deleting a random word in the text, randomly substituting a word
with its synonym, etc. Suppose we will generate T augmented in-
stances for each text instance in our dataset 9, and there exists a
policy p € R!9! that defines the sampling probability distribution
for augmentation operations (i.e., p; represents the probability that
operator o; will be chosen as the augmentation operator). Then,
for a text instance x; in our dataset, we will sample T operators
{of }thl C O based on the sampling policy p, and then apply these
operators to x; to generate the T augmented instances {xﬁ ! }thl
where xﬁ’ = of(x,-). The self-supervised contrastive loss function
for learning the optimal parameters 8 of the encoder is then formu-
lated as:

K

L 1 exp(sim(z;, z5)/7)
(sscl(e)P) = 2 KT , IOg D exp(sim(zi, 2n)/7) (4)
ELsel L ne(X\ag)

where z; = fp(x;) and the same encoder is applied both on the
original text instances and the augmented instances. When the
sampling policy p of augmentation operations is chosen appropri-
ately, £sc; encourages the encoder to generate more discriminative
features by maximizing similarities between augmented views of
the same data instance and minimizing similarities between differ-
ent data instances. Compared to supervised contrastive learning,
self-supervised contrastive learning has the potential to address the
data scarcity and data noise/biases concerns because (1) the size
of the “dataset” that can be used to learn fp has increased due to
data augmentation, and (2) the encoder is optimized to capture the
semantic similarity rather than label similarity, thus is less affected
by the noise/biases in the labels.

3.4 Learning the Robust Encoder

We note that the quality of the encoder obtained via self-supervised
contrastive learning may highly rely on the quality of the sampling
policy p. This is because some operators, when applied inappropri-
ately, may change the label for the augmented instances. For exam-
ple, the operator of “random deletion” may delete the biased word in
the input text, which will turn an original biased text instance into
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a non-biased augmented instance. However, the self-supervised
contrastive loss function still attempts to pull together these two
instances in the embedding space, which can be misleading.

In light of the importance of picking the right p, in the ideal case,
one would hope to use self-supervised contrastive learning to learn
fp given the optimal p*, which may need to be designed by experts.
But what if p* is not available? Inspired by the ideas in adversarial
training [44, 52], we propose that in the absence of the optimal
sampling policy, we should learn an encoder fy that is robust—it
should achieve the best performance even if the sampling policy p
is chosen to intentionally confuse the encoder. More specifically,
we propose to simultaneously learn the encoder parameters 6 and
the sampling policy p by solving a min-max optimization problem:

ming s (65 p)
Yo ®)

st. p € argmax,, [lssc1(0; p) — EDlst(p, u)]
where y € R is a positive coefficient, u is the discrete uniform
distribution (i.e., u; = ﬁ,\v’j € [1,|0]]), and Dist(-, -) is the Eu-
clidean distance function between two discrete sampling distribu-
tion, which serves as a regularizer to avoid policy collapse during
the training process [52].

To solve Eq. 5, we optimize the model parameter 6 and the sam-
pling policy p alternately. Specifically, when p is fixed, the op-
timization of encoder model parameters 6 can be conducted via
gradient descent. However, when 6 is fixed, finding the optimal
value of p is more difficult. This is because the exact gradient of p
is hard to calculate since £ is non-differentiable to the sampling
policy p. As a result, we try to estimate the gradient 6;, through a
perturbation-based method. Here, we define a small perturbation
onas Ap € R0, which is uniformly sampled from a unit sphere,
and the perturbated policy is p’ = p + Ap. Intuitively, the desired
perturbation should increase £, so that more challenging opera-
tors could be sampled via p’. Therefore, we define a signal function
S as:

S(p, Ap) =Lssc1(0; p+ Ap) — byser (0 p)—

g(Dist( p+ Ap,u) — Dist(p, u)) ©)

We then approximate the gradient 6;, via the Monte Carlo esti-
mate [36]:

— 1

Vp = 3 Z @(p, App)Apy (7)

b=1

where ®(p, Ap) = sign(S(p, Ap)), and B is the number of perturba-
tions we sample. Furthermore, to ensure that p is a valid sampling
distribution, we constrain the policy via the following projection:

€,

™ —e iflplh#1
proj(p) = { Il ®)

P otherwise

where € is a small constant to ensure numerical stability?. The full
update for the sampling policy p is:
B

O(p, App)Apy
b=1

, )
p—proj(p+ )

2In our experiments , we used € = le — 6.
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Algorithm 1: Alternating Optimize (6, ), p

Input :initial policy po, model f, M parameterized by 6y, wo
Output: Updated policy p, updated model parameters 0, w

1 fori « 1to N do

2 (01, ;) — (0i-1, @i-1) =1V wleteare (Oi-1, @i-1; pi-1)

// Update 6, w;

3 Estimate FV‘;, given (0;, pi—1) // Eq.7

4 Pi < proj(pi-1 +/1€;,)// Eq.9

5 end

where A > 0 is the step size.

3.5 Overall Framework

Finally, we propose Contrastive Learning with Robust Encoder
(CLEARE) by integrating the robust encoder into the biased lan-
guage classifier. We do so by solving the following min-max opti-
mization problem:

ming g, {eleare (6; @; p) = fee (0, @) + atse;(0) + Blssci(6; p)
10

s.t. p € argmax,, [lssc1(0; p) — )éDist(p, u)] (10
where a, f > 0 are the weight parameters. Algorithm 1 summarizes
the alternating optimization process of this loss function. In partic-
ular, in each iteration, we first update parameters 6 and w given the
current sampling policy p, and then we update the policy following
the perturbation-based method to identify a more challenging data
augmentation policy.

4 EVALUATION 1: TOWARDS MORE
ACCURATE DETECTION

In this section, we present a set of evaluation studies on three exist-
ing datasets of online biased language to understand how CLEARE
could help improve the accuracy in biased language detection.

4.1 Experimental Settings

4.1.1 Datasets. We considered three annotated datasets of online
biased language in this set of evaluations. The statistics of these
three datasets are shown in Table 1. The biased text instances in
these datasets cover a wide variety of biases, such as biases towards
specific gender, race, and political groups.

e WIKI-Bias [68]: This is a parallel corpus extracted from the
Wikipedia edits. It consists of over 4,000 biased and neutralized
sentence pairs labeled manually, with very nuanced differences
between each pair of biased and unbiased text.

e BABE [47]: This dataset contains 3,700 sentences extracted from
online news articles, and trained linguistic experts are recruited
to label whether each sentence is biased or not. Thus, the label
quality of this dataset is expected to be relatively high.

e MBIC [48]: This dataset contains 1700 sentences that are ex-
tracted from news articles, and the biased/unbiased label of each
sentence is annotated by crowd workers.

4.1.2  Comparison approaches. We compared the performance of
our proposed approach, CLEARE, in classifying biased language
against the following baselines:



Contributed Paper

Dataset | Total Train Val Test | len
WikiBias 8198 5028 1066 2104 | 29.5
BABE 3700 - - - 35.5
MBIC 1700 - - - 37.5
Table 1: The number of text instances in each dataset.
“” denotes the original dataset doesn’t provide

train/validation/test splits. len represents the average
length of the text.

o Feature-based methods: We used the GloVe embedding [40]
to represent each sentence, and then tuned different supervised
models (i.e., SVM, MLP, TextCNN [63]) to classify whether the
sentence is biased.

o Fine-tuning encoder based methods: We considered two base-
line methods based on fine-tuning the pre-trained encoder: (1)
CE: the standard cross-entropy loss function (Eqn. 1) is used
to simultaneously learn the parameters of the encoder (i.e., 0)
and the classifier (i.e., w). (2) SCLEN: the loss function with en-
hancement of supervised contrastive learning (Eqn. 3) is used
to simultaneously learn the parameters of the encoder and the
classifier.

e Distant supervision Methods: In previous studies [47, 68],
researchers have used more than 100,000 additional training data
points to fine-tune the pre-trained encoders and therefore have
improved the performance of the biased language classifiers.
Since we do not have access to this additional training data, in
our comparison, we directly report the performance of these
classifiers as stated in [47, 68].

4.1.3  Training details. For both the fine-tuning encoder based base-
line methods and CLEARE, we take the BERT model [7] and the
ROBERTa [30] model from Huggingface’s transformers library [55]
as our pre-trained encoders. We then used the representation em-
beddings of the last layer of the pre-trained models as the input of
the classifier (i.e., M,,). The classifier consists of one hidden layer
with 768 nodes and one output layer.

For data augmentation in CLEARE, O consists of five operations—
Random Swap (RS), Random Delete (RD), Synonym Substitute (SS),
TF-IDF and Contextual Sentence Insert (CSI). For more details about
augmentation operations, see Appendix B.

For all methods, we performed a hyper-parameter search on the
validation set over initial learning rate, weight decay, dropout rate,
etc. Following previous studies [28, 69], we empirically set 7 = 0.2
(Eqn. 2 and 4), y = 0.1 (Eqn. 5), B = 2000 (Eqn. 7), A = 0.01 (Eqn. 9),
a =2 (Eqn. 3 and 10) and B = 0.5 (Eqn 10). Except for GloVe+SVM,
all methods are optimized with Adam [21] with an initial learning
rate of 5¢7> and a batchsize of each training iteration of 32. We
fine-tuned all fine-tuning encoder based methods for 20 epochs.

Finally, when evaluating on the WIKI-Bias dataset, we directly
used their training, validation, and test splits. For each method
(except for the distant supervision methods), we repeated it five
times with different parameter initialization, and then reported the
average performance score of it. On the other hand, when evaluat-
ing on the BABE and MBIC datasets, we randomly split the dataset
into three partitions with 70%, 5%, and 25% of the entire dataset,
and used them as our training, validation and test sets, respectively.
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We repeated this process five times, and the average performance
scores of different methods across these five repetitions were then
reported, except for the distant supervision methods. Following
previous works [47], we evaluated the performance of the classifiers
trained using different methods with Macro-F1 and AUROC.

4.2 Evaluation Results

4.2.1 Comparisons with baselines. Table 2 presents the comparison
in the biased language classifiers’ performance when trained using
different methods. Overall, we observed that the proposed method,
CLEARE, consistently outperforms the best baseline methods on
all three datasets. Below, we summarized a few key observations
from the comparison.

Fine-tuning encoder based methods are better than feature-
based methods. We found that methods that are based on fine-
tuning pre-trained language models (e.g., BERT + CE, BERT +
SCLEN, and our method), in general, outperform feature-based
methods like GloVe + TextCNN. We attribute such improvement
to self-attention mechanism of transformers, which can more effi-
ciently capture the subtle semantic differences between texts.
Contrastive self-training with robust encoder is better than
solely supervised training. We compared CLEARE with methods
that only utilize supervised training signals, including both CE
and SCLEN. Again, CLEARE almost always outperforms these two
methods on the three datasets, both when the pre-trained model
adopted is BERT and ROBERTa. To better understand why CLEARE
achieves a better performance than training methods that only
utilize the direct supervisions, we used t-SNE3 [51] to visualize
the feature space of different methods when we built classifiers for
the WIKI-Bias dataset, and ROBERTa was used as the pre-trained
encoder model. Figure 1 shows the visualization results. In the
CE or SCLEN space, non-biased and biased text instances are en-
tangled and mixed, which suggests that CE and SCLEN may fall
short in capturing the subtle semantic information in the challeng-
ing WIKI-Bias dataset, where only very nuanced differences exist
between non-biased and biased texts. In contrast, in the CLEARE
space, despite some noise, most of the text instances with different
labels are disentangled while the clusters with different labels also
become more compact. This demonstrates that CLEARE motivates
the model to learn more discriminative feature representations for
classification.

Contrastive self-training with robust encoder is on par with
distant supervision methods. Finally, we found that CLEARE
achieved similar or even better performance than distant super-
vision methods. Consider that the distance supervision methods
are trained based on a large volume of additional training data, the
capability of CLEARE to achieve a comparable performance using
a much smaller amount of data is notable.

4.2.2  Understand the advantage of the robust encoder. CLEARE is
designed to learn a robust encoder that can achieve good classifica-
tion performance even if the data augmentation sampling policy
(i.e., p) is chosen adversarially. To further understand the advantage

3The perplexity parameter was set as 40 across all methods.

4Compared with the BABE and MBIC dataset, the semantic difference between non-
biased and biased text in the WIKI-Bias dataset is more subtle, which places a higher
requirement for the model’s discriminative ability.
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Dataset WIKI-Bias BABE MBIC
Macro-F1 AUROC Macro-F1 AUROC Macro-F1 AUROC

GloVe + SVM 22.3 51.2 60.4 67.2 65.1 58.4
GloVe + MLP 25.7 52.3 59.2 66.8 68.7 60.4
GloVe + TextCNN 42.8 56.5 70.2 78.1 65.8 70.9
BERT + CE 54.7 68.4 78.7 86.7 76.3 83.1
ROBERTa + CE 53.4 66.7 79.6 86.6 77.4 85.3
BERT + SCLEN 61.8 71.9 78.5 86.6 77.4 83.9
ROBERTa + SCLEN 64.4 72.7 80.1 87.5 78.1 85.9

BERT + distant 65.8 - 80.4 - 77.8 -

ROBERTa + distant - - 79.9 - 79.8 -
BERT + CLEARE 67.5 74.5 79.9 87.5 78.2 84.4
ROBERTa + CLEARE 63.2 73.2 81.3 88.5 79.4 87.1

Table 2: Comparing the performance of CLEARE with baseline methods on 3 datasets, in terms of Macro-F1 (%) and AUROC

(%). The best method in each column is colored in blue and

available. All results except "distant" are averaged over 5 runs.
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Figure 1: 3D t-SNE visualization of feature spaces before fine-tuning, and after applying three different fine-tuning methods on

the WIKI-Bias dataset.

of this robust encoder, we conducted an experiment to compare the
performance of CLEARE with a few other contrastive self-training
methods with fixed sampling policy (i.e., we directly optimize for
the objective function in Eqn. 10 with a fixed p). Specifically, we
considered seven baseline data augmentation operation sampling
policies, including 5 single-operator policies (i.e., only a single type
of operator is used in data augmentation) and 2 multiple-operators
policies (i.e., multiple types of operators is used in data augmen-
tation). For single-operator policies, we considered applying only
the operator of Random Swap (RS), Random Delete (RD), TF-IDF,
Synonym Substitute (SS), and Contextual Sentence Insert (CSI). For
multiple-operator policies, we adopted two baseline methods pro-
posed in the existing literature: EDA [54] and JOAO [58] (For more
details about these baseline policies, see Appendix B).

We followed the same experimental settings as described in
Section 4.1.3 to train different models, and then compared the per-
formance of CLEARE with the seven baseline methods. Since results
in Table 2 suggest that models trained using the ROBERTa encoder
seems to have similar or sometimes better performance compared
to models trained using the BERT encoder, in this experiment, all
our models are trained using only the ROBERTa model as the pre-
trained encoder. Table 3 reports our comparison results. We first
note that none of models utilizing the single-operator sampling
policies achieve the best classification performance across all three
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datasets. This suggests the choice of the “optimal” sampling policy
is highly context-dependent. Furthermore, we find the CLEARE al-
most always consistently outperform other models, including both
models trained with single-operator policies and models trained
with multiple-operator policies. This suggests the advantage of
CLEARE in learning a robust encoder over other models that are
trained based on a fixed, and possibly non-optimal, sampling policy.

4.2.3 Robustness Analysis. Finally, we conducted two simulated
evaluations to understand how robust CLEARE is with respect to
the size of the training data and the level of noise in labels. We
chose to use the BABE dataset in this simulated evaluations as we
expect the labels for the BABE dataset is of high quality (since they
are provided by linguistic experts). We focused on the comparison
between the three models where ROBERTa was used as the pre-
trained encoder, while either CE, SCLEN, or CLEARE was used
for fine-tuning the encoder and learning the parameters of the
classifier.

In our first simulation, to simulate different degrees of labeled
data scarcity, we varied the size of the data used for training the
models from 25%, 50%, 75% to 100% of the entire training dataset.
Again, for each of the three models (i.e., ROBERTa + CE, ROBERTa
+ SCLEN, ROBERTa + CLEARE), we trained it for 5 runs, each
run with different random parameter initializations, and Figure 2a
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Methods RS RD TFIDF SS CSI | EDA JOAO | CLEARE
WIKI-Bias Macro-F1 | 67.1 642 663 668 667 | 664 66.4 67.5
AUROC | 742 721 739 736 729 | 740 74.0 74.5
BABE Macro-F1 | 788 79.7 811 80.8 | 81.6 | 809 80.9 81.3
AUROC | 864 879 87.7 87.2 883 | 879 879 88.5
MBIC Macro-F1 | 784 76.1 788 768 785 | 77.8 778 79.4
AUROC 864 844 863 854 864 | 858 858 87.1

Table 3: Comparing the performance of CLEARE with different augmentation strategies on 3 datasets, in terms of Macro-F1 (%)

and AUROC (%). The best method in each row is colored in blue and

is colored in . All results are averaged

over 5 runs, with ROBERTa being used as the pre-trained encoder model.

Dataset left-leaning right-leaning center - Total
biased non-biased | biased non-biased | biased non-biased | biased non-biased | biased non-biased
BABE 630 381 598 394 99 592 509 497 1836 1864

Table 4: Detailed statistics of the BABE dataset. "-" denotes the political leaning of text is controversial and thus not decided.

shows the performance comparisons across these three models. It is
clear from the figure that as the size of the training data decreases,
the performance of all three models degrades. However, we found
that CLEARE consistently outperforms the other two models on
all training datasets with different sizes, and it has a relatively
mild performance degradation. For example. When only 50% of the
labeled training data is available, the drop of AUROC for CLEARE
compared to the case when the model is trained on the entire
training dataset is only 0.6%, while the drop for CE and SCL are 2.6%
and 2.2%, respectively. These observations suggest that utilizing
contrastive self-supervised learning with a robust encoder, CLEARE
exhibits the potential to alleviate the concerns raised by the scarcity
of labeled data in biased language detection.

In our second simulation, the models are trained with full train-
ing data, but we randomly added noise into the labels in the train-
ing dataset. Specifically, to simulate different levels of noise in the
training data, we constructed five simulated training datasets by
randomly choosing 10%, 20%, 30%, 40%, or 50% of the data in the
original training dataset and flipping their labels. The average per-
formance of the three models across 5 runs with random parameter
initialization is reported in Figure 2b. Here, we observed that the
performance of the three models degrades when the noise level
becomes higher, but CLEARE still outperforms the other two mod-
els consistently, and its advantage over the two baseline models
become particularly salient when the noise level in the training
dataset is high. These results, thus, demonstrate the robustness of
CLEARE against the noisy annotations of biased language.

5 EVALUATION 2: TOWARDS FAIRER
DETECTION

In this section, we explore the potential of CLEARE for advancing
fairer detection of biased language. In particular, as annotators may
often inject their own biases (e.g., confirmation bias) into the labels
they provide on different text instances when determining whether
they are biased [10], biased language classifiers built on top of
these annotations may suffer from a fairness issue—For example, if
the majority of annotators hold liberal views, then the classifiers
trained based on data labeled by them may tend to classify texts
that align with liberal views as non-biased and texts that align with
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Figure 2: Comparing the performance of CLEARE with base-
line methods when changing the size of training data or
varying the level of label noise. Error bars represent the stan-
dard errors of the mean.

conservative views as biased. We conjecture that since the training
of CLEARE utilizes the semantic information embedded in the text
beyond the direct supervision from the (potentially biased) labels,
it may result in fairer classifiers.

To validate this conjecture, we conducted two additional evalua-
tion studies. In these evaluations, we focus on the BABE dataset,
since for a subset of the sentences in the BABE dataset, experts also
provide the label on the sentence’s political leaning (i.e., left-leaning,
right-leaning and center; see Table 4 for the statistics). This enables
us both to construct simulated dataset to reflect a population of
annotators with different compositions in their political leanings,
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and to collect labels from real-world human annotators to examine
whether they exhibit biases in their labels and how fair different
methods are when being trained on the real-world labeled data.

5.1 Evaluation Metrics for Fairness

Following previous work [8], we measured the fairness level of a
classifier using error rate equality difference, which is the difference
between error rate across different “groups”. For example, consider
false positive rate (FPR) and false negative rate (FNR) as the two
metrics to quantify error rates, we can define two different versions
of error rate equality difference—the false positive equality difference
(FPED) and the false negative equality difference (FNED):

FPED = Z |FPR — FPR;| 11)
SES
FNED = Z |FNR — FNRy| (12)

seS

where FPR and FNR are false positive rate and false negative rate on
the entire testset S, while FPRy and FNRg are the FPR and FNR on
a specific subset s of S. In our evaluation, s represents the subsets
containing texts with the same political leaning. For simplicity,
we consider only the subset of left-leaning text and the subset of
right-leaning text in computing FPED and FNED. Intuitively, the
lower FPED and FNED are, the smaller the classifiers’ performance
difference on texts with different political leanings, and the “fairer”
the classifier.

5.2 Simulation Study

We firstly conducted a simulation study by generating two simu-
lated training datasets based on BABE to reflect how two popula-
tions of annotators with different composition of political leanings
may label the same data, assuming that a subset of the annota-
tors suffer from their confirmation biases in labeling the text (e.g.,
a left-leaning annotator tends to label a biased left-leaning text
as non-biased, while labeling a non-biased right-leaning text as
biased).

o left-dominant dataset: In this dataset, we aim to simulate
that the data is primarily labeled by a set of left-leaning
annotators. We thus changed the label of 50% of the biased,
left-leaning text in the training data into “non-biased,” and
changed the label of 50% of the non-biased, right-leaning
text in the training data into “biased”

o right-dominant dataset: In this dataset, we aim to simulate
that the data is primarily labeled by a set of right-leaning
annotators. We thus changed the label of 50% of the biased,
right-leaning text in the training data into “non-biased,” and
changed the label of 50% of the non-biased, left-leaning text
in the training data into “biased”

We used ROBERTa as the pre-trained encoder and then fine-tuned
it with CE, SCLEN and CLEARE, respectively. For data split, we
randomly chose 70% of the left-leaning and right-leaning text,
as well as 10% of the center text and text without political leaning
labels (i.e., the - subset) as the training set, and 5% of the data in
all subsets as the validation set. All the remaining data was then
used as the test set. We trained and tested the three models given
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left-leaning | right-leaning |

FPED| FNED| } Total Acc T

Methods FPR| FNR| | FPR| FNR] !

CE 231 353 | 352 219 | 121 144 | 773
SCLEN 241 306 | 343 185 | 105 135 1 781
CLEARE 186 257 ! 268 198 | 7.1 70 | 793

Table 5: Comparing the performance of CLEARE with CE
and SCLEN on the left-dominant dataset; left-leaning and
right-leaning represent subsets of the test set containing
left-leaning and right-leaning text, respectively. Total Acc
reports the overall accuracy on all test data. | denotes the
lower the better, T denotes the higher the better. Best results
are highlighted in bold. All results are averaged over 5 runs.

left-leaning | right-leaning |

FPED| FNED | } Total Acc |

Methods FPR] FNR| | FPR| FNR] |

CE 318 236 |, 161 383 | 156 147 | 765
SCLEN 252 225 | 181 376 | 7.1 151 | 776
CLEARE 241 161 ' 179 261 ' 6.2 88 | 797

Table 6: Comparing the performance of CLEARE with CE and
SCLEN on the right-dominant dataset. | denotes the lower
the better, T denotes the higher the better. Best results are
highlighted in bold. All results are averaged over 5 runs.

this data partition, and then repeated this process five times over
different random partition of the dataset.

Table 5 and Table 6 report the comparison results of CE, SCLEN
and CLEARE on the left-dominant and right-dominant datasets,
respectively. We found that compared to CE and SCLEN, CLEARE
has a consistently lower FPED and FNED, suggesting it results in a
fairer classification across left-leaning and right-leaning text. In the
meantime, the accuracy of CLEARE is also higher than the other
two baseline methods, suggesting that in this simulation study, the
improvement of CLEARE does not come with the decrease in model
accuracy.

5.3 Real-World Study

To further understand the performance of CLEARE in the real world
scenarios, in which annotators may be subject to many different
types of biases in their annotation, we conducted a large-scale
crowdsourced data collection with real human annotators on Ama-
zon Mechanical Turk (MTurk), and investigated the performance
of our proposed method against the baseline methods on this real-
world dataset.

5.3.1 Crowdsourced Annotation Collection. We posted a human
intelligence task (HIT) on MTurk to U.S. workers only, and the
recruited workers were asked to annotate whether sentences taken
from the BABE dataset are biased or not. Specifically, upon arrival
at the HIT, we gave workers a brief instruction on how to deter-
mine whether a piece of text is biased. Then, workers were asked
to complete 20 tasks to review 20 sentences and judge whether the
sentence was biased or unbiased®. Before submitting the HIT, work-
ers were also asked to self-report their political party affiliation
("Independent”, "Democrat,’ or "Republican"). To filter out potential
spammers, We randomly placed an attention check question in
our HIT, in which workers were asked to choose a pre-specified

SFor simplicity, we only asked workers to annotate left-leaning, right-leaning, and
center text in the BABE dataset.
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Figure 3: Comparing the fairness of CLEARE with baseline methods when the annotated dataset come from different populations
of annotators with different composition of political stance. Error bars represent the standard errors of the mean.

Annotators . L
Text Democrat Republican | Significance
. biased 0.61 0.76 P < 0.001 * %%
left-leaning non-biased 0.39 0.29 P < 0.001 # #x
right-leanin. biased 0.68 0.55 P < 0.001 # #x
& & “Hon-biased | 0.36 0.40 5 <001 % w
Overall accuracy 0.54 0.53 p>0.05

Table 7: Average annotation accuracy on subgroups of BABE
texts by annotators who self-report to be Democrat or Re-
publican.

answer. In addition, to encourage crowd workers to try their best in
detecting the biased text, we told workers if their overall accuracy
in the HIT is over 65%, they could earn an additional bonus of 5
cents for each correct judgment they made in the HIT.

After filtering out those workers who answered the attention
check question incorrectly or workers who reported to be “Inde-
pendent”, in total, we collected 9,832 judgments from 402 crowd
workers. Among them, 276 workers reported themselves to be
Democrat and 126 workers are Republican.

5.3.2  Annotation Results. We firstly set out to understand the an-
notation accuracy difference across all tasks between the Democrat
and Republican workers. As shown in Table 7, we observed that
there is no significant difference in overall annotation accuracy for
workers with different political stances (p > 0.05). However, by
taking a deeper look into people’s annotation performance on dif-
ferent subgroups of texts, we found that annotators’ political stance
significantly affected their labeling results. For instance, for left-
leaning, biased texts, Democrat workers show a significantly lower
accuracy than Republican workers, and our t-test result suggests
the difference is significant (p < 0.001). On the contrary, on the
right-leaning, biased texts, Democrat workers have substantially
higher accuracy than Republican workers (p < 0.001). In other
words, the accuracy differences between Democrat and Republican
workers on texts with different political leaning suggest that real-
world crowd workers indeed suffer from their own biases when
determining whether texts contain biased language.

From the findings above, it is reasonable to conjecture that left-
leaning workers suffer from their own confirmation bias and have
a higher tendency to incorrectly classify right-unbiased text into
the biased. At the same time, right-leaning workers also prefer to
claim that left-unbiased data is biased. In general, people are more
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tolerant to text with the same political leaning as their stance but
more strict to oppositely leaning text data.

5.3.3 Examining the Classifiers’ Performance. To examine different
biased language classifiers’ performance on the real-world dataset,
in this experiment, we randomly sample the labeled data with dif-
ferent proportions from the Democrat and Republican workers to
create training sets that are labeled by annotator populations with
different compositions of political leanings. This allows us to sys-
tematically examine the fairness level of different biased language
classifiers, as the real-world dataset gets collected from different
populations of annotators.

We again focused on comparing the performance of the three
methods—CE, SCLEN, and CLEARE, when ROBERTa was used as
the pre-trained encoder. We randomly chose 70% of the left-leaning
and right-leaning texts, as well as 15% of the “center” text in BABE
as the training set. We then took 5% of the texts in all subsets of
BABE as the validation set, while the remaining texts were used
as the test set. Given the training set, we then constructed three
real-world annotated datasets that could be collected from different
populations of annotators: (1) left-dominant: for each text in the
training set, the annotation is sampled from a random Democrat
worker; (2) balanced: for each text in the training set, with 50%
chance the annotation is sampled from a random Democrat worker
and with 50% the annotation is sampled from a random Republican
worker. (3) right-dominant: for each text in the training set, the
annotation is sampled from a random Republican worker. For the
validation set and test set, the expert labels of the BABE dataset
are used for a fair comparison. For each version of the real-world
annotated datasets that we constructed, the three models are trained
and evaluated. We repeated this process for 30 times over different
random partitions of the dataset.

Figure 3 compares the fairness of the three classifiers on the
three real-world annotated datasets. We observed a robust and con-
sistent improvement of CLEARE over CE and SCLEN in fairness
metrics for all three annotated datasets. Interestingly, we find when
the annotations are provided by a balanced population of Demo-
crat and Republican workers (i.e., the “balanced” dataset), all three
models exhibit the highest levels of fairness across subsets of texts
with different political leanings. Still, CLEARE exhibits significant
improvement over the other two baseline methods with respect to
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both fairness metrics, which suggests the power of CLEARE for
enhancing the fairness level in biased language detection.

6 CONCLUSION

In this paper, we presented our novel method, CLEARE, for biased
language detection, where it learns a robust encoder of the textual
data via utilizing self-supervised contrastive learning. Our exper-
iments on both real-world datasets and simulations suggest that
CLEARE has the potential to address the issues of data scarcity,
data noise, and data biases, which are prevalent in real-world ap-
plication scenarios of biased language detection. We hope that our
study, as well as the biased language annotation dataset that we
collected from crowd workers with different political leanings in
this study, could encourage more work in the future on developing
new methods to detect biased language more accurately and fairly.
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Appendix A EMPIRICAL CONVERGENCE OF
CLEARE
We used Monte Carlo estimate to approximate the gradient for

policy p in £5.; (Eqn.5). Figure A1 shows some level of empirical
convergence of the optimization process.
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Figure A1l: Empirical training curves of the loss function
value for the three datasets.

Appendix B COMPARISONS WITH
DIFFERENT AUGMENTATION
METHODS

We extensively compared our method with seven other algorithms
using different data augmentation strategies, which consists of
single-operation and multiple-operations data augmentation meth-
ods. For single-operation methods, we consider:

e Random Swap (RS): RS randomly exchanges the position of
adjacent words in the sentence.

e Random Delete (RD): RD randomly deletes words or phrases
in the sentence.

e Synonym Substitute (SS): SS randomly replaces words or
phrases with their synonyms.

o TF-IDF [16]: TF-IDF utilizes the term frequency and the in-
verse document frequency to compute the score for each
word then replace words with low scores according to pro-
portion.

e Contextual Sentence Insert (CSI): We utilized GPT3 [2] to
firstly encode the text inputs into feature space and find a
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Contributed Paper

sentence that has similar semantic features. Then we inserted
this new sentence in the original text inputs.

For Random Swap (RS), Random Delete (RD), TF-IDF and Synonym
Substitute (SS), we set the proportion p of word to be edited as 0.2
in all experiments. For multiple-operations methods, we consider
EDA and JOAO:

e EDA (easy data augmentation) [54]: EDA samples one of
five single-operation methods uniformly during the training
phase for training data.

e JOAO [58]: JOAQ is an adaptive data augmentation method®
for graph-like data, which applies bi-section optimization to
select optimal sampling policy. We replaced graph augmen-
tation operations with the five text augmentation operations
described above.

5We noticed that TAA [42] was recently proposed as a learnable data augmentation
paradigm for text. We did not compare it with JOAO and our method since TAA needs
extra validation data to optimize the policy, and it can not be applied in the contrastive
learning framework.
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