Predicting Crowd Work Quality under Monetary Interventions

Ming Yin, Yiling Chen

HCOMP-16 • Austin, TX • October 31, 2016

HARVARD

School of Engineering and Applied Sciences

Modeling Worker Performance in Crowdsourcing

Accuracy / Error Rate

(e.g. Whitehill et. al. 2009)

Temporal Pattern

(e.g. Jung, Park & Lease. 2014)

Modeling Worker Performance under Interventions

How to capture worker performance under interventions?

Categorical time series prediction with exogenous inputs!

A Prediction Perspective

Focus on *monetary intervention* in this talk!

An Empirical Comparison

Supervised Learning Models

Random Forests

SVM

Neural Network

Autoregressive Models

$$y_i^t = I_t y_i^{t-D_t} + (1 - I_t)e_t$$

DARX

Markov Models

Controlled MC

Supervised Learning Models: Features

Current Intervention Level Average Intervention Level Average Performance

Within a history window of size *L*:

Historical Intervention Levels

Historical Performance

Historical Intervention Changes

Historical Performance Changes

Random Forests, SVM, Neural Network

Autoregressive Models: Incorporating Exogenous Inputs

DARX: Extended from DAR [Jacobs and Lewis 1983]

LARX: Extended from LAR [Jung, Park and Lease 2014]

Markov Models: Application

Controlled Markov Chain

Action: Intervention State: Worker Performance

Input-Output Hidden Markov Model

Inputs: Intervention Outputs: Worker Performance

Evaluation Datasets

Word Puzzle

300 workers
9 tasks in a session
37% bonus tasks
76.8% high-quality

Butterfly Classification

220 workers
10 tasks in a session
29% bonus tasks
55.5% high-quality

Proofreading

80 workers
10 tasks in a session
49% bonus tasks
63.4% high-quality

80% Training

20% Testing

Baselines: Running Accuracy, LAR

It is *necessary* to model the impact of monetary interventions on worker performance.

The *random forest* model outperform other prediction models! (Best model for 7 out of 9 comparisons!)

Predictive features: average performance; average intervention level.

More Realistic Scenarios

The random forest model is *relatively robust against limited training data*.

80% Training

20% Testing

0% Verification

	\$	\$				\$	
	n/a	n/a	n/a	n/a	n/a	n/a	?

20% Verification

 \$
 \$
 \$
 \$

 n/a
 n/a
 n/a
 n/a
 n/a
 ?

40%, 60%, 80%...

The random forest model (and the IOHMM model) is *relatively robust against limited access to ground truth*.

Summary

The *random forest model* can be a good model to use in practice to predict crowd work quality under monetary interventions, because of its:

- Accurate predictions with high confidence across different types of tasks
- Robustness against limited training data
- Robustness against limited ground truth

Future Directions

Future Directions

Thank you!