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Abstract
With the rapid development of decision aids that
are driven by AI models, the practice of human-
AI joint decision making has become increasingly
prevalent. To improve the human-AI team perfor-
mance in decision making, earlier studies mostly
focus on enhancing humans’ capability in better
utilizing a given AI-driven decision aid. In this
paper, we tackle this challenge through a com-
plementary approach—we aim to adjust the de-
signs of the AI model underlying the decision aid
by taking humans’ reaction to AI into consider-
ation. In particular, as humans are observed to
accept AI advice more when their confidence in
their own decision is low, we propose to train AI
models with a human-confidence-based instance
weighting strategy, instead of solving the standard
empirical risk minimization problem. Under an
assumed, threshold-based model characterizing
when humans will adopt the AI advice, we first
derive the optimal instance weighting strategy for
training AI models. We then validate the efficacy
of our proposed method in improving the human-
AI joint decision making performance through
systematic experimentation on both synthetic and
real-world datasets.

1. Introduction
Systems leveraging Artificial Intelligence (AI) have seen
wide-scale adoption in numerous application areas over the
past few years (IBM, 2022). While many of them have had
vast impact on their own, their independent utility is at times
constrained by technical as well as socioethical limitations.
This happens not only in high-stakes settings like criminal
justice, where even a single wrong decision—by AI—has
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profound implications, but also in lower-stakes ones like
sarcasm detection, where AI still struggles with fully ad-
dressing the task complexities (Abu Farha et al., 2022). In
such scenarios, these AI systems can still be excellent aides
to humans, who can make the overall decision making more
efficient and effective by combining AI’s assistance with
their own formal and informal knowledge. This has moti-
vated the formation of human-AI teams for joint decision
making, which is being utilized in varied domains, from
criminal justice (Green & Chen, 2019) and healthcare (Fu-
toma et al., 2017) to credit lending (Kruppa et al., 2013) and
content moderation (Link et al., 2016).

Complementarity, wherein the team members understand,
and subsequently supplement, each other’s strengths and
weaknesses, is by definition central to effective collaboration
in human-AI teams—or really any team in general. Effec-
tive collaboration here reflects the possibility of a human-
AI team outperforming its individual counterparts. Earlier
studies to enhance complementarity have emphasized on
improving humans for the purpose, with particular stress on
understanding and improving human reliance on AI (Bansal
et al., 2019a; Lu & Yin, 2021). However, the AI systems—
which are often more tunable, predictable and scalable than
their human teammates—mostly continue to be designed
for maximum individual accuracy. A recent effort to opti-
mize team accuracy instead showed promising results but
expected gains were not accompanied by empirical ones,
likely because of having strong assumptions on human be-
havior (Bansal et al., 2021).

There is an evident need for better modeling of human be-
havior with respect to collaboration with AI in real-world
scenarios, and integration of the same in (re)design of AI
while accounting for humans’ reaction to it. At a higher
level, we want the AI teammate to perform better on in-
stances where the human decision maker “needs” it more.
These needs are related to both humans’ actual as well as
self-perceived strengths and weaknesses. Human confidence
is thus one intuitive choice as indicator of such needs. In
fact, a recent study (Chong et al., 2022) suggests that con-
fidence of humans in their own decision, rather than in AI,
dictates their decision to accept AI recommendation.

In this paper, we propose to train a complementary AI by
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using human-confidence-based instance weighting, instead
of the standard empirical risk minimization where all in-
stances are weighted equally. By upweighting instances
where human decision maker has low self-confidence, our
objective is to guide the AI towards regions of expertise
that complement those of humans. The use of confidence,
or perceived accuracy, rather than actual accuracy for in-
stance weighting is particularly advantageous in mitigating
the impact of cognitive biases exhibited by humans when in-
teracting with AI, as these biases often stem from erroneous
human perceptions and beliefs. More involved analysis later
reveals that our proposed strategy provably optimizes for
team performance under a suitable model for biased deci-
sion making. To validate the effectiveness of our approach,
we conduct a systematic experimentation to determine the
conditions under which our proposal yields maximum gains.
Our results indicate that when distinct regions of exper-
tise are present, the AI model trained using our proposed
method effectively develops complementary expertise, with
the greatest gains observed when the AI trained using the
standard approach exhibits significant overlap in expertise
with the human teammate. While factors such as confidence
calibration and individual accuracy influence the degree of
effectiveness, the instance-weighted AI generally remains
a superior teammate even when these factors assume sub-
optimal values, making it especially useful for real-world
scenarios and practical human-AI teams.

Related Work. Recent advancements in AI technologies
have sparked a surge of research in the field of human-AI
collaboration, exploring various aspects of interaction and
cooperation between humans and AI systems (Ong et al.,
2012; Nguyen et al., 2022; Siemon, 2022). Studies have
sought to understand and foster human-AI complementarity,
with efforts focused on delegability problem, i.e., to identify
when should each individual’s expertise be leveraged for
enhanced team performance (Steyvers et al., 2022; Lubars
& Tan, 2019; Holstein & Aleven, 2021). Some researchers
have tackled the challenge of improving human reliance
on AI by developing mental models for AI and AI trust
(Bansal et al., 2019a;b; Zhang et al., 2022), while others
have explored more direct approaches like exemplar-based
teaching (Mozannar et al., 2022). Additionally, there is a
growing body of work investigating human behavior pat-
terns when interacting with AI, particularly in relation to
how human cognitive biases influence their reliance on AI
(Zhang et al., 2020; Schemmer et al., 2023). Such work
highlights the importance of human factors for effective
human-AI collaboration, especially confidence as an indi-
cator of human inclination to accept AI recommendation
(Chong et al., 2022; Wang et al., 2022; Lu & Yin, 2021).
However, so far, only a few studies attempt to take these
into consideration when designing AI, by identifying chal-
lenging instances for individual agents (Wilder et al., 2020)

or directly optimizing for team utility (Bansal et al., 2021).

2. Problem Setup
In a human-AI joint decision making setting, given the de-
cision making case characterized by features x ∈ X , the
human-AI team needs to make a decision y ∈ Y . In this
study, we focus on a popular human-AI joint decision mak-
ing setting which is often referred to as “AI-assisted decision
making”, where an AI model provides a decision recommen-
dation ym = m(x; θm) to a human decision maker—who
may have their own independent judgement yh = h(x; θh)
on this case—and the human decision maker needs to make
the final team decision d. Without loss of generality, we
focus on multiclass classification tasks in this study (i.e.,
Y = {1, 2, . . . ,K}).

To obtain the AI model, we have a training dataset
which comprises N feature-label pairs, i.e., D =
{I1, I2, . . . , IN} where Ii = (xi, yi). A common prac-
tice adopted to train the AI model is to learn the model
parameters θm that minimize the empirical risks over the
entire training dataset:

θm = argminθ′
m

1

|D|
∑

(xi,yi)∈D

ℓ (m(xi; θ
′
m), yi) (1)

where ℓ(·) is a loss function of interest (e.g., 0-1 loss). How-
ever, this training process effectively optimizes for the AI
model’s independent performance rather than the perfor-
mance of the human-AI team. In other words, this op-
timization process neglects the human decision maker’s
contribution to the decision making process. Assuming
that the human decision maker’s final team decision d =
f(x, ym = m(x; θm), yh = h(x; θh)) i.e., d is influenced
by the decision making case x, the AI model’s decision
recommendation ym, and the human decision maker’s own
independent judgment yh, training an AI model that opti-
mizes for the human-AI team performance requires us to
solve a new empirical risk minimization problem:

θm = argminθ′
m
Lteam

= argminθ′m
1

|D|
∑

(xi,yi)∈D ℓ(f(xi,m(xi;θ
′
m),h(xi;θh)),yi)

(2)

Interestingly, recent empirical studies suggest that when
collaborating with an AI model in decision making, human
decision makers are more inclined to accept the AI rec-
ommendation when they have low “self-confidence”, that
is, their confidence in their own independent judgment is
low (Chong et al., 2022; Wang & Du, 2018; Schemmer et al.,
2023; Wang et al., 2022). Thus, when a human confidence
oracle C that provides us with human self-confidence on
each decision making instance (i.e., C : H(X ) 7→ [0, 1])
is available, this empirical insight can be reflected by a
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threshold-based team decision making model:

f(xi,m(xi;θm),h(xi;θh))=

h(xi; θh) if Ci > ρ

m(xi; θm) otherwise
(3)

where Ci := C(h(xi; θh)) is the human decision maker’s
self-confidence on instance i, and ρ is the self-confidence
threshold for the human decision maker to rely on or ignore
the AI recommendation—humans will rely on the AI recom-
mendation if their self-confidence is below ρ, thus a higher
value of ρ is associated with a higher frequency for humans
to rely on the AI recommendation.

In this paper, as an initial step to better factor the human
decision maker’s behavior in AI-assisted decision making
into the training of the AI model, we explore how the AI
model should be trained to optimize for the human-AI team
performance, when the team uses the threshold-based model
(i.e., Equation 3) to make the joint decisions.

3. Human-Confidence-Based Instance
Weighting

When the human-AI team uses the threshold-based model
to determine their joint decisions, humans will “only” adopt
the AI recommendation when their self-confidence is suf-
ficiently low (i.e., below ρ). Intuitively, this implies that
an AI model needs to be as accurate as possible on those
decision making instances where humans are less confident
about their own judgments and thus “need” the AI recom-
mendation more in order to optimize for the human-AI team
performance. To operationalize this idea, we propose to
train a complementary AI model yc = mc(x; θc) that mini-
mizes the weighted empirical risks over the entire training
dataset, where the weight of each instance (wi) is a function
of the human decision maker’s self-confidence on it (Ci):

θc = argminθ′
c

∑
(xi,yi)∈D

wi · ℓ(mc(xi; θ
′
c), yi) (4)

Intuitvely, the standard AI model ym = m(x; θm) weighs
all instances equally (i.e., wi = 1 ∀ Ii ∈ D). In general,
without additional information about the value of the self-
confidence threshold ρ, we have the following proposition:

Proposition 3.1. If the human decision maker is less confi-
dent about Ii than Ij , then Ii should be weighted at least
as high as Ij , i.e., wi ≥ wj if Ci < Cj .

Proof intuition. Given the unknown self-confidence thresh-
old ρ, if Ci < Cj , we have Cj ≤ ρ =⇒ Ci ≤ ρ but
Cj > ρ ≠⇒ Ci > ρ. In other words, Ii is always in “low
confidence region” (i.e., below the self-confidence threshold
ρ) when Ij is in low confidence region, and Ii could be
in low confidence region even when Ij is not. Since we

aim to maximize the AI model’s performance in the low
confidence region where humans will adopt its recommen-
dation, training data instances more likely to be in the low
confidence region should be weighted at least as highly, i.e.,
wi ≥ wj .

Following this proposition, we may propose a few heuris-
tic methods for setting the weight for each training data
instance, e.g., wi = 1 − Ci or wi = 1

Ci
. Below, we dis-

cuss how to derive the optimal weight of each training data
instance in two different scenarios with different kinds of
information about the self-confidence threshold ρ.

3.1. Optimization for Known Self-Confidence Threshold

First, we consider the simplest scenario where the human
decision maker has a fixed self-confidence threshold ρ to
determine their reliance on the AI recommendation, and its
value is known to the AI model developer. Let Dh := {Ii |
Ci > ρ} and Dh̄ := D \ Dh be the sets of instances where
human has high and low self-confidence respectively. Using
the threshold-based team decision making model (Equation
3), the complementary AI should focus only, and equally,
on instances in the low confidence region Dh̄.
Proposition 3.2. When the human decision maker uses a
fixed and known self-confidence threshold ρ to determine the
human-AI team joint decision, the team loss is minimized
when wi = 1[Ci ≤ ρ].

Proof. According to Equation 3, the team loss can
be decomposed into “human loss” and “AI loss” as
follows: Lteam = 1

|D|
∑

(xi,yi)∈Dh
ℓ(h(xi; θh), yi) +

1
|D|

∑
(xi,yi)∈Dh̄

ℓ(mc(xi; θc), yi). Since we can directly
optimize AI only, the first term (i.e., the “human loss”) is ef-
fectively a constant. This is equivalent to assigning a weight
of 0 to instances in Dh and 1 to instances in Dh̄, or setting
wi = 1[Ci ≤ ρ].

3.2. Optimization for Expected Self-Confidence
Thresholds

In practice, however, humans’ self-confidence threshold ρ
may not only be unknown to the AI model developer, but
may also vary between individual human decision makers
and across time. To reflect this, we consider a second sce-
nario such that when facing a decision making instance, the
human decision maker will need to draw a threshold value
from a known distribution (i.e., ρ ∼ fT (ρ)) and then apply
the threshold-based model to determine the final human-AI
joint decision. In this case, the complementary AI model
needs to be trained to minimize for the expected team loss
over all possible self-confidence thresholds.
Proposition 3.3. When the human decision maker draws
a self-confidence threshold from a known distribution to
determine the human-AI team joint decision, i.e., ρ ∼ fT (ρ),
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the expected team loss is minimized when wi = 1−FT (Ci),
where FT (·) is the cumulative distribution function (CDF)
for threshold value ρ.

Proof. Given the threshold-based team decision making
model, we decompose the expected team loss (E[Lteam])
as follows (we use h(x) and mc(x) to refer to h(x; θh) and
mc(x; θc), respectively, for convenience and readability):∫ 1

ρ=0

fT (ρ) ·
1

|D|
∑

(xi,yi)∈D

ℓ(f(xi,mc(xi), h(xi)), yi) dρ

=
1

|D|
∑

(xi,yi)∈D

∫ 1

0

fT (ρ) · ℓ(f(xi,mc(xi), h(xi)), yi) dρ

=
1

|D|
∑

(xi,yi)∈D

(∫ Ci

0

fT (ρ) · ℓ(h(xi), yi) dρ

+

∫ 1

Ci

fT (ρ) · ℓ(mc(xi), yi) dρ

)
=

1

|D|
∑

(xi,yi)∈D

FT (Ci) · ℓ(h(xi), yi)︸ ︷︷ ︸
uncontrollable human loss

+
1

|D|
∑

(xi,yi)∈D

(1− FT (Ci)) · ℓ(mc(xi), yi)

Thus, minimizing E[Lteam] is equivalent to minimizing∑
(xi,yi)∈D(1− FT (Ci)) · ℓ(mc(xi; θc), yi), which implies

wi = 1− FT (Ci).

Remarks. Following Proposition 3.3, we can see that the
heuristic method of setting the weight of each training in-
stance wi = 1− Ci is in fact the optimal, when the human
decision maker draws their self-confidence threshold from a
uniform distribution, i.e., ρ ∼ U [0, 1].

4. Evaluation
In this section, we conduct simulation studies on two
datasets to evaluate that when human decision makers
collaborate with an AI model trained following the pro-
posed human-confidence-based instance weighting method,
whether the human-AI team joint decision making perfor-
mance improves compared to when they collaborate with
an AI model trained following the standard method.

4.1. Simulation on Synthetic Data: College Admission

We conduct our first simulation study on a college admission
decision making task, for which the dataset is generated en-
tirely synthetically. Evaluation on this fully synthetic dataset
is useful because: (1) we may artificially create a decision
making scenario where human decision makers exhibit dif-
ferent levels of competence/confidence on different subsets
of decision making tasks, so that the proposed method for

training a complementary AI model is more likely to be ben-
eficial; (2) we may systematically control characteristics of
the human decision maker’s behavior to examine the robust-
ness of the proposed method in improving the human-AI
joint decision making performance.

Synthetic Dataset Generation. Specifically, in this task,
decision makers need to determine whether to admit an
applicant to college (i.e., Y = {+1,−1}, +1 represents
admitted while −1 represents rejected), given two features
of the applicant—their Grade Point Average (i.e., “GPA”)
and their standardized test scores (i.e., “SCORE”). Inspired
by Haider et al. (2022), we assume that applicants may either
belong to the privileged group or underprivileged group. In
addition, we assume that SCORE is more predictive of the
admission outcome for privileged applicants, while GPA is
more predictive for underprivileged applicants.

Generating decision making tasks. We start by generating a
set of decision making task instances, where each instance
is represented by a (xGPA, xScore, y) tuple. For each of
the n = 100, 000 instances (i.e., applicants), the values of
xGPA and xScore are uniformly randomly sampled between
0 and 1; for both GPA and SCORE, we refer to a value that
is above (below) a threshold t as high (low), and we use
t = 0.5 in this study. The applicant is further assigned to the
privileged group with probability r, and we use r = 0.75 in
this study. Finally, we follow the steps below to determine
the ground truth label y for each applicant:

1. If both xGPA and xScore are high, set y = +1 regard-
less of the group identity of the applicant;

2. For a privileged applicant, if xScore is low, set y = −1;
and if xScore is high yet xGPA is low, set y = +1
with a probability p that is proportional to the value
of xScore + xGPA, i.e., the higher the xScore + xGPA

value is, the more likely the applicant will be admit-
ted1. This reflects that SCORE is more predictive of the
admission outcome for privileged applicants.

3. For an underprivileged applicant, if xGPA is low, set
y = −1; and if xGPA is high yet xScore is low, we
again set y = +1 with a probability p that is propor-
tional to the value of xScore + xGPA

1. This reflects
that GPA is more predictive of the admission outcome
for underprivileged applicants.

4. Lastly, to account for a degree of randomness in the
admission process, we will flip the label y currently
set for the applicant with a small probability q. q is
designed in a way such that when the current label
y = +1, applicants with higher values of xGPA +

1We operationalize this by mapping the value of xScore +
xGPA to a p value in the interval between 0.5 and 1.
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xScore will have smaller q (thus less likely to be flipped
to “rejected”), while when y = −1, applicants with
smaller values of xGPA + xScore will have smaller q
(thus less likely to be flipped to “admitted”)2.

A visualization of the generated dataset is provided in Figure
A.1 in the Appendix.

Generating human decision makers’ behavior. To reflect
that humans have varying levels of competence/confidence
on different subsets of decision making tasks, on a decision
making instance that belongs to group g (i.e., privileged or
underprivileged), we randomly generate a human decision
maker’s independent judgment yh such that it is correct with
a probability of accg. Further, the human decision maker’s
confidence on this instance is randomly sampled from a
uniform distribution U [accg−under, accg+over]; we may
systematically vary the values of under and over to control
the human decision makers’ confidence calibration degree.
Finally, the decision maker’s self-confidence threshold ρ on
this instance is randomly sampled from a distribution fT (ρ),
and we experiment with different distributions.

Evaluations with Different Threshold Distributions.
Given our synthetic dataset, we first evaluate the effec-
tiveness of the proposed AI training method in improv-
ing the human-AI team performance when human decision
makers have different self-confidence threshold distribu-
tions in determining the team decisions (i.e., fT (ρ)). As
shown in Proposition 3.3, given a specific self-confidence
threshold distribution fT (ρ), the optimal weighting func-
tion to be used to train the complementary AI model is
wi = 1− FT (Ci). However, knowing or being able to reli-
ably estimate the precise format of fT (ρ) can be unrealistic
in practice. Thus, as a secondary goal of this evaluation, we
aim to explore how critical using the exact optimal weight-
ing function is to obtaining human-AI team performance
gains through our complementary AI training method.

Evaluation Setup. In this evaluation, we assume human
decision makers’ independent judgments are more accu-
rate on applicants from the privileged group. Thus, we
set accpriv = 0.9 and accunpriv = 0.6. We further set
under = 0.1 and over = 0.1 (i.e., human decision makers’
confidence is relatively well calibrated). Moreover, we con-
sider 5 types of self-confidence threshold distributions: (1)
UNIFORM: ρ ∼ β(1, 1)3, reflecting the case that decision
makers’ self-confidence threshold for relying on or ignor-
ing the AI recommendation is uniformly spread over the

2We operationalize this by mapping the value of xScore +
xGPA to a q0 value in the interval between 0 and 0.1. Then, when
y = +1, q = 0.1− q0, and when y = −1, q = q0.

3Distributions are re-scaled to accommodate for the fact that
confidence on binary classification task varies between 0.5 and 1,
instead of 0 and 1.

spectrum; (2) UNBALANCED: ρ ∼ β(1, 2)3, reflecting the
case that human decision makers’ self-confidence threshold
leans towards the lower end of the spectrum; (3) U-SHAPED:
ρ ∼ β(0.5, 0.5)3, reflecting the case that decision makers’
self-confidence threshold tends to be either very low or very
high; (4) INV-U: ρ ∼ β(2, 2)3, reflecting the case that de-
cision makers’ self-confidence threshold leans towards the
middle of the spectrum; (5) δ: an impulse at 0.75, reflecting
the case that decision makers’ self-confidence threshold is
fixed at a single value.

We randomly divide our synthetic dataset into the training
and test folds based on a 80 : 20 split. Given the training
dataset, we train random forest classifiers with maximum
tree depth of 5 as our AI models. The baseline model is
trained using the standard loss (Equation 1), while the five
other complementary AI models are trained using the team
loss following the human-confidence-based instance weight-
ing method (i.e., wi = 1 − FT (Ci)), and each model cor-
responds to one threshold distribution as listed above (i.e.,
UNIFORM, UNBALANCED, U-SHAPED, INV-U, δ). Then, on
the test dataset, given each of the six AI models, we simu-
late the human-AI team decision on each instance following
the threshold-based model (Equation 3) and determine its
accuracy by comparing against the ground truth label. We
repeat this procedure for five times in total.

Evaluation Results. Figure 1 reports the comparison of the
average human-AI team decision making accuracy on the
test dataset, when human decision makers are collaborating
with different AI models. We make the following observa-
tions: (1) Compared to the case when humans collaborate
with the baseline AI model, for each of the self-confidence
threshold distributions we consider, when training the AI
model using the corresponding optimal weighting function,
we can see a significant increase in the human-AI joint de-
cision making performance. (2) In most cases (except for
when the true self-confidence threshold distribution is U-
SHAPED), even if the instance weights are not optimal (i.e.,
computed based on incorrect assumptions about the thresh-
old distribution), a notable human-AI team performance
gain can still be found when humans collaborate with a com-
plementary AI model rather than the baseline AI model. (3)
The heuristic weighting function wi = 1− Ci, which does
not rely on knowledge or estimation of the self-confidence
threshold distribution, seems to be a good default choice
that can lead to reasonable team performance gains.

Evaluation with Different Human Characteristics. In
our second evaluation, we systematically vary a number
of characteristics of the human decision makers, including
their expertise overlap with the baseline AI model, their
average self-confidence threshold for relying on or ignoring
the AI recommendation, and their confidence calibration
degree. We aim to use this evaluation to identify under what
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Figure 1. The human-AI team decision making accuracy when
human decision makers’ self-confidence thresholds are drawn
from different distributions (x-axis) and collaborate with AI
models trained using different human-confidence-based instance-
weighting strategies. Error shades represent the standard errors
of the mean. Optimal weighting strategy as per Proposition 3.3
indeed results in the highest team performance (large, thick ×
marker has the largest value on y-axis for every self-confidence
distribution on x-axis), but other strategies also often lead to rea-
sonable team performance gains against the baseline AI model.

conditions the proposed method may lead to the largest
gain in the human-AI joint decision making performance.
For simplicity, we adopt the heuristic weighting function
wi = 1 − Ci for training the complementary AI model in
this evaluation. On the other hand, human self-confidence
threshold is sampled from ρ ∼ U [0.7, 0.8]. Consistent
with previous evaluation setup, we use accpriv = 0.9 and
accunpriv = 0.6, and set under = 0.1 and over = 0.1 in
general.

Impact of Expertise Overlap between Humans and the Base-
line AI model. We first examine the team performance
gain brought up by the proposed instance-based weighting
method to train complementary AI models when the human
decision makers have varying levels of expertise overlap
with the baseline AI model. In our setting, the baseline AI
is found to be more accurate on the privileged applicants as
they are the majority group. We then create 5 sets of human
decision makers’ independent decision data with varying
levels of human-AI expertise overlap (i.e., very high, high,
medium, low, very low) by controlling the humans’ inde-
pendent decision accuracy comparison on the two groups
to change from being consistent with that of the baseline
AI model (i.e., accpriv > accunpriv , high overlap) to being

opposite to that of the AI model (i.e., accpriv < accunpriv,
low overlap), while ensuring the overall accuracy of humans’
independent decision does not change much4.

Figure 2a shows the evaluation results. We find that the
proposed method leads to the largest human-AI team perfor-
mance gains when the baseline AI model has high expertise
overlap with humans (i.e., it is not complementary already).
This is understandable, as when the humans have low exper-
tise overlap with the baseline AI model, the baseline model
is “complementary” by itself and becomes largely similar
to the AI model obtained from using the proposed human-
confidence-based instance-weighting training method.

Impact of Average Self-Confidence Threshold. The human
self-confidence threshold (ρ from Equation 3) reflects the
dependency of humans on AI, with a higher value indicating
human decision makers would rely on AI recommendation
more frequently. Beyond evaluating the impact of type of
threshold distribution, as done earlier (Figure 1), we are
also interested in evaluating how the (average) values of
this threshold impact human-AI team performance gain.
Our default setting of ρ ∼ U [0.7, 0.8] (i.e., ρavg = 0.75)
maps to medium self-confidence on average. We change the
sampling distribution to U [0.5, 0.6], U [0.6, 0.7], U [0.8, 0.9]
and U [0.9, 1.0] to represent very low, low, high and very
high values of average self-confidence respectively. The
instance weighting function wi = 1−Ci remains unchanged.

Figure 2b shows the evaluation results. We find that the
proposed method leads to the largest human-AI team per-
formance gains when the self-confidence threshold takes
on moderate values on average. This is understandable be-
cause both humans and AI may often contribute to the final
team decision here, and our complementary model gets a
chance to leverage its complementary strengths. When ρavg
is very low, human decision maker mostly discards AI rec-
ommendation so team accuracy is close to human accuracy
with limited gains from complementary AI model. When
ρavg is very high, human decision maker mostly accepts
AI recommendation so team accuracy is close to AI accu-
racy with negative gains from complementary AI model;
this is expected since complementary AI typically sacrifices
individual accuracy on entire data to be able to focus on
instances where human decision makers need it more.

Impact of Human Confidence Calibration. We assumed
human self-confidence to be well-calibrated till now. While
this is a common assumption, especially under popular ratio-
nal decision making that intrinsically relies on it, we know
that this seldom holds in practice. Therefore, we examine
how gains by our proposed instance weighting method vary
with varying levels of confidence calibration. Under our

4The Pearson correlation between humans’ and the baseline AI
model’s decisions decreases gradually from 0.53 to 0.28 as we go
from “very high” to “very low” expertise overlap dataset.
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Figure 2. Impact of different human charactersitics on gains from complementary AI (difference between solid green and red lines).

default setup, the human decision maker’s confidence on an
instance from group g is randomly sampled from a uniform
distribution U [accg − under, accg + over], and we have
been using over = 0.1 and under = 0.1 so far. This repre-
sents the well-calibrated setting. We test out four additional
settings here: under = 0.2 and over = 0 to represent very
high degree of underconfidence, under = 0.1 and over = 0
to represent high degree of underconfidence, under = 0
and over = 0.1 to represent high degree of overconfidence,
and under = 0 and over = 0.2 to represent very high
degree of overconfidence.

Figure 2c shows the evaluation results. We find that our
proposed method exhibits robustness to varying degrees of
confidence calibration and consistently yields substantial
gains. Since the same potentially miscalibrated confidence
is used for both meta-decision to accept AI recommendation
and instance weighting, the method mitigates the impact
of calibration errors to a certain extent, contributing to its
overall effectiveness. Maximum gains are attained when
human is slightly underconfident here.

4.2. Simulation on Real World Data: WoofNette

For more realistic and interpretable experimental condi-
tions, we sought to identify a vision dataset that ideally
contains distinct “groups” of instances with room for com-
plementarity (i.e., humans do not possess high and/or equal
accuracy across all groups). With this objective in mind,
we curated a subset of the widely used ImageNet dataset
(Deng et al., 2009), consisting of classes and instances that
present varying levels of difficulty for human classifica-
tion. Ultimately, we selected 10 classes, comprising five

easily recognizable objects (Church, Garbage Truck, Gas
Pump, Golf Ball and Parachute) and five challenging dog
breeds (Australian Terrier, Border Terrier, Dingo, Old En-
glish Sheepdog, and Rhodesian Ridgeback), from ImageNet.
The resulting dataset, named WoofNette, consists of a total
of 9, 446 training images and 4, 054 test images, each of
size 128 × 128 × 3. Sample images from the WoofNette
dataset are provided in Figure A.2 in the Appendix.

Human behavior data. We conducted a pilot study on
Amazon Mechanical Turk involving 200 images, with nearly
7 annotations per image. This allowed us to estimate the
accuracy of human for each class. Human decision mak-
ers’ independent judgment on images belonging to a certain
class was then randomly simulated such that the probabil-
ity that it was correct equals to humans’ accuracy on that
class. Moreover, for a given image, we take the proportion
of workers in the pilot study whose annotation matches the
majority annotation for this image as the proxy for humans’
self-confidence on it (i.e., higher agreement with the major-
ity indicated greater confidence in their independent judg-
ments). However, since we only had this information for
the 200 pilot study images, compared to the nearly 10,000
training images, we ended up using this data to develop a
separate AI model for confidence prediction. More specif-
ically, a ResNet-50 deep neural network, initialized with
standard ImageNet weights, was trained to predict humans’
self-confidence based on input images. This AI model pro-
vided self-confidence values for each task instance gener-
ated by our synthetic human. This model was then used to
provide self-confidence values of our synthetic human on
each task instance.
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Figure 3. Human, AI and Human-AI team performance on WoofNette using standard and complementary AI training strategies.

AI model training. We utilize the ResNet-50 architecture,
which is pre-initialized with ImageNet weights, as the AI
model. To establish a baseline AI, we train this model on the
WoofNette dataset by minimizing the standard categorical
cross-entropy loss. Additionally, to obtain a complementary
AI, we train the AI model using human-confidence-based
instance-weighted categorical cross-entropy loss. We again
adopt the simple (1−Ci) weighting scheme. However, train-
ing the AI model optimally leads to very high AI accuracy,
limiting the potential for complementarity with humans. To
create a more realistic scenario that aligns with practical
human-AI interaction, we intentionally restrict the AI’s ac-
curacy by training it for fewer epochs. In fact, we explore
the impact of AI accuracy on the observed gains by train-
ing both the baseline and complementary AI models until
a specified “target accuracy” is reached (i.e., we consider
the model as converged and stop training when the training
accuracy surpasses the target accuracy).

Evaluation results. To obtain the team decision, we use
try two self-confidence threshold distribution: UNIFORM
(U [0.1, 1]) and δ (impulse at 0.7). UNIFORM represents the
most basic, uninformative scenario. On the other hand, δ
may be more representative here as it would lead to two
high and low confidence regions, which is what we expect
with easy object images and difficult dog images. We get
significant gains, especially for lower target accuracy, using
our proposed training method in both cases, although the
absolute improvement in accuracy is much higher in case
of δ (Figure 3). As expected, the gains are higher when
target AI accuracy is lower since there is more room for
contribution by human teammate

5. Conclusion
In this paper, we address the challenge of improving human-
AI joint decision making by designing AI-driven decision
aids that take into account humans’ reactions when inter-
acting with it. Our approach focuses on adjusting the AI
models based on humans’ confidence in their own decisions.
We first formulated a threshold-based team decision making
model that characterizes humans’ willingness to adopt AI
advice only when they have low confidence in their own
decisions. We then proposed a human-confidence-based
instance-weighting strategy for training complementary AI
models. Under the assumed decision making model, we also
derived optimal weighting strategies, and conducted experi-
ments on both synthetic College Admission and real-world
WoofNette datasets. The results of our experiments demon-
strated that our proposed strategy can significantly improve
the performance of human-AI joint decision making, even
under suboptimal settings like when human confidence is
not well-calibrated, making our solution particularly benefi-
cial for use in practical setups. By considering the human
factors and integrating them into the AI model design, we
offer insights into how AI models can be tailored to better
support humans in their decision-making processes. This
could complement existing body of work that focuses on
improving humans’ capability to better utilize a given AI
model. Future work will explore additional factors influ-
encing human acceptance of AI advice and investigate al-
ternative methods for adjusting AI models based on human
reactions, aiming to further enhance human-AI team perfor-
mance and refine the collaboration between humans and AI
in decision-making processes across various domains.
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Figure A.1. Visualization of decision making task instances from the synthetic College Admission dataset.
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Figure A.2. Sample images from WoofNette dataset.


