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ABSTRACT
This paper contributes to the growing literature in empirical evalu-
ation of explainable AI (XAI) methods by presenting a comparison
on the e�ects of a set of established XAI methods in AI-assisted deci-
sion making. Speci�cally, based on our review of previous literature,
we highlight three desirable properties that ideal AI explanations
should satisfy—improve people’s understanding of the AI model,
help people recognize the model uncertainty, and support people’s
calibrated trust in the model. Through randomized controlled exper-
iments, we evaluate whether four types of common model-agnostic
explainable AI methods satisfy these properties on two types of
decision making tasks where people perceive themselves as having
di�erent levels of domain expertise in (i.e., recidivism prediction
and forest cover prediction). Our results show that the e�ects of AI
explanations are largely di�erent on decision making tasks where
people have varying levels of domain expertise in, and many AI
explanations do not satisfy any of the desirable properties for tasks
that people have little domain expertise in. Further, for decision
making tasks that people are more knowledgeable, feature con-
tribution explanation is shown to satisfy more desiderata of AI
explanations, while the explanation that is considered to resemble
how human explain decisions (i.e., counterfactual explanation) does
not seem to improve calibrated trust. We conclude by discussing the
implications of our study for improving the design of XAI methods
to better support human decision making.
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1 INTRODUCTION
In recent years, numerous AI-driven decision aids have been devel-
oped to assist people in making better decisions in diverse domains
ranging from �nancial investment to criminal justice. To overcome
the black-box nature of many complex AI models underlying the
decision aids, various explainable AI (XAI) methods are designed
to inform people of the reasoning processes underneath the algo-
rithmic decisions. For example, sophisticated techniques such as
LIME [60] and SHAP [48] have been used to illustrate how much
each feature contributes to a model’s �nal prediction. Meanwhile,
reviews of the social science literature reveal that humans tend to
provide contrastive explanations when explaining their decisions to
each other, suggesting that explaining an AI using counterfactual
examples can be most understandable to humans as they share
similar conceptual framework as human explanations [12, 54].

The rapid development of XAI methods raises a few key ques-
tions in rigorously evaluating and systematically comparing these
methods: What properties characterize an e�ective AI explanation?
Do the established explanation methods satisfy these properties?
Is the extent to which an AI explanation satis�es these properties
dependent on the property of the decision making task, such as
how much the human decision makers feel they know about the
task domain a priori? To answer these questions, researchers have
been advocating for moving beyond de�ning what constitutes a
“good” explanation using model designer’s intuition but actually
examining how useful an explanation is with human users [24, 59].
In responding to this call, there is recently a growing line of liter-
ature on empirically evaluating the e�ectiveness of XAI methods
(e.g., [14, 16, 41, 69, 71]). Yet, principles required for an explanation
to be considered helpful in AI-assisted decision making, arguably,
still remain to be articulated and comprehensively assessed.

In this paper, we contribute to the XAI research by positing
three desirable properties that ideal AI explanations should satisfy
in order to be considered helpful in AI-assisted decision making,
and presenting a human-subject experiment which empirically
compares to what extent established AI explanation methods satisfy
these desiderata on two di�erent types of decision making tasks.

We start by reviewing the existing literature in empirical evalua-
tion of XAI methods and summarizing from them three desirable
properties that characterize an e�ective AI explanation, concerning
how well the explanation can help people 1) understand the AI
model, 2) recognize the uncertainty underlying an AI prediction,
and 3) calibrate their trust in the model. These properties are stated
mainly from the point of view of a human decision maker who is
assisted by an AI-driven decision aid, and are certainly not compre-
hensive. However, they provide an initial set of concrete standards
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upon which we can compare the strengths and weaknesses of dif-
ferent XAI methods.

We then conduct randomized human-subject experiments on
Amazon Mechanical Turk to understand to what extent various
types of established XAI methods (e.g., feature importance, feature
contribution, nearest neighbors, counterfactual examples) satisfy
these desirable properties, when they are used to assist human
decision makers in two di�erent decision making contexts (i.e.,
recidivism prediction and forest cover prediction) where people
perceive themselves as having varying levels of domain expertise.
Our results suggest that the e�ectiveness of di�erent XAI methods
largely depends on the properties of the decision making task. In
particular, for tasks that people have limited domain expertise in
(e.g., forest cover prediction), none of the three desiderata is reliably
satis�ed by any of the XAImethods that we have looked into. On the
other hand, on decision making tasks that people feel that they have
some domain expertise in (e.g., recidivism prediction), di�erent XAI
methods are shown to satisfy the three desiderata to di�erent degree.
For instance, showing each feature’s contribution to the model’s
prediction in individual cases seems to have the potential to satisfy
more of the desiderata. In contrast, the two example-based XAI
methods we have examined, including providing counterfactual
exampleswhich is believed to resemble human explaining processes,
seem to lack the ability to support trust calibration.

Our �ndings provide important implications on designing and
selecting e�ective XAI methods that are most suitable for the type
of decision making task and for the intended purposes, as well as
fairly and transparently reporting empirical evaluation results of
XAI methods. We conclude by discussing these implications.

2 LITERATURE REVIEW
Overview of AI explanation methods. Earlier literature on AI
explanations often concerns the communication of uncertainty in
AI decisions [45, 46]. More recently, the surge of interests in increas-
ing the interpretability and transparency of AI has brought about
the development of a variety of techniques for explaining the ratio-
nale of AI decisions, and di�erent taxonomies of these techniques
also emerge. For example, methods that aim at explaining the be-
havior of the entire AI model is categorized as global explanations,
while methods that provide reasons for speci�c model predictions
are categorized as local explanations [2, 24, 26]. In addition, depend-
ing on whether the explanation is designed for a particular type of
model, explanations can also be divided intomodel-speci�c methods
and model-agnostic methods. Model-speci�c methods often involve
the development of intrinsically interpretable models such as gen-
eralized additive models and decision sets [15, 34, 43, 66], as well
as visualizing what deep neural network has learned in its interme-
diate layers and how its predictions are a�ected by di�erent part
of the inputs (e.g., through saliency map) [37, 61, 68]. On the other
hand, typical model-agnostic methods include providing informa-
tion on global-level feature importance [28], computing feature
contribution on individual predictions [48, 60], using examples in
the training dataset or counterfactual examples to explain model
predictions [36, 39, 65], and conducting model distillation [10, 32].
Desiderata of AI explanations. In contrast to the rapid devel-
opment of explainable AI methods, systematic understandings of

what is an e�ective AI explanation fall far behind. Most recently, re-
searchers argued that the interpretability of an AI model should not
be de�ned using the model designer’s intuition. Instead, it should
be de�ned by user behavior, that is, whether model explanations
can improve people’s abilities in completing various tasks [24, 59],
and the “people” here can be di�erent parties in the AI ecosystems
including model developers, regulators, and end-users [63, 64]. Re-
searchers have proposed many tasks that AI explanations should
assist people in. We reviewed these tasks and used two criteria
to narrow down the scope of the tasks from which we extracted
the desiderata of AI explanations—�rst, we focused on those tasks
related to the ability of human decision makers in making decisions
when they are assisted by an AI model; second, we required the
tasks to be easily applicable to any kind of decision making con-
text1. Based on tasks that satisfy these criteria, we summarized
three desiderata of AI explanations as follows:

• Desideratum 1 (Understanding): Explanations of an AI
should improve people’s understanding of it.

• Desideratum 2 (Uncertainty awareness): Explanations of
an AI should help people recognize the uncertainty underly-
ing an AI prediction and nudge people to rely on the model
more on high con�dence predictions when the model’s con-
�dence is calibrated.

• Desideratum 3 (Trust calibration): Explanations of an AI
should empower people to trust the AI appropriately.

Desideratum 1 is the most straight-forward one, and researchers
have proposed various methods to assess people’s understanding of
an AI model. Typical methods include ask people to rank the input
data features based on their in�uence to overall predictions [18, 33],
to indicate the direction of change in the model’s prediction when
a feature’s value is altered [16, 18, 29], to simulate the model’s
predictions [16, 24, 40, 47, 59], to answer “what-if” questions about
the model behavior [7, 16, 24, 33, 54], and to detect mistakes of the
model and debug the model [59, 60].

Desideratum 2 connects to the needs of communicating the
uncertainty inherent in AI model predictions to people [71]. Ideal
AI explanations inform people of when the model is con�dent
in its predictions and provide insights into when it is uncertain;
thus they allow people to act upon di�erent predictions di�erently.
In particular, when the AI model’s con�dence is calibrated (i.e.,
the model’s con�dence accurately re�ects the model’s correctness
likelihood), the explanations should provide useful cues for people
to infer themodel’s con�dence on each case and adjust their reliance
on the model’s predictions based on the inferred model con�dence.

Finally, Desideratum 3 concerns the ultimate goal of AI-assisted
decision-making, that is, to maximize the joint human-AI team
performance [5, 6, 11]. An essential step towards this goal is to use
explanations to guide people to trust an AI model when it is right
and not to trust it when it is wrong. In other words, with the assis-
tance of model explanations, people should have better capability
of calibrating their trust in the model [69, 71]. Note that when an
explanation simply improves the human-AI joint decision making
accuracy, it does not necessarily mean this desideratum is satis�ed.

1An example of task that may not be applicable to some decision making context is
to examine human decision maker’s ability in detecting fairness problems of the AI
model or utilizing the AI model more fairly, in the presence of explanations [23, 30].
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Decision making AI Explanation Desideratum 1 Desideratum 2 Desideratum 3
Publications tasks methods (Understanding) (Uncertainty awareness) (Trust calibration)

Poursabzi-Sangdeh
et al. [59]

house price prediction intrinsically
interpretable model

mixed results N/A 7?

Alqaraawi et al. [3] image classi�cation saliency map mixed results N/A N/A
Chu et al. [17] age prediction saliency map N/A N/A 7?

Cheng et al. [16] student admission feature contribution 3 N/A N/A
Zhang et al. [71] income prediction feature contribution N/A 7 7?
Bansal et al. [6] sentiment analysis feature contribution N/A N/A 7

Carton et al. [14] toxicity content
detection

feature contribution N/A N/A 7?

Lai and Tan [42] deception detection feature contribution N/A N/A 3?
Lai et al. [41] deception detection feature contribution N/A N/A 3?
Cai et al. [13] drawing recognition example-based mixed results N/A N/A

Yang et al. [69] leaf classi�cation example-based N/A N/A 3

Note: “N/A” means the study does not examine the desideratum. 3 (or 7) means the study �nds (or does not �nd) evidence suggesting the explanation method it examines satis�es a desideratum. In the 3? (or
7?) cases, the study only reports human’s decision making accuracy is increased (or not changed) after receiving model explanation, which is not su�cient for us to draw conclusions on trust calibration.

Table 1: Summary of recent empirical studies examining the e�ects of explanations in AI-assisted decisionmaking (top panel:
studies using model-speci�c explanations; bottom panel: studies using model-agnostic explanations).

This is because people could trust an AI model inappropriately yet
still achieve a higher level of decision accuracy (e.g., blindly trust a
model which has a higher accuracy than oneself).
Empirical Studies on the E�ectiveness of AI explanations. A
small but growing number of empirical studies have been recently
carried out to evaluate whether and how various AI explanations
can provide necessary assistance to human decision makers in their
decision making. Table 1 shows a brief summary of the results of
these studies with respect to whether di�erent desiderata of AI
explanations have been satis�ed. On the one hand, we found few
study explicitly examines Desideratum 2, and most studies touch-
ing upon Desideratum 3 only report the human-AI joint decision
making accuracy, which is not su�cient to fully understand peo-
ple’s ability of calibrating their trust in the AI model. On the other
hand, the results, overall, are quite mixed, which may be caused
by many reasons. For example, di�erent types of AI explanations
may naturally show distinctive impact on human decision makers,
so a systematic comparison of how well various state-of-the-art
explanation methods can satisfy the desiderata of AI explanations
is needed. Moreover, we note that the e�ect of explanations in AI-
assisted decision making may also be moderated by the properties
of the decision-making task. For example, people may have di�er-
ent levels of domain expertise in the decision-making task, which
could potentially change the di�culty for them to understand the
model explanation, or utilize the model explanation to infer about
model uncertainty and correctness, and eventually in�uence the
e�ectiveness of AI explanations. In light of this, we present in this
paper a comparative evaluation on how di�erent XAI methods
satisfy the desiderata when people are assisted by AI in making
decisions on di�erent types of tasks.

3 STUDY DESIGN
We set out to conduct an experimental study to gain in-depth un-
derstandings of whether and to what extent various established AI
explanation methods can bring about human’s desirable behavior
in AI-assisted decision making. Corresponding to the desiderata
listed in Section 2, we ask the following research questions:

• RQ1: How do di�erent types of explanation impact people’s
understandings of an AI model?

• RQ2: How do di�erent types of explanation in�uence peo-
ple’s capability of di�erentiating a model’s high con�dence
predictions from the low con�dence ones?

• RQ3: How do di�erent types of explanation change people’s
ability of calibrating their trust in an AI model?

We focus on model-agnostic explanation methods in this study,
as these methods can be applied to any kind of AI models. Further,
we conduct our study on di�erent decision making tasks to see
whether and how the answers to these questions may change for
tasks with di�erent properties, such as tasks that people perceive
themselves as having varying levels of domain expertise in.

3.1 Decision Making Tasks
In our study, we asked participants to complete a set of decision
making tasks with the help from decision aids that were powered
by machine learning models. Speci�cally, we considered two types
of decision making tasks:

• Recidivismprediction: In this task, participantswere asked
to review a pro�le of a criminal defendant consisted of 7
features—the defendant’s race, sex, age, the number of non-
juvenile prior crimes, name of the currently charged crime,
degree of the current charge, and the number of days the
defendant spent in custody for the current charge. After
reviewing the pro�le, participants were asked to make a pre-
diction onwhether this defendant would reo�endwithin two
years. The defendant pro�les were selected from the COM-
PAS dataset, which contained information of 7,214 criminal
defendants in Broward County, Florida, USA, between 2013
and 2014 [4, 44]. This dataset was widely used by researchers
to understand how people interact with machine assistance
in their decision making [23, 31].

• Forest cover prediction: In this task, participants were
shown a geological pro�le of a wilderness area (in a 30m
⇥ 30m cell) containing 8 features—the area’s elevation, as-
pect, slope, hillshade index, the horizontal/vertical distance
to nearest surface water, the horizontal distance to nearest
roadway, and the horizontal distance to nearest wild�re ig-
nition points. After reviewing the pro�le, participants were
asked to make a prediction on whether this area is primarily
covered by the spruce-�r forest. These geological pro�les
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(a) Task Interface (Feature contribution treatment)

(b) Explanation: Feature importance (c) Explanation: Feature contribution

(d) Explanation: Nearest neighbors (e) Explanation: Counterfactuals

Figure 1: Examples of the task interface and the four types of model explanations that we showed to participants in our study.
were selected from the UCI cover type dataset [8, 27], which
recorded the geological information collected from 581,012
observation areas located in the Roosevelt National Forest
of northern Colorado, USA. In the original dataset, the pri-
mary forest cover for each area is one of the 6 types of tree
species, including spruce/�r. To simplify the task, we only
asked participants to make a binary prediction on whether
the primary tree species in an area is spruce/�r or not.

For both types of decision making tasks, we trained a logistic
regression model to help people make predictions. In particular, in
each decision making task, the participant was asked to �rst review
the pro�le (of a defendant or of a wilderness area) to make her own
prediction. Then, we would present to the participant the model’s
prediction, possibly together with some explanation on why the
model made such prediction (see more detail in Section 3.2). Lastly,
the participant needed to make a �nal prediction. Figure 1(a) shows
an example of the task interface.

We chose the recidivism prediction and forest cover prediction
tasks in our study for two main reasons. First, both tasks re�ect real-
istic use cases of AI-driven decision aids, as machine learning mod-
els have been developed to assist people in making better decisions
in social justice [9, 19, 38] as well as forest management [49, 50].
Second, people’s perceptions of the amount of domain expertise
they have in these two types of decision making tasks can be quite
di�erent. In particular, we speculate that most people may per-
ceive themselves as having a higher degree of domain expertise
in the recidivism prediction tasks, because they can easily apply
their day-to-day, common sense knowledge in their predictions.
In contrast, people may �nd the forest cover prediction task to
require more domain expertise that they are lack of. To con�rm this
intuition, we conducted a pilot study, in which we introduced both
types of decision making tasks to participants that we recruited
from Amazon Mechanical Turk (MTurk), and we asked them to
decide on which of these two tasks, they felt themselves to be more
knowledgeable. We also asked participants to indicate among these
two tasks, on which task they feel they (or a normal person) can
make more accurate predictions, and they would be more con�dent
about their predictions. Among 98 MTurk workers who partici-
pated in our pilot study, 82.6% of them reported themselves to be

more knowledgeable on the recidivism prediction tasks, 63.3% (or
71.4%) of them believed they (or a normal person) can make more
accurate predictions for the recidivism prediction tasks, and 71.4%
of them felt they would be more con�dent in making recidivism
predictions. In other words, consistent with our conjecture, most
laypeople perceived themselves to have a higher level of domain
expertise in the recidivism prediction tasks, compared to the forest
cover prediction tasks.

3.2 Experimental Design
3.2.1 Experimental Treatments. We adopted a between-subject de-
sign in our experiment. For each type of decision making task,
we created 5 treatments by varying whether and how the model’s
predictions were explained:

• No explanation (Control): Participants would not receive
any explanation on the model’s prediction on each task.

• Feature importance: In this treatment, we explained the
model’s prediction to participants by showing to them the
overall “importance” of di�erent features in in�uencing the
model’s predictions. Speci�cally, we adopted the permuta-
tion feature importance method [28] to compute the impor-
tance of each feature as the increase of the model’s predic-
tion error after permuting the values on that feature, and we
visualized di�erent feature’s importance using a bar chart
(Figure 1(b)).

• Feature contribution: In this treatment, we explained the
model’s prediction to participants by showing to them the
contribution of each feature to the prediction. Since we used
logistic regression models in this study, we computed a fea-
ture’s contribution to a prediction as the log-odds in�uence
of that feature. We then provided a bar chart in each task to
visualize the contributions of all features in that task as well
as the base rate2 (Figure 1(c)).

• Nearest neighbors: In this treatment, we explained the
model’s prediction to participants by showing to them the

2The base rate is the log odds value for a hypothetical pro�le in which the value of
each feature takes the reference level.
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model’s predictions on other similar data points (i.e., pro-
�les) in the training dataset. For each task, we looked into
all pro�les in the training dataset on which the model’s pre-
dictions were correct, and we selected two of them—the one
most similar to the current pro�le on which the model made
the same prediction as that in the current task, and the one
most similar to the current pro�le on which the model made
a di�erent prediction than that in the current task. We then
presented these two training pro�les in a table, side by side
with the pro�le of the current task (Figure 1(d)).

• Counterfactuals: In this treatment, we explained themodel’s
prediction on each task by exploring what changes in feature
values result in an opposite model prediction. For each fea-
ture, we either displayed the smallest change that is needed
on that feature to �ip the model’s prediction (when other
feature values are unchanged), or we told participants that
changing that feature’s value would not a�ect the model’s
prediction (Figure 1(e)).

Together, these treatments covered a diverse set of classical
model-agnostic explanations that are commonly used for explaining
AI models [7, 23]3. For example, the feature importance explanation
is a global explanation while the other three are local explanations.
Further, the feature importance and feature contribution expla-
nations aim to explain the model by summarizing feature-based
statistics, while the other two explanations are example-based.

3.2.2 Selection of task instances. Within one type of decision mak-
ing task, participants in di�erent treatments worked on the same
set of 32 task instances, and the model predictions they saw on
each task were produced by the same logistic regression model that
we trained using a subset of the original COMPAS or UCI cover
type dataset. On the hold-out test datasets consisting of 1,000 task
instances, the accuracy of our logistic regression models is 69.1%
for the recidivism prediction task and 69.5% for the forest cover
prediction task, which suggests a reasonable predictive validity.

To better answer our research question RQ1–RQ3, we carefully
selected from the test datasets the 32 task instances that we pre-
sented to our participants. In particular, we categorized the logistic
regression model’s con�dence on a task instance as high or low
depending on whether the model’s probability estimate of the pre-
dicted label is higher than 0.7, and we con�rmed this probability
aligned well with the model’s correctness likelihood on each in-
stance. We included in our task set 16 instances that the model’s
con�dence is low and 16 instances that the model’s con�dence is
high. To ensure the representativeness of the selected instances,
we projected all task instances in the test dataset onto the two
features with the largest predictive power, and the 16 low (or high)
con�dence task instances we included in our �nal task set were the
“prototypes” that can cover the centers of the data distributions for
all data instances in the test set where the model’s con�dence is
low (or high) [36, 55].

3While the format of feature contribution explanation we used in our study was
speci�c to logistic regression models, explaining model predictions by showing the
contribution of each feature is applicable for other models [48, 60].

3.3 Experimental Procedure
We conducted our study on both types of decision making tasks by
posting human intelligence tasks (HITs) on Amazon Mechanical
Turk (MTurk) and recruiting MTurk workers as our participants.

Upon arrival, participants were randomly assigned to one of
the 5 experimental treatments. They �rst completed a survey on
their background, including their demographics, technical literacy,
and expertise in machine learning. Then, we presented participants
with an interactive tutorial to walk them through the task interface.
If a participant was assigned to a treatment with model explana-
tion, we also included examples of the model explanation in the
tutorial and provided instructions to help the participant under-
stand the explanations. We included a few quali�cation questions
in the tutorial to make sure that participants correctly understand
all the information. For those participants working on predicting
forest cover, we further helped participants get familiar with the
task, following a similar procedure as those used in previous liter-
ature [69, 71]—we provided participants with a brief introduction
about the characteristics of spruce-�r forests as well as a set of 10
training tasks, in which participants needed to make predictions
on the forest cover type without the assistance from a model, and
they learned about the correct answer after each task.

After completing the tutorial, the participant then moved on to
work on the set of 32 decisionmaking tasks with the assistance from
the machine learning model, and the order of the tasks was ran-
domized across participants. In each task, the participant followed
the three-step procedure as we have described in Section 3.1—make
an initial independent prediction, review the model prediction (and
explanation), and make a �nal prediction. The participant was not
given any accuracy feedback on either her prediction or the model’s
prediction on any of these tasks.

Finally, before submitting the HIT, the participant needed to
complete an exit survey, which included a set of multiple-choice
questions testing her objective understanding of the model behavior.
In addition, the participant was also asked to report her perceived
understanding of the model by answering a few survey questions
(see Section 3.4 for more details). We included two attention check
questions in the HIT in which the participant was instructed to
select a pre-speci�ed option, which later helped us to �lter out the
data from inattentive participants.

Our experiment was open to U.S. workers only, and each worker
was allowed to participate only once. The base payment of the
experiment was $1.80 for the recidivism prediction tasks and $2.00
for the forest cover prediction tasks4. To incentivize participants
to carefully read about the model’s explanation in each task and
adjust their behavior accordingly, we further provided them with
additional performance-contingent bonuses—if the overall accuracy
of the participant’s �nal predictions on the 32 tasks was at least
60%, she can earn a bonus of $0.03 for each of her correct �nal
predictions; and for each correct answer the participant submitted
to a multiple-choice question about the model behavior in the exit
survey, she could also earn a $0.10 bonus. The maximum amount
of bonuses a participant could earn in this study was $2.26.

4The base payment for the forest cover prediction tasks was higher because participants
spent more time on them due to the addition of training tasks.
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3.4 Analysis Methods
3.4.1 Independent variables. The main independent variable we
used in our analysis is the experimental treatment that a participant
was assigned to, i.e., the existence and type of model explanations
that the participant received.

3.4.2 Dependent variables. For RQ1, we used two main dependent
variables: (1) a participant’s objective understanding of the ML
model, as measured by the number of multiple-choice questions in
the exit survey that she answered correctly, and (2) the participant’s
subjective understanding of the ML model, as measured by her self-
report in the exit survey. Speci�cally, based on our literature review
on how people’s understanding of an AI is assessed in existing
literature (see Section 2), we designed a set of 9 multiple-choice
questions that aim at evaluating participants’ knowledge of the
model behavior from various aspects, including:

• Compare feature importance: participants were asked to
select among a list of features which one was most/least
in�uential on the model’s overall predictions (2 questions)

• Specify a feature’s marginal e�ect on predictions: par-
ticipants were asked questions like “if the value of feature
X of this pro�le is x2 instead of x1, would it increase or
decrease the chance for the model to predict Y ?” (1 question)

• Counterfactual thinking: participants were given a ref-
erence pro�le, and they were asked to select from a list of
changes in feature values the ones that they believed would
result in an opposite model prediction (2 questions)

• Simulate model behavior: participants were given a pro-
�le, and they were asked to predict what the model would
predict on this pro�le (2 questions)

• Error detection: participantswere given a pro�le, themodel’s
prediction on the pro�le, and the model’s explanation (if ap-
plicable), and they were asked to determine whether the
model’s prediction was correct (2 questions)

The full list of multiple-choice questions is included in the sup-
plementary material. Moreover, we asked participants to report
their own perceived understandings of the model by indicating
their agreement on the following two statements (adapted from
earlier literature [13, 16]) from 1 (“strongly disagree”) to 7 (“strongly
agree”): (1) I understand how the model works to predict whether a
defendant will reo�end [whether the primary tree species in an area
is spruce/�r]; (2) I can predict how the model will behave. The par-
ticipant’s subjective understanding of the model is then computed
as her average ratings on these two statements. We expect that if
an AI explanation improves people’s understanding of the AI (i.e.,
satisfy Desideratum 1), the participant’s objective and subjective
understanding scores would both increase.

For RQ2, we looked into participants’ capability in di�erenti-
ating the model’s high con�dence predictions from its low con-
�dence predictions by examining how people’s reliance on the
model changes with the model’s con�dence. Following earlier liter-
ature [70, 71], we quanti�ed people’s reliance on the model using
the fraction of tasks in which the participant’s �nal prediction was
the same as the model’s prediction (i.e., agreement fraction). If an AI
explanation can expose the uncertainty of AI predictions to people
(i.e., satisfy Desideratum 2), given that the con�dence of our model

is calibrated, we expect participants’ reliance on the model to be
higher on high con�dence predictions.

Finally, for RQ3, we evaluated participants’ capability of cali-
brating their trust in the ML model using three main dependent
variables, including their appropriate trust [51–53, 56] (i.e., the frac-
tion of tasks where participants used the model’s prediction when
the model was correct and did not use the model’s prediction when
the model was wrong; this is e�ectively participants’ �nal decision
accuracy), overtrust [22, 58] (i.e., the fraction of tasks where partici-
pants used a wrong model prediction) and undertrust [22, 58] (i.e.,
the fraction of tasks where participants did not use a correct model
prediction). If an AI explanation supports trust calibration (i.e., sat-
isfy Desideratum 3), we expect that participants’ appropriate trust
in the model would increase, while their overtrust or undertrust in
the model would decrease.

3.4.3 Statistical methods. To avoid multiple comparison problems
and control false discovery, we conducted our analyses using the in-
terval estimate method [21, 25]. We visualized our data by plotting
the mean values of the dependent variable of interest for each treat-
ment (or the di�erence in the mean value of a dependent variable
between a treatment with model explanation and the control treat-
ment) along with the 95% bootstrap con�dence intervals (R = 5000).
We interpreted our results based on the range of con�dence inter-
vals, and measured the e�ect sizes using Cohen’s d [20]. To take the
impact of covarietes (e.g., participants’ demographics) into account,
we then constructed mixed-e�ect regression models which treated
each participant as a random e�ect and controlled for covariates,
while �xed e�ects were decided by the variables of interests in each
research question. Results of these models are interpreted via the
estimated coe�cient values for the �xed e�ect variables as well as
their 95% bootstrap con�dence intervals.

4 RESULTS
After �ltering data from inattentive participants, we obtained valid
data from 782 participants on the recidivism prediction tasks (62.9%
male, the average age is 38), and 561 participants on the forest cover
prediction tasks (64.3% male, the average age is 39). We analyzed
these data to answer our research questions.

4.1 RQ1: E�ects on understanding AI models
We start with examining the impact of di�erent types of expla-
nation on people’s understanding of the machine learning model
(RQ1). For each participant, we �rst normalized her objective and
subjective understanding scores by dividing them by the maximum
possible values. Figure 2 then shows the average changes of a par-
ticipant’s normalized objective and subjective understanding scores
between each treatment with a speci�c type of model explanation
and the treatment without model explanation (i.e., the control treat-
ment). Interestingly, on the task that people perceived themselves
as having more domain expertise in (i.e., the recidivism predic-
tion task, Figure 2(a)), we found that both the feature importance
and counterfactual explanations increase participants’ objective
understanding of the model (Cohen’s d=0.26, 95% CI [0.03, 0.48]
for feature importance, and 0.27 [0.04, 0.48] for counterfactuals),
and all four types of explanations increase participants’ subjective
understanding of the model (Cohen’s d=0.28, 95% CI [0.05, 0.49]



IUI ’21, April 14–17, 2021, College Station, TX, USA

(a) Recidivism prediction (b) Forest cover prediction
Figure 2: Comparing how di�erent types of explanations change participants’ objective and subjective understanding of the
model compared to when no model explanation is provided. Error bars represent 95% bootstrap con�dence intervals.
when aggregating all explanation types). However, on the task that
people have limited domain expertise in (i.e., the forest cover pre-
diction task, Figure 2(b)), we were only able to conclude that the
feature importance explanation increases participants’ objective
understanding of the model (Cohen’s d=0.33, 95% CI [0.06, 0.59]),
while the feature contribution explanation increases participants’
subjective understanding (Cohen’s d=0.28, 95% CI [0.01, 0.55]).

Further, we constructedmixed e�ect regressionmodels to predict
the correctness of a participant’s answer on each multiple-choice
question or a participant’s rating on each subjective understanding
survey question. We treated the type of explanation a participant
received as the �xed e�ect, the participant as the random e�ect,
and controlled for the participant’s age, gender, and education as
covariates5. Our regression results were consistent with what we
have observed in Figure 2. For example, we found that on the re-
cidivism prediction task, feature importance and counterfactual
explanations lead to higher levels of objective understanding (es-
timated coe�cient � = 0.04[0.007, 0.07] for feature importance,
and � = 0.04[0.01, 0.07] for counterfactuals), and all 4 types of
explanations result in higher levels of subjective understanding
(feature importance: � = 0.04[0.02, 0.06], feature contribution:
� = 0.04[0.03, 0.06], nearest neighbors: � = 0.03[0.01, 0.05], coun-
terfactuals: � = 0.05[0.03, 0.07]). On the forest cover prediction
task, other than the positive coe�cient associated with the feature
importance explanation on in�uencing objective understanding
(� = 0.05[0.01, 0.09]) and the positive coe�cient associated with
the feature contribution explanation on in�uencing subjective un-
derstanding (� = 0.04[0.02, 0.06]), the e�ects of other explanations
are inconclusive. We also found that on both types of tasks, female
had higher levels of objective understanding of the model compared
to male participants, while participants who self-reported to have a
higher level of education had lower objective understanding scores.

4.2 RQ2: E�ects on recognizing model
unceratinty

We now move on to RQ2 to examine how the presence of di�er-
ent model explanations a�ects people’s ability to tell apart high
con�dence model predictions from low con�dence model predic-
tions. Figure 3(a) and Figure 3(c) compare participants’ reliance
on the model (as measured by the agreement fraction) on tasks
where the model has high con�dence and tasks where the model
5We also constructed mixed e�ect regression models when controlling for the partici-
pant’s technical literacy and expertise in machine learning as covariates in addition to
the demographic background, and the results are qualitatively similar.

has low con�dence, for the recidivism prediction task and the for-
est cover prediction task, respectively. Visually, it appears that on
the recidivism prediction task, when no model explanation was
available, participants did not appear to rely on high con�dence
model predictions and low con�dence model predictions much dif-
ferently. The provision of di�erent types of model explanations,
however, nudged participants into relying on the model’s high
con�dence predictions more than the model’s low con�dence pre-
dictions. In contrast, we did not have similar observations on the
forest cover prediction task. We further estimated the di�erence
in di�erence—the di�erence in participants’ reliance on high vs.
low con�dence model predictions in a treatment with model ex-
planation, minus the di�erence in participants’ reliance on high vs.
low con�dence model predictions in the control treatment—and we
plot our estimated values as well as the 95% bootstrap con�dence
intervals in Figure 3(b) and Figure 3(d). We found that while all four
types of model explanations—especially the feature contribution
explanation—seem to enable participants to rely on the model’s
high vs. low con�dence predictions to a much more di�erent extent
on the recidivism prediction task (e.g., Cohen’s d = 0.20, 95% CI
[-0.02, 0.42] when aggregating all explanation types), participants
working on the forest cover prediction task did not seem to be
a�ected by the model explanations in adjusting how much they
would rely on the model di�erently based on the model con�dence.

We next constructed mixed e�ect regression models to under-
stand participants’ capability in recognizing model uncertainty in
di�erent treatments when accounting for various covariates. More
speci�cally, regression models were built for estimating whether a
participant would use the model’s prediction as her �nal prediction
in a task, and we included the type of model explanation the partic-
ipant received, the raw value of model con�dence on the task, as
well as the interaction between explanation type and model con�-
dence as the �xed e�ects. We further treated each participant as
the random e�ect and controlled for the participant’s demographic
information. Doing so, we again detected that for recidivism predic-
tion, the coe�cients for the interaction terms between model con�-
dence and each type of model explanation are reliably estimated to
be positive (feature importance: � = 0.20[0.06, 0.35], feature contri-
bution: � = 0.27[0.12, 0.42], nearest neighbor: � = 0.17[0.01, 0.33],
counterfactual: � = 0.17[0.02, 0.31]), indicating that participants
might have utilized model explanations to infer model uncertainty
and rely on high con�dence model predictions more when they had
some domain expertise in the task. For the forest cover prediction
task, however, we did not get conclusive evidence suggesting that
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(a) Recidivism prediction (reliance) (b) Recidivism prediction (reliance di�erence in di�erence)

(c) Forest cover prediction (reliance) (d) Forest cover prediction (reliance di�erence in di�erence)
Figure 3: Comparing how di�erent types of explanations change participants’ capability of recognizing model con�dence.
(a)(c): Reliance on high/low con�dence model predictions, for participants in di�erent treatments. (b)(d): The di�erence of
participants’ reliance on high vs. low con�dence model predictions in each treatment with a model explanation, compared
against such di�erence in the control treatment. Error bars represent 95% bootstrap con�dence intervals.
the coe�cients for any of the four interaction terms were di�erent
from zero. That is, participants making prediction on forest cover
did not seem to act upon model predictions with varying levels of
con�dence di�erently in the presence of model explanations.

4.3 RQ3: E�ects on trust calibration
Finally, we look into how di�erent explanations in�uence people’s
capability of calibrating their trust in the AI model. We measured
participants’ appropriate trust, overtrust, and undertrust in the
model for each treatment. The di�erence in the mean values of
these measures between a treatment with model explanation and
the control treatment are shown in Figure 4(a) and Figure 4(b) for
recidivism prediction and forest cover prediction tasks, respectively.

Overall, on the recidivism prediction task, our results suggest
that both the feature importance and feature contribution explana-
tion appear to help participants slightly increase their appropriate
trust (Cohen’s d = 0.19[−0.05, 0.41] for feature importance, and
0.19[−0.03, 0.40] for feature contribution) and decrease their un-
dertrust (feature importance: d = −0.21[−0.44, 0.02], feature con-
tribution: d = −0.15[−0.37, 0.06]) in the model, although for partic-
ipants receiving the feature importance explanation, this seems to
be achieved at the price of a slight increase of overtrust in the model
(d = 0.15[−0.08, 0.36]). On the other hand, the e�ects of nearest
neighbors and counterfactual explanations in in�uencing partici-
pants’ trust calibration were inconclusive. Taking a closer look at
the data by examining how model explanations a�ect trust calibra-
tion on tasks where themodel has high or low con�dence separately,
we found that on the recidivism prediction task, both the feature
importance and feature contribution explanations support partici-
pants’ trust calibration on high con�dence model predictions (e.g.,
for appropriate trust, feature importance: d = 0.30[0.07, 0.53], fea-
ture contribution: d = 0.23[0.02, 0.45]), but the feature importance
explanation also results in a slight increase of participants’ overtrust
on the model’s low con�dence predictions (d = 0.19[−0.03, 0.42]).

On the other hand, inspecting Figure 4(b), we concluded that none
of the model explanations helps improve participants’ trust calibra-
tion in the AI model for the forest cover prediction task, regardless
of the model’s con�dence in its predictions.

Similar as before, we again built mixed e�ect models to predict
whether a participant could trust the model appropriately on each
task, and whether she would over-trust (under-trust) the model on
tasks that the model was wrong (correct). The type of explanation
the participant received was included as the �xed e�ect, and the
participant was the random e�ect. Again, we found that on the re-
cidivism prediction task, only the feature contribution explanation
increases participants’ appropriate trust without incurring a higher
level of overtrust or undertrust (estimated coe�cients � for fea-
ture contribution—appropriate trust: 0.01[−0.003, 0.03], undertrust:
−0.03[−0.05,−0.01], and overtrust: not reliably di�erent from 0),
while none of the explanations supports trust calibration on the
forest cover prediction task. Interestingly, on both types of tasks,
participants who reported to have a higher level of education con-
sistently showed a lower level of appropriate trust and overtrust,
but a higher level of undertrust in the model.

4.4 Summary of results
We summarized our experimental results in Table 2, and we high-
light a few key �ndings:

• The e�ects of model explanations are dramatically di�erent
on tasks where people have varying levels of domain exper-
tise in. Notably, for decision making tasks that people are
not knowledgeable about, most established AI explanations
did not satisfy any of the three desiderata.

• The only positive e�ect of model explanation that we have
consistently observed across di�erent decision making tasks
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(a) Recidivism prediction

(b) Forest cover prediction
Figure 4: Comparing how di�erent types of explanation support participants’ trust calibration in the AI. For appropriate trust,
the larger the value the better. For overtrust and undertrust, the smaller the value the better.

Recidivism prediction Forest cover prediction
Uncertainty Trust Uncertainty Trust

Explanation type Understanding Awareness Calibration Understanding Awareness Calibration

feature importance 3 3 7 3? 7 7
feature contribution 3? 3 3 3? 7 7
nearest neighbor 3? 3 7 7 7 7
counterfactuals 3 3 7 7 7 7

Note: 3 (or 7) means our study �nds (or does not �nd) supportive evidence suggesting the explanation method satis�es a desideratum. In the 3? cases, we only �nd partial evidence
supporting the explanation increases people’s understanding of the model (either measured by objective understanding or subjective understanding, but not both).

Table 2: Summary of our experimental results.

is that feature importance explanations increase people’s ob-
jective understanding of an AI model, while feature contribu-
tion explanations increase people’s subjective understanding
of an AI model.

• Among the 4 types of explanations that we have examined,
the feature contribution explanation seems to be able to sat-
isfy more desiderata of AI explanations when people have
some domain expertise in the decision making task.

• For the two example-based explanations in our study, we
found minimal evidence on their capability to support trust
calibration. In particular, for the counterfactual explanation,
which is considered to closely resemble how human explain
decisions, it indeed helps increase people’s understanding of
the AI model, but only on tasks that people have some do-
main expertise in. The improved understanding of the model
brought up by the counterfactual explanation, however, fail
to help people calibrate their trust in the model.

5 CONCLUSION AND DISCUSSION
In this paper, we present a comparative study to understand the
e�ectiveness of four types of XAI methods in supporting people
to make better decisions. We �rst identify three desiderata of AI
explanations as critical for people to understand the AI, recognize
the uncertainty underlying the AI, and calibrate their trust in the
AI in AI-assisted decision making. We further conduct randomized
experiments to evaluate whether commonly-used model-agnostic
XAI methods satisfy these desiderata on two types of decision
making tasks where people have varying levels of domain expertise
in. We found that on tasks that people have little domain expertise

in, none of the four AI explanationswe examined reliably satisfy any
of the three desiderata. On tasks that people perceive themselves
as more knowledgeable, our results provided evidence supporting
that the feature contribution explanation has the potential to satisfy
more desiderata. In the following, we provide possible explanations
of our results, and discuss implications and limitations of our study.
The role of domain expertise. The ine�ectiveness of various
XAI methods in supporting human decision makers on tasks that
they have limited domain expertise in raises an important question
of understanding why. We conjecture that this may be due to a
number of reasons. First, without the domain expertise, people may
�nd the explanations to be rather foreign and mentally taxing to
consume, thus their ability to absorb the information carried in
the explanations decreases. This could be because without the do-
main knowledge that is learned from their day-to-day working and
social experience and may have become part of the subconscious
mind [35, 67], people have to process all the new information (i.e.,
the AI explanations) in their working memory, which takes up more
cognitive capacity [57]. This is particularly true in our study, as
participants in the forest cover prediction task may not only have
limited knowledge of how di�erent features relate to the output,
but they may even need to learn the meanings of some features. In
addition, people’s domain expertise may play an important role in
facilitating people’s inference of the uncertainty and correctness
of an AI prediction. For example, when receiving a feature contri-
bution explanation, people may attempt to gauge the uncertainty
of a model prediction by examining whether a few features that
they believe as predictive contribute to the model’s prediction in the
same direction or not, and they may also compare the direction of
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each feature’s contribution with their own rationale to evaluate the
correctness of the prediction [71]. Without these domain expertise,
people may �nd themselves clueless to extract meaningful insights
from the explanations.
Implications for designing and selecting XAI methods. In
light of the ine�ectiveness of existing XAI methods, better expla-
nations should be designed for those decision making contexts
when people have limited knowledge in the task (e.g., recommend
portfolios to beginning investors). A key challenge is how to con-
struct and communicate the explanation in a manner that places
reasonable cognitive load on the explanation consumers. To this
end, techniques for presenting explanations visually, selectively,
and progressively [54, 62, 69], and methods for incorporating the
consideration of cognitive load into the explanation generation
process [1] should be explored. Moreover, new approaches can be
developed to increase people’s ability in making full use of the in-
formation carried in AI explanations. For example, for explanations
like feature contribution and counterfactual examples, people could
have been able to infer the model uncertainty even without any
knowledge about the domain—they can sum up the contribution of
all features and the base rate in a case (i.e., the closer it is to zero,
the more uncertain the model), or they can count the number of
counterfactual examples and compute the magnitude of di�erence
between each counterfactual and the original data (i.e., the larger
number of counterfactual examples and the smaller the di�erence,
the more uncertain the model).

Our study also indicates that the three desiderata we have posited
for AI explanations may each capture distinct aspects of people’s
usage of AI explanations—satisfying one desideratum is not always
su�cient for satisfying the other desiderata, and one explanation
can score high on some desideratum but not the others. This is
in line with previous �ndings that XAI methods that help people
simulate an AI may not necessarily increase people’s decision accu-
racy [11]. Further studies are needed to systematically understand
the relationships between these desiderata. Explanation providers
should also carefully select the type of explanations to present to
users based on the speci�c needs (e.g., whether to increase users’
comprehension of the model or enhance user’s decision making).
Limitations. Our study is limited by the particular formats of ex-
planations we adopted (e.g., visual designs of feature contribution,
the way we selected nearest neighbors), and the choice of the lo-
gistic regression model which is inherently simple. We caution the
readers to not over-generalize our results to other settings. The
desiderata we have proposed in this study are not comprehensive,
and the e�ects of AI explanations may also be moderated by other
factors such as the accuracy of the AI model. Future studies should
be conducted to explore other aspects of the e�ects of AI explana-
tions (e.g., in�uence user satisfaction), as well as carefully examine
how these e�ects change with the moderating factors. Neverthe-
less, we hope our study provides a starting point for comparing
the e�ectiveness of various XAI methods in AI-assisted decision
making along concrete standards, and inspires more empirical stud-
ies to advance our knowledge of the strengths and weaknesses of
di�erent explanations. Towards obtaining a rigorous and compre-
hensive understanding of the e�ectiveness of various XAI methods,
we recommend future researchers to evaluate XAI methods across

decision making tasks with di�erent characteristics, and to com-
municate results of any empirical evaluation of XAI methods along
with su�cient contextual information on the properties of the de-
cision making task.
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