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Effects of Explanations in AI-Assisted Decision Making:
Principles and Comparisons

XINRU WANG and MING YIN, Purdue University, USA

Recent years have witnessed the growing literature in empirical evaluation of explainable AI (XAI) meth-
ods. This study contributes to this ongoing conversation by presenting a comparison on the effects of a set
of established XAI methods in AI-assisted decision making. Based on our review of previous literature, we
highlight three desirable properties that ideal AI explanations should satisfy — improve people’s understand-
ing of the AI model, help people recognize the model uncertainty, and support people’s calibrated trust in
the model. Through three randomized controlled experiments, we evaluate whether four types of common
model-agnostic explainable AI methods satisfy these properties on two types of AI models of varying levels
of complexity, and in two kinds of decision making contexts where people perceive themselves as having
different levels of domain expertise. Our results demonstrate that many AI explanations do not satisfy any of
the desirable properties when used on decision making tasks that people have little domain expertise in. On
decision making tasks that people are more knowledgeable, the feature contribution explanation is shown to
satisfy more desiderata of AI explanations, even when the AI model is inherently complex. We conclude by
discussing the implications of our study for improving the design of XAI methods to better support human
decision making, and for advancing more rigorous empirical evaluation of XAI methods.
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1 INTRODUCTION
In recent years, numerous AI-driven decision aids have been developed to assist people in mak-
ing better decisions in diverse domains ranging from financial investment to criminal justice. To
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overcome the black-box nature of many complex AI models underlying the decision aids, vari-
ous explainable AI (XAI) methods are designed to inform people of the reasoning processes
underneath the algorithmic decisions. For example, sophisticated techniques such as LIME [70]
and SHAP [55] have been used to illustrate how much each feature contributes to a model’s final
prediction. Meanwhile, reviews of the social science literature reveal that humans tend to provide
contrastive explanations when explaining their decisions to each other, suggesting that explaining
an AI using counterfactual examples can be most understandable to humans as they share similar
conceptual framework as human explanations [13, 61].
The rapid development of XAI methods raises a few key questions in rigorously evaluating and

systematically comparing these methods: What properties characterize an effective AI explana-
tion? Do the established explanation methods satisfy these properties? Is the extent to which an
AI explanation satisfies these properties dependent on the property of the decision making task,
such as howmuch the human decision makers feel they know about the task domain a priori? And
how will the effectiveness of the explanation methods vary with the property of the AI model (if
they are applicable to any AI models), such as the inherent complexity of the model? To answer
these questions, researchers have been advocating for moving beyond defining what constitutes
a “good” explanation using model designer’s intuition but actually examining how useful an ex-
planation is with human users [27, 68]. In responding to this call, there is recently a growing line
of literature on empirically evaluating the effectiveness of XAI methods (e.g., [16, 18, 48, 81, 83]).
Yet, principles required for an explanation to be considered helpful in AI-assisted decision making,
arguably, still remain to be articulated and comprehensively assessed.
In this paper, we contribute to the XAI research by first positing three desirable properties that

ideal AI explanations should satisfy in order to be considered helpful in AI-assisted decision mak-
ing, and then presenting three randomized human-subject experimentswhich empirically compare
to what extent established AI explanation methods satisfy these desiderata on different types of
decision making tasks and different types of AI models.
We start by reviewing the existing literature in empirical evaluation of XAI methods and sum-

marizing from them three desirable properties that characterize an effective AI explanation, con-
cerning how well the explanation can help people (1) understand the AI model, (2) recognize the
uncertainty underlying an AI prediction, and (3) calibrate their trust in the model. These properties
are statedmainly from the point of view of a human decisionmaker who is assisted by anAI-driven
decision aid, and are certainly not comprehensive. However, they provide an initial set of concrete
standards upon which we can compare the strengths and weaknesses of different XAI methods.
We then conduct randomized human-subject experiments on Amazon Mechanical Turk to un-

derstand to what extent various types of established XAI methods (e.g., feature importance, fea-
ture contribution, nearest neighbors, counterfactual examples) satisfy these desirable properties.
We consider two decision making contexts in our experimental studies where the human decision
makers may perceive themselves as having varying levels of domain expertise (i.e., recidivism pre-
diction and forest cover prediction). We also apply the XAI methods to two types of AI models of
varying levels of complexity (i.e, logistic regression model and multi-layer neural network model).

Our experimental results suggest that the effectiveness of different XAI methods largely de-
pends on the properties of both the decision making task and the AI model. In particular, when
decision aids are developed based on models of low complexity (e.g., logistic regression) and used
on decision making tasks that people feel that they have some domain knowledge in (e.g., recidi-
vism prediction), each of the XAImethods that we have examined is able to satisfy some desiderata,
though different methods are shown to satisfy the three desiderata to different degree. For instance,
showing each feature’s contribution to the model’s prediction in individual cases seems to have
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the potential to satisfy more of the desiderata. In contrast, the two example-based XAI methods we
have examined, including providing counterfactual examples which is believed to resemble human
explaining processes, seem to lack the ability to support trust calibration. On the other hand, when
XAI methods are used for decision making tasks that people have limited domain knowledge in
(e.g., forest cover prediction tasks), or when XAI methods are applied to explain models of high
complexity (e.g., neural network models), the effectiveness of various XAI methods decreases sub-
stantially — on the forest cover prediction tasks, none of the three desiderata is reliably satisfied
by any of the XAI methods that we have looked into, while for complex AI models, the only XAI
method that satisfies some desiderata is to show each feature’s contribution to the model’s predic-
tion. Interestingly, we find that the specific interpretability methods that are used to compute the
contribution values of different features may also influence how effective the feature contribution
explanation is when the AI model is inherently complex.
We note that this work is an extended version of Wang and Yin [78]. Our contributions in this

work include:
• Through reviewing the existing literature of XAI research, we posit three principles as es-
sential to effective AI explanations in AI-assisted decision making, and we identify the gap
in existing empirical evaluations of XAI methods in the context of these three principles
(Section 2).
• Via three randomized human-subject experiments, as detailed in Sections 3–5, we conduct
a comprehensive comparison of several established model-agnostic XAI methods to study
whether they satisfy the three principles of effective AI explanations. The type of decision
making tasks and the type of AI models are varied across the experiments, which allows us
to obtain a nuanced understanding of how the effectiveness of XAI methods are moderated
by these two factors. In particular, the third experiment in this article (Section 5), in which
we evaluate the effectiveness of various XAI methods when they are used to explain an
inherently complex AI model, is a new contribution of this article compared to [78].
• Based on the results of our experimental studies, we provide discussions on the design and
selection of effective XAI methods that are most suitable for the use case, as well as fair and
transparent reporting of empirical evaluation results of XAI methods (Section 6).

2 LITERATURE REVIEW
2.1 Overview of AI Explanation Methods
Earlier literature on AI explanations often concerns the communication of uncertainty in AI de-
cisions [52, 53]. More recently, the surge of interests in increasing the interpretability and trans-
parency of AI has brought about the development of a variety of techniques for explaining the
rationale of AI decisions, and different taxonomies of these techniques also emerge. For example,
methods that aim at explaining the behavior of the entire AI model is categorized as global expla-
nations, while methods that provide reasons for specific model predictions are categorized as local
explanations [2, 27, 30]. In addition, depending on whether the explanation is designed for a partic-
ular type of model, explanations can also be divided intomodel-specific methods andmodel-agnostic
methods. Model-specific methods often involve the development of intrinsically interpretable mod-
els such as generalized additive models and decision sets [17, 39, 50, 77], as well as visualizing what
deep neural network has learned in its intermediate layers and how its predictions are affected by
different parts of the inputs (e.g., through saliency map) [43, 72, 80]. On the other hand, typical
model-agnostic methods include providing information on global-level feature importance [32],
computing feature contribution on individual predictions [55, 70], using examples in the training
dataset or counterfactual examples to explain model predictions [42, 45, 76], and conducting model
distillation [10, 36].
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2.2 Desiderata of AI Explanations
In contrast to the rapid development of explainable AI methods, systematic understandings of
what is an effective AI explanation fall far behind. Most recently, researchers argued that the
interpretability of an AI model should not be defined using the model designer’s intuition. Instead,
it should be defined by user behavior, that is, whether model explanations can improve people’s
abilities in completing various tasks [27, 68], and the “people” here can be different parties in the
AI ecosystems including model developers, regulators, and end-users [74, 75]. Researchers have
proposed many tasks that AI explanations should assist people in. We reviewed these tasks and
used two criteria to narrow down the scope of the tasks from which we extracted the desiderata of
AI explanations — first, we focused on those tasks related to the ability of human decision makers
in making decisions when they are assisted by an AI model; second, we required the tasks to be
easily applicable to any kind of decision making context.1 Based on tasks that satisfy these criteria,
we summarized three desiderata of AI explanations as follows:
• Desideratum 1 (Understanding): Explanations of an AI model should improve people’s
understanding of it.
• Desideratum 2 (Uncertainty awareness): Explanations of an AI model should help people
recognize the uncertainty underlying anAI prediction and nudge people to rely on themodel
more on high confidence predictions when the model’s confidence is calibrated.
• Desideratum 3 (Trust calibration): Explanations of an AI model should empower people
to trust the AI appropriately.

Desideratum 1 is the most straightforward one, and researchers have proposed various methods
to assess people’s understanding of an AI model. Typical methods include asking people to rank
the input data features based on their influence to overall predictions [21, 37], to indicate the
direction of change in the model’s prediction when a feature’s value is altered [18, 21, 33], to
simulate the model’s predictions [18, 27, 47, 54, 68], to answer “what-if” questions about the model
behavior [7, 18, 27, 37, 61], and to detect mistakes of the model and debug the model [68, 70].

Desideratum 2 connects to the needs of communicating the uncertainty inherent in AI model
predictions to people [83]. Ideal AI explanations inform people of when the model is confident in
its predictions and provide insights into when it is uncertain; thus they allow people to act upon
different predictions differently. In particular, when the AI model’s confidence is calibrated (i.e.,
the model’s confidence accurately reflects the model’s correctness likelihood), the explanations
should provide useful cues for people to infer the model’s confidence on each case and adjust their
reliance on the model’s predictions based on the inferred model confidence.
Finally, Desideratum 3 concerns the ultimate goal of AI-assisted decision making, that is, to

maximize the joint human-AI team performance [5, 6, 11]. An essential step towards this goal
is to use explanations to guide people to trust an AI model when it is right and not to trust it
when it is wrong. In other words, with the assistance of model explanations, people should have
better capability of calibrating their trust in the model [81, 83]. Note that when an explanation
simply improves the human-AI joint decision making accuracy, it does not necessarily mean this
desideratum is satisfied. This is because people could trust an AI model inappropriately yet still
achieve a higher level of decision accuracy (e.g., blindly trust a model which has a higher accuracy
than oneself).

1An example of a task that may not be applicable to some decision making context is to have the human decision maker
detect fairness problems of the AI model or utilize the AI model in a fair way [26, 34].
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Table 1. Summary of Recent Empirical Studies Examining the Effects of Explanations in AI-assisted
Decision Making (Top Panel: Studies using Model-specific Explanations; Bottom Panel: Studies Using

Model-agnostic Explanations)

AI XAI Desideratum 1 Desideratum 2 Desideratum 3
Publications Tasks models methods (Understanding) (Uncertainty (Trust

awareness) calibration)
Poursabzi-

Sangdeh et al.
[68]

house price
prediction

linear regression intrinsically
interpretable

model

mixed results N/A ✗?

Alqaraawi
et al. [3]

image clas-
sification

neural network
(CNN)

saliency map mixed results N/A N/A

Chu et al.
[20]

age
prediction

neural network
(CNN)

saliency map N/A N/A ✗?

Cheng et al.
[18]

student
admission

linear regression feature
contribution

✓ N/A N/A

Lai and Tan
[49]

deception
detection

linear SVM feature
contribution

N/A N/A ✓?

Cai et al. [15] drawing
recognition

neural network
(RNN)

example-
based

mixed results N/A N/A

Zhang et al.
[83]

income
prediction

gradient-
boosted
trees

feature
contribution

N/A ✗ ✗?

Carton et al.
[16]

toxicity
content
detection

neural network
(LSTM)

feature
contribution

N/A N/A ✗?

Lai et al. [48] deception
detection

SVM, neural
network (BERT)

feature
contribution

N/A N/A ✓?

Yang et al.
[81]

leaf classifi-
cation

linear SVM example-
based

N/A N/A ✓

Bansal et al.
[6]

sentiment
analysis

neural network
(BERT)

feature
contribution

N/A N/A ✗

Kenny et al.
[41]

digit
recognition

neural network
(CNN)

example-
based

N/A N/A ✓?

Note: “N/A” means the study does not examine the desideratum. ✓ (or ✗) means the study finds (or does not find)
evidence suggesting the explanation method it examines satisfies a desideratum. In the ✓? (or ✗?) cases, the study only
reports human’s decision making accuracy is increased (or not changed) after receiving model explanation, which is not
sufficient for us to draw conclusions on trust calibration.

2.3 Empirical Studies on the Effectiveness of AI Explanations
A small but growing number of empirical studies have been recently carried out to evaluate
whether and how various AI explanations can provide necessary assistance to human decision
makers in their decision making. Table 1 shows a brief summary of the results of these studies
with respect to whether different desiderata of AI explanations have been satisfied.

On the one hand, we find that the current empirical evaluation results are incomplete. Few
studies explicitly examine Desideratum 2, and most studies touching upon Desideratum 3 only
report the human-AI joint decision making accuracy, which is not sufficient to fully understand
people’s ability of calibrating their trust in the AI model. On the other hand, the results, overall, are
quitemixed, whichmay be caused bymany reasons. For example, different types of AI explanations
may naturally show distinctive impact on human decision makers, so a systematic comparison of
howwell various state-of-the-art explanationmethods can satisfy the desiderata of AI explanations
is needed. Moreover, we note that the effect of explanations in AI-assisted decision making may
also be moderated by the properties of the decision making task. For example, people may have
different levels of domain expertise in the decision making task, which could potentially change
the difficulty for them to understand the model explanation, or utilize the model explanation to
infer about model uncertainty and correctness, and eventually influence the effectiveness of AI
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explanations. Another factor that may have contributed to the mixed results is the complexity of
the AI model. As more complex models tend to have the capacity to capture highly sophisticated
patterns in the data, explanations of those complex models might not be as straightforward for
people to process as explanations of simple models.
In light of the gap and limitations that we have identified in the existing literature, we present

in this paper a comparative evaluation on how different XAI methods satisfy the desiderata when
people are assisted by AI in making decisions on different types of tasks, and when these XAI
methods are used on different types of AI models.

3 EXPERIMENT 1: RECIDIVISM PREDICTION, LOGISTIC REGRESSION
We set out to conduct experimental studies to gain in-depth understanding of whether and to what
extent various established AI explanation methods can bring about human’s desirable behavior
in AI-assisted decision making. Corresponding to the desiderata listed in Section 2, we ask the
following research questions:
• RQ1:How do different types of explanation impact people’s understandings of an AI model?
• RQ2: How do different types of explanation influence people’s capability of differentiating
a model’s high confidence predictions from the low confidence ones?
• RQ3:How do different types of explanation change people’s ability of calibrating their trust
in an AI model?

We focus onmodel-agnostic explanationmethods in our studies, as these methods can be applied
to any kind of AI models. To start, we conduct our first experiment on a decision making task that
people may have some domain knowledge in (i.e., the recidivism prediction task), and we build a
decision aid based on an AI model of low complexity (i.e., a logistic regression model) for this task.
In our later experiments, we will vary the type of decision making task and the complexity of the
AI model to explore the generalizability of our results, which we will detail in Sections 4 and 5.

3.1 Decision Making Task
In this experiment, we asked participants to complete a sequence of recidivism prediction tasks
with the help of a decision aid powered by a machine learning (ML) model. Specifically, in
each task, participants were asked to review a profile of a criminal defendant consisting of seven
features — the defendant’s race, sex, age, the number of non-juvenile prior crimes, name of the
currently charged crime, degree of the current charge, and the number of days the defendant
spent in custody for the current charge. After reviewing the profile, participants were asked to
make a prediction on whether this defendant would re-offend within two years. The defendant
profiles were selected from the COMPAS dataset, which contained information of 7,214 criminal
defendants in Broward County, Florida, USA, between 2013 and 2014 [4, 51]. This dataset was
widely used by researchers to understand how people interact with machine assistance in their
decision making [26, 35].

We built a decision aid based on a machine learning model to help people make these recidivism
predictions. In particular, in each decision making task, the participant was asked to first review
the profile of the defendant to make her own prediction. After the participant made this initial pre-
diction, we would present to her the model’s prediction, possibly together with some explanation
on why the model made such prediction (see more detail in Section 3.2.2). Lastly, the participant
needed to make a final prediction. Figure 1(a) shows an example of the task interface.
We chose the recidivism prediction task for our first experiment for two main reasons. First,

recidivism prediction represents a realistic type of task that AI-based decision aids are developed
to help both experts like judges and laypeople like jurors in decision making for social justice
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Fig. 1. Examples of the recidivism prediction task interface and the four types of model explanations that
we showed to participants in Experiment 1.

ACM Transactions on Interactive Intelligent Systems, Vol. 12, No. 4, Article 27. Publication date: November 2022.



27:8 X. Wang and M. Yin

[9, 22, 44]. Thus, the need of communicating AI recommendations to decision makers properly
to promote high-quality decision making is pressing for tasks like this. Second, we conjecture
that people may perceive themselves as having a degree of domain expertise in solving the recidi-
vism prediction task, because they can apply their day-to-day, common sense knowledge in their
predictions. In fact, earlier research suggested that the accuracy of laypeople in predicting recidi-
vism is similar to that of commercial risk assessment software like COMPAS [29]. In addition, we
found that when being asked about how a defendant’s features relate to that defendant’s chance of
re-offending in a pilot study, people exhibited highly consistent beliefs on the relationship between
some features and the re-offending risks (e.g., 91.5% of participants in our pilot study believed de-
fendants with a larger number of non-juvenile prior crimes are more likely to re-offend). This
again supports our conjecture that people may consider themselves as having some knowledge
about how to make recidivism predictions.

3.2 Experimental Design
3.2.1 Machine Learning Model. In this experiment, we trained a logistic regression model using

a subset of the original COMPAS dataset, and this model was used as the underlyingmachine learn-
ing model of the decision aid that predicts the likelihood of a defendant re-offending. We chose
the logistic regression model in this experiment because it has a relatively low level of complexity
and is generally considered as intrinsically interpretable. On the hold-out test dataset consisting
of 1,000 task instances with 47.7% of the instances associated with a positive label (i.e., the de-
fendant in the task instance reoffended within two years), the accuracy of our logistic regression
model is 69.1% and the AUC is 0.749. This level of model performance is comparable with previous
predictive models trained on the COMPAS dataset [38, 51].

3.2.2 Experimental Treatments. We adopted a between-subject design in our experiment. We
created five treatments by varying whether and how the model’s predictions were explained.
• No explanation (Control): Participants would not receive any explanation on the model’s
prediction on each task.
• Feature importance: In this treatment, we explained the model’s prediction to participants
by showing to them the overall “importance” of different features in influencing the model’s
predictions. Specifically, we adopted the permutation feature importance method [32] to
compute the importance of each feature as the increase of the model’s prediction error after
permuting the values on that feature, and we visualized different feature’s importance using
a bar chart (Figure 1(b)).
• Feature contribution: In this treatment, we explained the model’s prediction to partici-
pants by showing to them the contribution of each feature to the prediction. Since the model
we used in this experiment was a logistic regression model, we computed a feature’s contri-
bution to a prediction as the log-odds influence of that feature. We then provided a bar chart
in each task to visualize the contributions of all features in that task as well as the base rate2
(Figure 1(c)).
• Nearest neighbors: In this treatment, we explained the model’s prediction to participants
by showing to them the model’s predictions on other similar data points (i.e., profiles) in the
training dataset. For each task, we looked into all profiles in the training dataset on which
the model’s predictions were correct, and we selected two of them — the one most similar
to the current profile on which the model made the same prediction as that in the current
task, and the one most similar to the current profile on which the model made a different

2The base rate is the log odds value for a hypothetical profile in which the value of each feature takes the reference level.
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prediction than that in the current task. We then presented these two training profiles in a
table, side by side with the profile of the current task (Figure 1(d)).
• Counterfactuals: In this treatment, we explained the model’s prediction on each task by
exploring what changes in feature values result in an opposite model prediction. For each
feature, we either displayed the smallest change that is needed on that feature to flip the
model’s prediction (when other feature values are unchanged), or we told participants that
changing that feature’s value would not affect the model’s prediction (Figure 1(e)).

Together, these treatments covered a diverse set of classicalmodel-agnostic explanations that are
commonly used for explaining AI models [7, 26].3 For example, the feature importance explanation
is a global explanation while the other three are local explanations. Further, the feature importance
and feature contribution explanations aim to explain the model by summarizing feature-based
statistics, while the other two explanations are example-based.

3.2.3 Selection of Task Instances. Participants in different treatments worked on the same set
of 32 task instances. To better answer our research question RQ1–RQ3, we carefully selected
these 32 task instances from the hold-out test dataset. In particular, we categorized the machine
learning model’s confidence on a task instance as high or low depending on whether the model’s
probability estimate of the predicted label (which is in the range of [0.5, 1]) is higher than 0.7,
and we confirmed this probability aligned well with the model’s correctness likelihood on each
instance.4 We included in our task set 16 instances that the model’s confidence is low and 16
instances that the model’s confidence is high. To ensure the representativeness of the selected
instances, we projected all task instances in the test dataset onto the two features with the largest
predictive power (i.e., number of non-juvenile prior crimes and age), and the 16 low (or high)
confidence task instances we included in our final task set were the “prototypes” that can cover the
centers of the data distributions for all data instances in the test set where the model’s confidence
is low (or high) [42, 62].

3.3 Experimental Procedure
We conducted our experiment by posting human intelligence tasks (HITs) on Amazon Me-
chanical Turk (MTurk) and recruiting MTurk workers as our participants.
Upon arrival, participants were randomly assigned to one of the five experimental treatments.

They first completed a survey on their background, including their demographics, technical liter-
acy, and expertise inmachine learning. Then, we presented participants with an interactive tutorial
to walk them through the task interface. If a participant was assigned to a treatment with model
explanation, we also included examples of the model explanation in the tutorial and provided in-
structions to help the participant understand the explanations. We included a few qualification
questions in the tutorial to make sure that participants correctly understand all the information.
After completing the tutorial, the participant then moved on to work on the set of 32 decision

making tasks with the assistance from the machine learning model, and the order of the tasks was
randomized across participants. In each task, the participant followed the three-step procedure as
we have described in Section 3.1 — make an initial independent prediction, review the model’s
prediction (and possibly explanation), and make a final prediction. The participant was not given
any accuracy feedback on either her prediction or the model’s prediction on any of these tasks.

3While the format of feature contribution explanation we used in this experiment was specific to logistic regression models,
explaining model predictions by showing the contribution of each feature is applicable for other models [55, 70].
4We used 0.7 as the threshold because previous studies suggest that people tend to perceive probabilities higher than 70%
as at least “likely” [65], and it leads to two similar-sized subsets of the hold-out test dataset (35.6% of the task instance in
the hold-out test dataset is associated with a confidence that is higher than 0.7).
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Finally, before submitting the HIT, the participant needed to complete an exit survey, which
included a set of multiple-choice questions testing her objective understanding of the model be-
havior. In addition, the participant was also asked to report her perceived understanding of the
model by answering a few survey questions (see Section 3.4 for more details). We included two
attention check questions in the HIT in which the participant was instructed to select a pre-
specified option, which later helped us to filter out the data from inattentive participants.
Our experiment was open to U.S. workers only, and each worker was allowed to participate

only once. The base payment of the experiment was $1.80. To incentivize participants to carefully
read about the model’s explanation in each task and adjust their behavior accordingly, we further
provided them with additional performance-contingent bonuses — if the overall accuracy of the
participant’s final predictions on the 32 tasks was at least 60%, she can earn a bonus of $0.03 for
each of her correct final predictions; and for each correct answer the participant submitted to a
multiple-choice question about the model behavior in the exit survey, she could also earn a $0.10
bonus. The maximum amount of bonuses a participant could earn in this experiment was $2.26.

3.4 Analysis Methods
3.4.1 Independent Variables. The main independent variable we used in our analysis is the ex-

perimental treatment that a participant was assigned to, i.e., the existence and type of model ex-
planations that the participant received.

3.4.2 Dependent Variables. ForRQ1, we used two main dependent variables: (1) a participant’s
objective understanding of theMLmodel, as measured by the number of multiple-choice questions
in the exit survey that she answered correctly, and (2) the participant’s subjective understanding
of the model, as measured by her self-report in the exit survey. Specifically, based on our litera-
ture review on how people’s understanding of an AI model is assessed in existing literature (see
Section 2), we designed a set of nine multiple-choice questions that aim at evaluating participants’
knowledge of the model behavior from various aspects, including:
• Compare feature importance: participants were asked to select among a list of features
which one was most/least influential on the model’s overall predictions (2 questions)
• Specify a feature’s marginal effect on predictions: participants were asked questions
like “if the value of feature X of this profile is x2 instead of x1, would it increase or decrease
the chance for the model to predict Y?” (1 question)
• Counterfactual thinking: participants were given a reference profile, and they were asked
to select from a list of changes in feature values the ones that they believed would result in
an opposite model prediction (2 questions)
• Simulatemodel behavior: participants were given a profile, and theywere asked to predict
what the model would predict on this profile (2 questions)
• Error detection: participants were given a profile, the model’s prediction on the profile,
and the model’s explanation (if applicable), and they were asked to determine whether the
model’s prediction was correct (2 questions)

The full list of multiple-choice questions is included in the Appendix A. Moreover, we asked
participants to report their own perceived understanding of the model by indicating their agree-
ment on the following two statements (adapted from earlier literature [15, 18]) from 1 (“strongly
disagree”) to 7 (“strongly agree”): (1) I understand how the model works to predict whether a
defendant will re-offend; and (2) I can predict how the model will behave. The participant’s sub-
jective understanding of the model is then computed as her average ratings on these two state-
ments. We expect that if an AI explanation improves people’s understanding of the AI model (i.e.,
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satisfy Desideratum 1), the participant’s objective and subjective understanding scores would both
increase.
For RQ2, we looked into participants’ capability in differentiating the model’s high confidence

predictions from its low confidence predictions by examining how people’s reliance on the model
changes with the model’s confidence. Following earlier literature [82, 83], we quantified people’s
reliance on the model using the fraction of tasks in which the participant’s final prediction was
the same as the model’s prediction (i.e., agreement fraction). If an AI explanation can expose the
uncertainty of AI predictions to people (i.e., satisfy Desideratum 2), given that the confidence of our
model is calibrated, we expect participants’ reliance on the model to be higher on high confidence
predictions.
Finally, forRQ3, we evaluated participants’ capability of calibrating their trust in the ML model

using threemain dependent variables, including their appropriate trust [58–60, 63] (i.e., the fraction
of taskswhere participants used themodel’s predictionwhen themodel was correct and did not use
themodel’s predictionwhen themodel waswrong; this is effectively the participants’ final decision
accuracy), overtrust [25, 66] (i.e., the fraction of tasks where participants used a model’s prediction
when it was wrong) and undertrust [25, 66] (i.e., the fraction of tasks where participants did not
use a model’s prediction when it was correct). If an AI explanation supports trust calibration (i.e.,
satisfy Desideratum 3), we expect that participants’ appropriate trust in the model would increase,
while their overtrust and/or undertrust in the model would decrease.

3.4.3 Statistical Methods. To avoid multiple comparison problems and control false discovery,
we conducted our analyses using the interval estimate method [24, 28]. That is, we first visualized
our data by plotting themean values of the dependent variable of interest for each treatment (or the
difference in the mean value of a dependent variable between a treatment with model explanation
and the control treatment) along with the 95% bootstrap confidence intervals (R = 5000). Then, we
interpreted our results based on the range of confidence intervals, and measured the effect sizes
using Cohen’s d [23].
To take the impact of covarietes (e.g., participants’ demographics) into account, we then con-

structed mixed-effect regression models which treated each participant as a random effect and
controlled for covariates, while fixed effects were decided by the variables of interests in each re-
search question. Results of these models are interpreted via the estimated coefficient values for the
fixed effect variables as well as their 95% bootstrap confidence intervals.

3.5 Experimental Results
In total, 1,062 participants completed our experiment HIT. After filtering the data from 280 partic-
ipants who did not pass our attention check, we were left with valid data from 782 participants
(62.9% male, the average age is 38). We analyzed these data to answer our research questions.

3.5.1 RQ1: Effects on Understanding AI Models. We start with examining the impact of different
types of explanation on people’s understanding of themachine learningmodel (RQ1). For each par-
ticipant, we first normalized her objective and subjective understanding scores by dividing them by
the maximum possible values. Figure 2 then shows the average changes of a participant’s normal-
ized objective and subjective understanding scores between each treatment with a specific type
of model explanation and the treatment without model explanation (i.e., the control treatment).
We found that both the feature importance and counterfactual explanations increase participants’
objective understanding of the model (Cohen’s d = 0.26, 95% CI [0.03, 0.48] for feature importance,
and 0.27 [0.04, 0.48] for counterfactuals), and all four types of explanations increase participants’
subjective understanding of the model (Cohen’s d = 0.28, 95% CI [0.05, 0.49] when aggregating all
explanation types).
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Fig. 2. Comparing how different types of explanations change participants’ objective and subjective under-
standing of the model compared to when no model explanation is provided in Experiment 1. Error bars
represent 95% bootstrap confidence intervals.

Further, we constructed mixed effect regression models to predict the correctness of a partici-
pant’s answer on each multiple-choice question or a participant’s rating on each subjective under-
standing survey question. We treated the type of explanation a participant received as the fixed
effect, the participant as the random effect, and controlled for the participant’s age, gender, and
education as covariates.5 Our regression results were consistent with what we have observed in
Figure 2. For example, we found that feature importance and counterfactual explanations lead
to higher levels of objective understanding (estimated coefficient β = 0.04[0.007, 0.07] for fea-
ture importance, and β = 0.04[0.01, 0.07] for counterfactuals), and all 4 types of explanations
result in higher levels of subjective understanding (feature importance: β = 0.04[0.02, 0.06], fea-
ture contribution: β = 0.04[0.03, 0.06], nearest neighbors: β = 0.03[0.01, 0.05], counterfactuals:
β = 0.05[0.03, 0.07]). We also found that female had higher levels of objective understanding of
the model compared to male participants, while participants who self-reported to have a higher
level of education had lower objective understanding scores.
Put together, for participants in our Experiment 1 who make recidivism predictions with the

help of a simple, logistic regression model, it is shown that all four types of model explanations
that we have examined can improve their understanding of the model to some extent. Notably, the
feature importance explanation and the counterfactual explanation not only increase participants’
subjective perceptions of understanding, but also result in increases in their objective understand-
ing of the model behavior.

3.5.2 RQ2: Effects on Recognizing Model Unceratinty. We nowmove on toRQ2 to examine how
the presence of different model explanations affects people’s ability to tell apart high confidence
model predictions from low confidence model predictions. Figure 3(a) compares participants’ re-
liance on the model (as measured by the agreement fraction) on tasks where the model has high
confidence and tasks where the model has low confidence. Visually, it appears that in the control
treatment, when participants were assisted by a logistic regression model to make recidivism pre-
dictions without seeing the model explanations, they did not rely on the model’s high confidence
predictions and low confidence predictions much differently. The provision of different types of
model explanations, however, nudged participants into relying on the model’s high confidence
predictions more than the model’s low confidence predictions.
Such observation becomes more clear when we look into the difference in difference — the dif-

ference in participants’ reliance on high vs. low confidence model predictions in a treatment with

5We also constructed mixed effect regression models when controlling for the participant’s technical literacy and expertise
in machine learning as covariates in addition to the demographic background, and the results are qualitatively similar.
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Fig. 3. Comparing how different types of explanations change participants’ capability of recognizing model
confidence in Experiment 1. (a): Reliance on high/low confidence model predictions, for participants in differ-
ent treatments. (b): The difference of participants’ reliance on high vs. low confidence model predictions in
each treatment with a model explanation, compared against such difference in the control treatment. Error
bars represent 95% bootstrap confidence intervals.

model explanation, minus the difference in participants’ reliance on high vs. low confidence model
predictions in the control treatment. We plot our estimated difference in difference values as well
as the 95% bootstrap confidence intervals in Figure 3(b). We found that all four types of model
explanations — especially the feature contribution explanation — seem to enable participants to
rely on the model’s high vs. low confidence predictions to a much more different extent than those
participants who did not receive any model explanations (e.g., Cohen’s d = 0.20, 95% CI [−0.02,
0.42] when aggregating all explanation types).
We next constructed mixed effect regression models to understand participants’ capability in

recognizing model uncertainty in different treatments when accounting for various covariates.
More specifically, regression models were built for estimating whether a participant would use
the model’s prediction as her final prediction in a task, and we included the type of model ex-
planation the participant received, the raw value of model confidence on the task, as well as
the interaction between explanation type and model confidence as the fixed effects. We further
treated each participant as the random effect and controlled for the participant’s demographic in-
formation. Doing so, we again concluded that the coefficients for the interaction terms between
model confidence and each type of model explanation are reliably estimated to be positive (fea-
ture importance: β = 0.20[0.06, 0.35], feature contribution: β = 0.27[0.12, 0.42], nearest neighbor:
β = 0.17[0.01, 0.33], counterfactual: β = 0.17[0.02, 0.31]). These results, thus, confirm that in this
experiment, participants might have utilized model explanations to infer model uncertainty, which
allows them to rely on high confidence model predictions more, and this is true regardless of the
type of explanation methods used.

3.5.3 RQ3: Effects on Trust Calibration. Finally, we look into how different explanations influ-
ence people’s capability of calibrating their trust in the AI model.Wemeasured participants’ appro-
priate trust, overtrust, and undertrust in the model for each treatment. The difference in the mean
values of these measures between a treatment with model explanation and the control treatment,
as well as their 95% bootstrap confidence intervals, are shown in Figure 4.
Overall, our results suggest that both the feature importance and feature contribution ex-

planation appear to help participants slightly increase their appropriate trust (Cohen’s d =
0.19[−0.05, 0.41] for feature importance, and d = 0.19[−0.03, 0.40] for feature contribution)
and decrease their undertrust (feature importance: d = −0.21[−0.44, 0.02], feature contribution:
d = −0.15[−0.37, 0.06]) in the model, although for participants receiving the feature importance
explanation, this seems to be achieved at the price of a slight increase of overtrust in the model
(Cohen’s d = 0.15[−0.08, 0.36]). On the other hand, the effects of nearest neighbors and coun-
terfactual explanations in influencing participants’ trust calibration were inconclusive. Taking a
closer look at the data by examining how model explanations affect trust calibration on tasks
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Fig. 4. Comparing how different types of explanation support participants’ trust calibration in the AI in
Experiment 1. For appropriate trust, the larger the value the better. For overtrust and undertrust, the smaller
the value the better.

where the model has high or low confidence separately, we found that both the feature importance
and feature contribution explanations support participants’ trust calibration on high confidence
model predictions (e.g., for appropriate trust, feature importance: d = 0.30[0.07, 0.53], feature
contribution:d = 0.23[0.02, 0.45]), but the feature importance explanation also results in a slight in-
crease of participants’ overtrust on the model’s low confidence predictions (d = 0.19[−0.03, 0.42]).
Similar as before, we again built mixed effect models to predict whether a participant could

trust the model appropriately on each task, whether she would over-trust the model on tasks that
the model was wrong, and whether she would under-trust the model on tasks that the model was
correct. The type of explanation the participant received was included as the fixed effect, and the
participant was the random effect. Again, we found that only the feature contribution explanation
increases participants’ appropriate trustwithout incurring a higher level of overtrust or undertrust
(estimated coefficients β for feature contribution — appropriate trust: 0.01[−0.003, 0.03], under-
trust: −0.03[−0.05,−0.01], and overtrust: not reliably different from 0). Interestingly, participants
who reported to have a higher level of education consistently showed a lower level of appropriate
trust, but a higher level of undertrust in the model.
To briefly summarize, when participants make recidivism predictions with the help of a logistic

regression model, the only type of model explanation that could help participants increase their
appropriate trust in the model without resulting in an increase of overtrust or undertrust in the
model is the feature contribution explanation. Moreover, the effect of the feature contribution
explanation in promoting trust calibration is particularly salient on those tasks where the model
makes high confidence predictions.
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4 EXPERIMENT 2: FOREST COVER PREDICTION, LOGISTIC REGRESSION
In our second experiment, we are interested in exploring that in AI-assisted decision making,
whether and how the effectiveness of various AI explanation methods varies with the properties
of decision making tasks involved, such as the level of domain expertise people usually have in
the tasks. Therefore, in this experiment, we replicate Experiment 1 on a different type of decision
making task to examine whether the effects of various AI explanation methods change with the
task type.

4.1 Decision Making Task
The decision making task we used in our second experiment was the forest cover prediction task.
Specifically, in this task, participants were shown a geological profile of a wilderness area (in a
30m × 30m cell) containing eight features — the area’s elevation, aspect, slope, hillshade index,
the horizontal/vertical distance to nearest surface water, the horizontal distance to nearest road-
way, and the horizontal distance to nearest wildfire ignition points. After reviewing the profile,
participants were asked to make a prediction on whether this area is primarily covered by the
spruce-fir forest. These geological profiles were selected from the UCI cover type dataset [8, 31],
which recorded the geological information collected from 581,012 observation areas located in the
Roosevelt National Forest of northern Colorado, USA. In the original dataset, the primary forest
cover for each area is one of the six types of tree species, including spruce/fir. To simplify the task,
we only asked participants to make a binary prediction on whether the primary tree species in an
area is spruce/fir or not. Again, participants first needed to review the geological profile and make
their own prediction. Then, they would be presented with the machine learningmodel’s prediction
before they could submit a final prediction in the task. Figure 5 shows the interface of this task.
We chose the forest cover prediction tasks in our second experiment for two main reasons. First,

such task reflects realistic use cases of AI-driven decision aids, as machine learning models have
been developed to assist people in making better decisions in forest management [56, 57]. Second,
we speculate that compared to the recidivism prediction task, most people may perceive them-
selves as having a lower level of domain expertise in the forest cover prediction task. To confirm
this intuition, we conducted a pilot study, in which we introduced both the recidivism prediction
task and the forest cover prediction task to participants that we recruited from MTurk, and we
asked them to decide on which of these two tasks, they felt themselves to be more knowledgeable.
We also asked participants to indicate among these two tasks, on which task they feel they (or
a normal person) can make more accurate predictions, and they would be more confident about
their predictions. Among 98 MTurk workers who participated in this pilot study, 82.6% of them
reported themselves to be more knowledgeable on the recidivism prediction tasks, 63.3% (or 71.4%)
of them believed they (or a normal person) can make more accurate predictions for the recidivism
prediction tasks, and 71.4% of them felt they would be more confident in making recidivism pre-
dictions. In other words, consistent with our conjecture, most laypeople perceived themselves as
lacking domain expertise in the forest cover prediction task, compared to the recidivism prediction
task.

4.2 Experimental Design and Procedure
We followed the same experimental design as that in Experiment 1 (see Section 3.2). In particular,
we again trained a logistic regression model based on a subset of the UCI cover type dataset to
help people make forest cover predictions. On the hold-out test dataset consisting of 1,000 task
instances with 43.0% of the instances associated with a positive label (i.e., the geographical area in
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Fig. 5. An example of the forest cover prediction task interface (with the nearest neighbors explanation) that
we showed to participants in Experiment 2. Participants needed to first make their initial prediction before
they were presented with the model prediction (and possibly explanation), and were asked to make the final
prediction.

the task instance is primarily covered by spruce-fir forests), the accuracy of our logistic regression
model is 69.5% and the AUC is 0.686; this level of model performance is reasonable and is similar to
the performance of the logistic regression model that we used in Experiment 1 for the recidivism
prediction task.
We again conducted our experiment by recruiting participants from MTurk, and participants

who had previously participated in Experiment 1were not allowed to participate in this experiment.
Regarding the experimental procedure, in addition to following the same procedure of Experiment
1, as that explained in Section 3.3, we further added a training component in the tutorial of the
experiment to help participants get familiar with the forest cover prediction task — we provided
participants with a brief introduction about the characteristics of spruce-fir forests as well as a
set of 10 training tasks, in which participants needed to make predictions on the forest cover type
without the assistance from themachine learningmodel, and they learned about the correct answer
after each task. Such training component was adapted from those used in previous studies when
asking participants to work on tasks that they may have limited expertise in [81, 83]. In addition,
we increased the base payment of the experiment to $2.00 to account for the longer periods of time
that participants needed to spend on this experiment due to the addition of the training tasks.
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Fig. 6. Comparing how different types of explanations change participants’ objective and subjective under-
standing of the model compared to when no model explanation is provided in Experiment 2. Error bars
represent 95% bootstrap confidence intervals.

4.3 Experimental Results
After filtering data from 147 participants who did not answer the attention check questions cor-
rectly, we obtained valid data from 561 participants (64.3%male, the average age is 39).We analyzed
these valid data, following the methods that we have described in Section 3.4.

4.3.1 RQ1: Effects on Understanding AI Models. Figure 6 shows the average changes of a par-
ticipant’s normalized objective and subjective understanding scores between each treatment with
a specific type of model explanation and the treatment without model explanation (i.e., the con-
trol treatment). It appears that when participants made forest cover predictions with the help of a
logistic regression model, the improvement in participants’ understanding of the model brought
up by the provision of model explanations was more limited compared to when participants made
recidivism predictions. Indeed, we were only able to conclude that the feature importance explana-
tion increases participants’ objective understanding of the model (Cohen’s d = 0.33, 95% CI [0.06,
0.59]), while the feature contribution explanation increases participants’ subjective understanding
(Cohen’s d = 0.28, 95% CI [0.01, 0.55]). The results of our mixed effect regression models were con-
sistent with what we have observed in Figure 6. More specifically, we found that in Experiment 2,
other than the positive coefficient associated with the feature importance explanation on influenc-
ing objective understanding (β = 0.05[0.01, 0.09]) and the positive coefficient associated with the
feature contribution explanation on influencing subjective understanding (β = 0.04[0.02, 0.06]),
the effects of other explanations are inconclusive. Similar to that in Experiment 1, we again found
that females had higher levels of objective understanding of the model compared to male partici-
pants, while participants who self-reported to have a higher level of education had lower objective
understanding scores.

4.3.2 RQ2: Effects on Recognizing Model Unceratinty. Moving on to examine how the presence
of different model explanations affects people’s ability to recognize the uncertainty of a model’s
predictions on the forest cover prediction task, Figure 7(a) shows participants’ reliance on the
model on taskswhere themodel has high confidence and taskswhere themodel has low confidence.
In addition, Figure 7(b) shows the difference in difference in reliance when using participants’
reliance difference on high vs. low confidence model predictions in the control treatment as the
reference. Here, we found that participants working on the forest cover prediction task did not
seem to be affected by the model explanations in adjusting how much they would rely on the
model differently based on the model confidence. Analyzing the data again using the mixed effect
regression models to account for various covariates, we still found that the coefficients for all of
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Fig. 7. Comparing how different types of explanations change participants’ capability of recognizing model
confidence in Experiment 2. (a): Reliance on high/low confidence model predictions, for participants in differ-
ent treatments. (b): The difference of participants’ reliance on high vs. low confidence model predictions in
each treatment with a model explanation, compared against such difference in the control treatment. Error
bars represent 95% bootstrap confidence intervals.

the four interaction terms between model explanation type and model confidence scores were
not reliably different from zero. This means that participants making predictions on forest cover
did not seem to act upon model predictions with varying levels of confidence differently in the
presence of model explanations. In other words, various types of model explanations fail to enable
participants to recognize the model’s uncertainty on different tasks in Experiment 2.

4.3.3 RQ3: Effects on Trust Calibration. Finally, we look into how different explanations affect
people’s trust calibration. The mean value differences of participants’ appropriate trust, overtrust,
and undertrust in the model between a treatment with model explanation and the control treat-
ment, as well as their 95% bootstrap confidence intervals, are shown in Figure 8. Inspecting Figure 8,
we concluded that none of the model explanations helps improve participants’ trust calibration in
the AI model for the forest cover prediction task, regardless of the model’s confidence in its predic-
tions. We again built mixed effect models to predict whether a participant could trust the model
appropriately on each task, andwhether she would over-trust (under-trust) themodel on tasks that
the model was wrong (correct), and the results confirmed that none of the explanations supports
participants to calibrate their trust in the model. We also noticed that participants who reported
to have a higher level of education consistently showed a lower level of appropriate trust and a
higher level of undertrust in the model, similar to what we’ve observed in Experiment 1.

5 EXPERIMENT 3: RECIDIVISM PREDICTION, DEEP NEURAL NETWORK
In our last experiment, we aim to explore whether and how the effectiveness of various AI ex-
planation methods varies with the properties of the AI model used, such as the model’s inherent
complexity. Therefore, in this experiment, we replicate Experiment 1 and again study the effects
of AI explanation methods on the recidivism prediction task, but we replace the machine learning
model used in the experiment to a different type.

5.1 Experimental Design and Procedure
5.1.1 Machine Learning Model. In this experiment, we trained a multi-layer neural network

model based on the COMPAS dataset to help participants make recidivism predictions. Specifi-
cally, the model was trained using the Python scikit-learn package [12, 67], with the solver for
weight optimization set to be “lbfgs” and the L2 penalty set to be 0.00001. We conducted a 5-fold
cross-validation on the training dataset to identify the best hyper-parameter values for the neural
network (e.g., the number of hidden layers and the number of neurons per hidden layer) using grid
search. Eventually, the optimal architecture we ended up with contained 10 hidden layers with 50
neurons in each layer. On the hold-out test dataset consisting of 1,000 task instances (the same
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Fig. 8. Comparing how different types of explanation support participants’ trust calibration in the AI in
Experiment 2. For appropriate trust, the larger the value the better. For overtrust and undertrust, the smaller
the value the better.

hold-out dataset as that described in Section 3.2.1), the accuracy of this neural network model is
68.3% and the AUC is 0.761. In contrast to the logistic regression model that we used in Experiment
1, this neural network model represents a class of black-box models with high level of complexity
that is not intrinsically interpretable. Indeed, the large number of hidden nodes and layers used
in this neural network implies a much more complex relationship between the input features and
output predictions, compared to the linear relationship expressed by the logistic regression model
between the input features and log-odds of the binary predictions.

5.1.2 Experimental Treatments. We adopted almost exactly the same experimental treatments
as those used in Experiments 1 and 2 (see Section 3.2.2), except for that we included two treatments
with the feature contribution explanation instead of one. In these two treatments, we adopted two
state-of-the-art model-agnostic interpretability methods to compute the contribution that each
feature makes to the neural network model’s prediction on a task instance:
• Feature contribution – LIME: In this treatment, we explained the model’s prediction to
participants by showing to them the contribution of each feature to the prediction, and these
contribution scores were computed based on the LIME algorithm [70]. Specifically, LIME
trains an interpretable model such as a Lasso regression model at the neighborhood around
the data instance of interest, in order to locally approximate the decision boundary of the
black-box model, and then explains each feature’s contribution to the model’s prediction
based on this local surrogate model. For each task, we first followed the LIME algorithm to
compute each feature’s contribution to the neural network model’s prediction on the task,
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Fig. 9. Examples of the two types of feature contribution explanations that we showed to participants for
the same task instance in Experiment 3.

and then provided a waterfall chart to visualize the contributions of all features as well as
the base rate6 (Figure 9(a)).
• Feature contribution – SHAP: In this treatment, we explained the model’s prediction to
participants by showing to them the contribution of each feature to the prediction, and these
contribution scores were computed based on the SHAP algorithm [55]. SHAP computes the
contribution of each feature to a model’s prediction based on the Shapley values, a concept
from coalitional game theory that enables a “fair” distribution of payoffs among players. For
each task, we first followed the SHAP algorithm to compute each feature’s contribution to
the neural network model’s prediction on the task, and then provided a waterfall chart to
visualize the contributions of all features and the base rate7 (Figure 9(b)).

Note that the feature contribution values generated by LIME and SHAP algorithms should be
interpreted in the probability space, instead of in the log-odds space as that for the logistic regres-
sionmodel.We thus chose to use waterfall charts to visualize the feature contribution explanations
in this experiment, and we informed participants that the length of the bar associated with a fea-
ture reflects how much that feature increases or decreases the model’s estimated probability in
the defendant re-offending. The LIME and SHAP explanations for a task can be different, though.
In particular, summing up feature contribution scores in a SHAP explanation leads to the exact
predicted probability of the defendant re-offending as that given by the neural network model,
whereas summing up feature contribution scores in a LIME explanation only arrives at a approxi-
mation of the predicted probability.

5.1.3 Experimental Procedure. Other than that the underlying machine learning model for the
decision aid is switched from a logistic regression model to a multi-layer neural network model,
and participants who previously participated in Experiment 1 or 2 were excluded from participat-
ing in this experiment, the procedure of this experiment is exactly the same as that of Experiment 1
(see Section 3.3).

5.2 Experimental Results
After filtering data from 115 participants who did not answer the attention check questions cor-
rectly, we obtained valid data from 665 participants (65.1% male, the average age is 38), and we
again followed the methods as described in Section 3.4 to analyze these data.

5.2.1 RQ1: Effects on Understanding AI Models. Figure 10 shows the impact of different types
of explanations on participants’ understanding of the machine learning model. Even though we

6The base rate in LIME is the re-offending chance that the machine learning model predicts for a defendant when it does
not know any feature information about the defendant.
7The base rate in SHAP is the average re-offending chance that the machine learning model predicts for all instances in
the training dataset.
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Fig. 10. Comparing how different types of explanations change participants’ objective and subjective un-
derstanding of the model compared to when no model explanation is provided in Experiment 3. Error bars
represent 95% bootstrap confidence intervals.

still asked our participants to make recidivism predictions in this experiment, we observed that
increasing the complexity of the underlying machine learning model of the decision aid seems to
affect the effectiveness of different explanation methods in influencing people’s understanding of
the model.
In terms of objective understanding, we found only the SHAP feature contribution explanation

brought about an overall positive effect (Cohen’s d = 0.30, 95% CI [0.02, 0.57])8. For subjective
understanding, it appears that only the two feature contribution explanations could slightly help
increase participants’ perceptions on howmuch they understand the model (Cohen’s d = 0.22, 95%
CI [–0.05, 0.50] for LIME, and 0.22 [–0.06, 0.50] for SHAP). When taking the impact of participants’
demographics into consideration, the results of the mixed effect regressionmodels again suggested
the same story — Among all explanation methods, only the SHAP feature contribution explana-
tion slightly improves participants’ objective understanding of the model (β = 0.03[−0.004, 0.07]),
while the LIME and SHAP feature contribution explanation could both help increase participants’
subjective understanding of the model (LIME: β = 0.03[0.01, 0.05], SHAP: β = 0.03[0.01, 0.06])
Aligning with our previous findings, We again found that females had higher levels of objective
understanding of the model compared to male participants, while participants who self-reported
to have a higher level of education had lower objective understanding scores.

5.2.2 RQ2: Effects on Recognizing Model Unceratinty. Figure 11(a) compares participants’ re-
liance on the neural networkmodel on themodel’s high confidence predictions and low confidence
predictions, and Figure 11(b) displays the estimated difference in difference of reliance using par-
ticipants’ behavior in the control treatment as the reference. Visually, it is clear that only when the
SHAP feature contribution explanation was presented, participants could effectively differentiate
the neural network model’s high confidence predictions from its low confidence predictions and
therefore relied on the high confidence predictions more (Cohen’s d = 0.37, 95% CI [0.08, 0.64]).
This is confirmed by our further analysis using mixed effect regression models, which showed that
the only type of model explanation that had a reliably positive interaction with model confidence
in influencing participants’ willingness to rely on the model was the SHAP feature contribution
explanation (β = 0.36[0.18, 0.53]).

8A closer look at the data suggests that the SHAP feature contribution explanation mainly helps increase participants’
ability to simulate model behavior. More details on how different types of explanations change each aspect of participants’
objective understanding of the neural network model (e.g., their ability to simulate model behavior, ability to detect model
errors) can be found in Appendix B.
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Fig. 11. Comparing how different types of explanations change participants’ capability of recognizing model
confidence in Experiment 3. (a): Reliance on high/low confidence model predictions, for participants in differ-
ent treatments. (b): The difference of participants’ reliance on high vs. low confidence model predictions in
each treatment with a model explanation, compared against such difference in the control treatment. Error
bars represent 95% bootstrap confidence intervals.

Fig. 12. Comparing how different types of explanation support participants’ trust calibration in the AI in
Experiment 3. For appropriate trust, the larger the value the better. For overtrust and undertrust, the smaller
the value the better.

5.2.3 RQ3: Effects on Trust Calibration. Figure 12 compares participants’ appropriate trust,
overtrust, and undertrust in the model between a treatment with model explanation and the con-
trol treatment.
Overall, when assisted by the neural network model, participants in the SHAP feature con-

tribution explanation treatment exhibited more calibrated trust in the AI model, as their appro-
priate trust increased (Cohen’s d = 0.38[0.07, 0.65]) and undertrust decreased (Cohen’s d =
−0.33[−0.61,−0.01]). The LIME feature contribution explanation had a similar, yet less conclusive
effect. In addition, we found that the impact of the SHAP explanation on supporting participants’
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Table 2. Summary of the Effects of AI Explanations on Different Types of Decision Making Tasks, when
People are Assisted by a Decision aid that is based on a Logistic Regression Model

Recidivism prediction (Experiment 1) Forest cover prediction (Experiment 2)
Uncertainty Trust Uncertainty Trust

Explanation type Understanding Awareness Calibration Understanding Awareness Calibration

feature importance ✓ ✓ ✗ ✓? ✗ ✗

feature contribution ✓? ✓ ✓ ✓? ✗ ✗

nearest neighbor ✓? ✓ ✗ ✗ ✗ ✗

counterfactuals ✓ ✓ ✗ ✗ ✗ ✗

Note: ✓ (or ✗) means our study finds (or does not find) supportive evidence suggesting the explanation method satisfies
a desideratum. In the ✓? cases, we only find partial evidence supporting the explanation increases people’s
understanding of the model (either measured by objective understanding or subjective understanding, but not both).

Table 3. Summary of the Effects of AI Explanations for Different Types of AI Models, when People Make
Recidivism Predictions with the Assistance from AI

Logistic regression (Experiment 1) Multi-layer neural network (Experiment 3)
Uncertainty Trust Uncertainty Trust

Explanation type Understanding Awareness Calibration Understanding Awareness Calibration

feature importance ✓ ✓ ✗ ✗ ✗ ✗

feature contribution ✓? ✓ ✓

- LIME ✓? ✗ ✗

- SHAP ✓ ✓ ✓

nearest neighbor ✓? ✓ ✗ ✗ ✗ ✗

counterfactuals ✓ ✓ ✗ ✗ ✗ ✗

Note: ✓ (or ✗) means our study finds (or does not find) supportive evidence suggesting the explanation method satisfies
a desideratum. In the ✓? cases, we only find partial evidence supporting the explanation increases people’s
understanding of the model (either measured by objective understanding or subjective understanding, but not both).

trust calibration was mostly shown on those tasks where the model’s confidence in its prediction
was high (appropriate trust: d = 0.39[0.09, 0.67], undertrust: d = −0.39[−0.67,−0.07]).

Similar as before, we again built mixed effect models to predict whether a participant could
trust the model appropriately on each task, and whether she would over-trust (under-trust) the
model on tasks that the model was wrong (correct). The regression results suggested that the
SHAP feature contribution explanation increased participants’ appropriate trust without incurring
a higher level of overtrust or undertrust (estimated coefficients β for SHAP — appropriate trust:
0.03[0.01, 0.06], undertrust:−0.07[−0.09,−0.05], and overtrust: not reliably different from 0), while
LIME explanation helped decrease participants’ undertrust but at the price of inducing a higher
level of overtrust (undertrust: β = −0.05[−0.07,−0.02], overtrust: 0.04[0.004, 0.08]). In addition,
providing feature importance explanation also appeared to help participants decrease their under-
trust (β = −0.03[−0.05,−0.005]), but its effects on influencing participants’ appropriate trust and
overtrust in the model were inconclusive. Still, participants who reported to have a higher level of
education consistently showed a lower level of appropriate trust, but a higher level of undertrust
in the model.

6 DISCUSSION
We summarize our experimental results in Tables 2 and 3, and we highlight a few key findings:
• The effects of AI explanations are dramatically different on tasks where people have varying
levels of domain expertise in, and when applied to AI models of differing levels of complexity.
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In particular, when established XAI methods are used on decision making tasks that people
are not knowledgeable about or on AI models of high complexity, most of them do not
reliably satisfy any of the three desiderata.
• The only positive effect of model explanation that we have consistently observed across
all three experiments is that feature contribution explanations increase people’s subjective
understanding of an AI model.
• Among the four types of explanations that we have examined, the feature contribution ex-
planation seems to be able to satisfy more desiderata of AI explanations when people have
some domain expertise in the decision making task, regardless of the complexity of the AI
model. However, when the AI model is inherently complex, the specific algorithms used to
compute the contribution values of different features may also influence the effectiveness of
the feature contribution explanation.
• The two example-based explanations in our study seem to satisfy least desiderata of AI ex-
planations. Notably, for the counterfactual explanation, which is considered to closely re-
semble how human explain decisions, it is shown that its impact on improving people’s
understanding of the AI model and increasing people’s awareness of the model uncertainty
is significantly weakened as the decision making task requires more domain expertise or
the AI model becomes more complex, and its influence on promoting calibrated trust in AI
is minimal.

In the following, we provide possible explanations of our results, and discuss implications and
limitations of our study.

6.1 The Role of Domain Expertise in Moderating the Effects of AI Explanations
The ineffectiveness of various XAI methods in supporting human decision makers on tasks that
they have limited domain expertise in raises an important question of understanding why. We
conjecture that this may be due to a number of reasons. First, without the domain expertise, people
may find the explanations to be rather foreign and mentally taxing to consume, thus their ability
to absorb the information carried in the explanations decreases. This could be because without the
domain knowledge that is learned from their day-to-day working and social experience and may
have become part of the subconsciousmind [40, 79], people have to process all the new information
(i.e., the AI explanations) in their working memory, which takes up more cognitive capacity [64].
This is particularly true in our study, as participants in the forest cover prediction task may not
only have limited knowledge of how different features relate to the output, but they may even
need to learn the meanings of some features.
In addition, people’s domain expertise may play an important role in facilitating people’s infer-

ence of the uncertainty and correctness of an AI prediction. For example, when receiving a feature
contribution explanation, people may attempt to gauge the uncertainty of a model prediction by
examining whether a few features that they believe as predictive contribute to the model’s pre-
diction in the same direction or not, and they may also compare the direction of each feature’s
contribution with their own rationale to evaluate the correctness of the prediction [83]. Without
these domain expertise, people may find themselves clueless to extract meaningful insights from
the explanations.

6.2 The Role of AI Model Complexity in Moderating the Effects of AI Explanations
While model-agnostic explainable AI methods can be applied to any type of AI models, our study
demonstrates that the effectiveness of these methods can be highly dependent on the properties
of the AI models such as the model’s inherent complexity — when the AI model has high complex-
ity, most AI explanations become less effective as the number of desiderata that they can satisfy
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decreases. This finding is consistent with observations that have been made in previous litera-
ture [48].
We suspect that one reason to explain why we get this finding is that complex models tend

to generate nonlinear and highly complex decision boundaries, which makes it more challenging
for people to make sense of the explanations of these complex models. People may find the ex-
planation of a complex AI model on some task instance contradicts with their own intuition on
how features of a task “should” relate to the prediction on that task. For example, our pilot study
suggests that the majority of people believe defendants’ risks of re-offending increase with the
number of days the defendants have spent in custody. However, in our Experiment 3, there exists
one defendant whoseDays in Custody is 82 and the neural networkmodel predicts hewill re-offend,
but the counterfactual explanation suggests that the model would have predicted that he will not
re-offend if his value on the feature Days in Custody was 124. Upon observing such explanation
that is contradictory to their own intuition, people may feel confused and find themselves unable
to understand why the model captures this counterintuitive relationship, and they may further
doubt the correctness of the model, despite the model’s recommendation may not necessarily be
wrong.

The highly complex decision boundary of sophisticated AI models also implies that the expla-
nations of the model may not be consistent across different task instances. For example, in our
Experiment 3, when the LIME algorithm is used to compute each feature’s contribution to the neu-
ral network model’s prediction on a defendant, within the set of Hispanic defendants we show to
our participants, the contribution of the defendant’s race (i.e., “Hispanic”) ranges from decreasing
the defendant’s estimated chance of re-offending by 3.2% to increasing the estimated chance of
re-offending by 1.1%. This inconsistency of the explanations may add an additional layer of diffi-
culty for people to see how and why the model makes predictions based on different rationales
in different regions of the feature space. On the other hand, the feature importance explanation,
which is a consistent explanation by design (i.e., it is a global explanation and will not vary across
task instances), is also not very effective when used for explaining complex models. This could
potentially be caused by the fact that the global-level feature importance does not always align
with the model’s sophisticated behavior on individual cases.

6.3 Understanding the Difference between the Effectiveness of LIME and SHAP
LIME and SHAP are both established techniques that explain the prediction of an AI model by
computing the contribution of each feature to the prediction, yet results of our Experiment 3 indi-
cate that under our experimental settings, the feature contribution explanation based on SHAP can
satisfy more of the desiderata compared to the feature contribution explanation based on LIME.
Here, we provide two possible accounts for this finding.
First, given a black-box model, LIME computes feature contribution values for a data instance

by generating perturbed training data within the local neighborhood of this instance and learning
an interpretable model on the weighted version of these perturbed data. This interpretable model,
thus, is only an approximation of the original black-box model at the local neighborhood, and
does not necessarily produce the same prediction as the black-box model. In fact, researchers have
found that the random perturbation process employed by LIME for generating local training data
may result in considerable data and label shift, which could eventually decrease the fidelity of the
local interpretable model for explaining the black-box model [69]. Indeed, for the neural network
model that we have used in Experiment 3, we find that the mean absolute difference between the
neural network model’s predicted chance of a defendant re-offending and the chance estimated
by the local interpretable model of LIME on the same defendant (which is the sum of all feature’s
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contributions and the base rate) is 4.8% across all 32 task instances that we show to participants,
with the largest difference being 13.9%.9 Moreover, when using a threshold of 0.7 to differentiate
high confidence model predictions from the low confidence ones (as we have described in Sec-
tion 3.2.3), we find that on three of the 32 task instances, the local model of LIME makes high (low)
confidence predictions while the original neural network model makes low (high) confidence pre-
dictions.10 We conjecture that the misalignment in the predicted probability between the actual
model and the local interpretable model of LIME may have hampered people’s capability in accu-
rately recognizing the model’s uncertainty and adjusting their trust in the model appropriately.
Note, this is less of an issue for the feature contribution explanations produced by the SHAP al-
gorithm, because by design, SHAP is guaranteed to produce the same probability estimate as the
model to be explained.
Second, compared to the feature contribution explanations produced by the LIME algorithm,

we find the explanations produced by the SHAP algorithm seem to have a higher level of consis-
tency across different task instances, at least on the set of 32 task instances that we show to our
participants in Experiment 3. For example, when using SHAP to compute feature contributions,
for all categorical features (e.g., race, sex, name of the currently charged crime), the contribution
values associated with a specific feature value (e.g., the value of “Hispanic” for the feature “race”)
always take the same sign, suggesting that setting the categorical feature to a particular value
tend to always change the model’s prediction to the same direction. In addition, the base rate of
re-offending given by the SHAP algorithm is always the same for any task instance, which is the
average re-offending chance for all task instances in the model’s training dataset. In contrast, the
LIME algorithm has different base rate prediction for different task instances, because LIME fits
separate local models for each individual instance. It is thus possible that people find the more con-
sistent explanation to be easier to understand and utilize, leading to a higher level of effectiveness
of the SHAP explanation compared to the LIME explanation.
Finally, in Section 5.2.1, we found that both the LIME and SHAP explanation lead to higher lev-

els of subjective understanding of the model among participants. However, for those participants
who received the LIME explanation, their objective understanding of the model was not reliably
improved in general. We conjecture that this could be caused by the fact that the LIME and SHAP
explanation share similar formats (i.e., they both explain the model’s prediction by specifying how
much each feature contributes to the prediction), as people may generally find such format of ex-
planation to be informative and accessible. This means that those receiving the LIME explanation
may think they understand the model more than they actually do, or in other words, suffer from
the illusion of explanatory depth [71], perhaps partly because the fidelity and internal consistency
of the LIME explanation is imperfect. This could be a potentially harmful scenario in reality, which
highlights the importance of conducting more future studies to explore when and why an illusion
of explanatory depth occurs [19], and how to carefully design and present XAI methods like LIME
to avoid such a scenario.

9On the 1,000 task instance in the hold-out test dataset, the mean absolute difference between the neural network model’s
predicted chance of a defendant re-offending and the chance estimated by the local interpretable model of LIME on the
same defendant is 5.5%, with the largest difference being 37.7%.
10When looking into the 1,000 task instances in the hold-out test dataset, we find for 75 instances the local model of LIME
makes high (low) confidence predictions when the original neural network model makes low (high) confidence predictions.
We even find that on 72 task instances, the predicted probability of re-offending given by the local model of LIME would
result in an opposite binary prediction compared to the predicted probability of the neural network model. On each of the
32 task instances that we show to participants in Experiment 3, the binary prediction of the neural network model and the
local model of LIME are always the same, though.
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6.4 Implications for Designing and Selecting XAI Methods
In light of the ineffectiveness of existing XAI methods, better explanations should be designed for
those decision making contexts when people have limited knowledge in the task (e.g., recommend-
ing portfolios to beginning investors), and for those cases when the XAI methods are applied to
inherently complex models (e.g., gradient boosting machines, deep neural networks).
Regarding designing more effective XAI methods for decision making tasks that require a high

level of domain expertise, a key challenge is how to construct and communicate the explanation
in a manner that places reasonable cognitive load on the explanation consumers. To this end, tech-
niques for presenting explanations visually, selectively, and progressively [61, 73, 81], andmethods
for incorporating the consideration of cognitive load into the explanation generation process [1]
should be explored. Moreover, new approaches can be developed to increase people’s ability in
making full use of the information carried in AI explanations without relying on their domain
knowledge. For example, for explanations like feature contribution and counterfactual examples,
people could have been able to infer the model uncertainty even without any knowledge about
the domain — they can simply sum up the contribution of all features and the base rate in a case
and then compare the sum to some threshold (i.e., if the sum indicates the probability of a binary
prediction, use 0.5 as the threshold; the closer the sum is to the threshold, the more uncertain the
model), or they can count the number of counterfactual examples and compute the magnitude of
difference between each counterfactual and the original data (i.e., the larger number of counter-
factual examples and the smaller the difference, the more uncertain the model).
With respect to increasing the effectiveness of XAI methods when explaining complex AI mod-

els, we speculate that an important step to take is to go beyond just explaining what causes the
model’s prediction on each local data point. Instead, more context and justifications should be pro-
vided along with these explanations. For example, when the model captures a counterintuitive
relationship between features and predictions, in addition to illustrating such a relationship to
people, further information can be supplied to help people obtain deeper understandings on when
and why such counterintuitive relationship exists (e.g., when fixing the value of feature B, does
the counterintuitive relationship between feature A and the prediction still exist?).
Moreover, if a complex model’s explanations show a degree of inconsistency across different

task instances, it could be useful to give people a big picture of the range of applicability of differ-
ent explanations (e.g., when does the value of Hispanic on the race feature result in increases in
predicted re-offending risk and when does it result in decreases, and why?). To this end, combining
global and local explanations to explain complex AI models may turn out to be a more effective
approach. Similar recommendations have been previously made by other researchers, resulting
in many innovative model exploration interfaces that incorporate both model-level (global) and
instance-level (local) explanations to flexibly support the user’s various needs in understanding
the model behavior [14, 37, 46, 70]. Compared to providing only global or local explanations, com-
bining both types of explanations may enable users to not only probe a high-level overview of the
model but also drill down into detailed investigation on specific instances. Moreover, it may also
help users get a sense of the partition of the feature space on which the model operates based on
different rationales, so that they can avoid over-generalize their understandings of the model from
one instance to another. In the future, more empirical studies need to be carried out to examine
the effectiveness of those interfaces which combine global and local explanations of AI models,
and to identify the best practices in combining these two types of explanations.
Finally, our study also indicates that the three desiderata we have posited for AI explanations

may each capture distinct aspects of people’s usage of AI explanations — satisfying one desider-
atum is not always sufficient for satisfying the other desiderata, and one explanation can score
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high on some desideratum but not the others. This is in line with previous findings that XAI meth-
ods that help people simulate an AI may not necessarily increase people’s decision accuracy [11].
Further studies are needed to systematically understand the relationships between these desider-
ata. Explanation providers should also carefully select the type of explanations to present to users
based on the specific use cases (e.g., whether the goal is to increase users’ comprehension of the
model or enhance user’s decision making, what type of decision making task is involved, and what
kind of AI models are used).

6.5 Limitations
Our study is limited by the particular formats of explanations we have adopted (e.g., visual designs
of feature contribution, the way we select nearest neighbors), as well as the particular types of
decision making tasks and AI models that we have considered. We caution the readers to not over-
generalize our results to other settings. The desiderata we have proposed in this study are not
comprehensive, and future studies could be conducted to explore other aspects of the effects of
AI explanations (e.g., influence user’s satisfaction). In addition, the effects of AI explanations may
also be moderated by other factors such as the accuracy of the AI model. Thus, investigating how
these effects change with additional moderating factors is another important direction to explore.
Nevertheless, we hope our study provides a starting point for comparing the effectiveness of

various XAI methods in AI-assisted decision making along concrete standards, and inspires more
empirical studies to advance our knowledge of the strengths and weaknesses of different expla-
nations. Towards obtaining a rigorous and comprehensive understanding of the effectiveness of
various XAI methods, we recommend future researchers to evaluate XAI methods across decision
making tasks with different characteristics and on AI models with different properties. Impor-
tantly, results of any empirical evaluation of XAI methods should also be communicated along
with sufficient contextual information on the properties of the decision making task, as well as the
properties of the AI model.

7 CONCLUSION
In this paper, we present a comparative study to understand the effectiveness of four types of XAI
methods in supporting people to make better decisions. We first identify three desiderata of AI ex-
planations as critical for people to understand the AI model, recognize the uncertainty underlying
the AI model, and calibrate their trust in the AI model in AI-assisted decision making. We further
conduct three randomized experiments to evaluate whether commonly-used model-agnostic XAI
methods satisfy these desiderata on two types of decision making tasks where people have vary-
ing levels of domain expertise in, and on two types of AI models which have various inherent
complexity. We find that overall, the effectiveness of most XAI methods decreases when used on
decision making tasks that people lack domain expertise in or on complex AI models. In particular,
on tasks that people have little domain expertise in, none of the four AI explanations we have
examined reliably satisfy any of the three desiderata. On tasks that people perceive themselves as
more knowledgeable, our results provide evidence supporting that the feature contribution expla-
nation has the potential to satisfy most of the desiderata, even when the AI model is inherently
complex.

APPENDICES
A OBJECTIVE UNDERSTANDING QUESTIONS (EXPERIMENT 1)
The full list of multi-choice questions we used for evaluating participants’ objective understanding
of the model behavior in Experiment 1 is included in this appendix. In each question, we highlight
the correct answer in bold text.
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A.1 Feature Importance
Question 1: Among the following features, which one is the most important in influencing our
machine learning model’s prediction (that is, variations in the value of that feature willmost likely
change the model’s prediction)?

A. Age
B. Charge Name
C. Charge Degree

Question 2:Among the following features, which one is the least important in influencing our ma-
chine learning model’s prediction (that is, variations in the value of that feature will most unlikely
change the model’s prediction)?

A. Days in Custody
B. Sex
C. Charge Degree

A.2 Marginal Effect of Features on Predictions
Question 3: Consider a defendant with the following profile:

1. Race White 2. Sex female 3. Age 31 4. Prior
Count 0

5. Charge
Name Arrest case no charge

6. Detailed
Charge
Degree

misde-
meanor

7. Days in
custody 0

When all other features are kept the same,

(1) If the defendant’s age was 41 instead of 31, how would the machine learning model’s predic-
tion on the defendant’s likelihood of reoffending change?
A. The model would predict the 41-year-old defendant to be more likely to reoffend.
B. The model would predict the 41-year-old defendant to be less likely to reoffend.

(2) If the number of days the defendant spent in custody was 100 instead of 0, how would the
machine learning model’s prediction on the defendant’s likelihood of reoffending change?
A. The model would predict the defendant spending 100 days in the custody to be

more likely to reoffend.
B. The model would predict the defendant spending 100 days in the custody to be less likely

to reoffend.
(3) If the defendant’s charge name is “Driving under the Influence” instead of “Arrest with no case”,

how would the machine learning model’s prediction on the defendant’s likelihood of reof-
fending change?
A. The model would predict the defendant who was charged with “Driving under the Influ-

ence” to be more likely to reoffend
B. The model would predict the defendant who was charged with “Driving under

the influence” to be less likely to reoffend
(4) If the defendant’s race is Hispanic instead of white, how would the machine learning model’s

prediction on the defendant’s likelihood of reoffending change?
A. The model would predict the defendant whose race is Hispanic to be more likely to

reoffend
B. The model would predict the defendant whose race is Hispanic to be less likely

to reoffend
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(5) If the defendant is a male instead of a female, how would the machine learning model’s pre-
diction on the defendant’s likelihood of reoffending change?
A. The model would predict the male defendant to bemore likely to reoffend.
B. The model would predict the male defendant to be less likely to reoffend.

A.3 Counterfactual Thinking
Question 4: Consider a defendant with the following profile:

1. Race White 2. Sex male 3. Age 22 4. Prior
Count 3

5. Charge
Name Possession of Cocaine

6. Detailed
Charge
Degree

felony 7. Days in
custody 10

Our machine learning model currently predicts this defendant will reoffend. When all other fea-
tures are kept the same, which of the following changes on the crime charge is most likely to
change our model’s prediction (i.e., make the model predict the defendant will not reoffend)?

A. Change the charge name to “Driving Under the Influence”
B. Change the charge name to “Driving with a Suspended License”
C. Change the charge name to “Battery”

Question 5: Consider a defendant with the following profile:

1. Race Black 2. Sex female 3. Age 24 4. Prior
Count 2

5. Charge
Name Grand Theft

6. Detailed
Charge
Degree

felony 7. Days in
custody 117

Our machine learning model currently predicts this defendant will reoffend. If we change only
one feature of this profile but leave all other features unchanged, which of the following changes
is going to change our model’s prediction (i.e., make the model predict the defendant will not
reoffend)? Please check all that apply.

A. Change Race from Black to Hispanic
B. Change Sex from female to male
C. Change Age from 24 to 29
D. Change Priors Count from 2 to 0
E. Change Charge Name from “Grand Theft” to “Driving Under the Influence”
F. Change Days in Custody from 117 to 9

A.4 Simulate Model Behavior
Question 6: Consider a defendant with the following profile:

1. Race White 2. Sex male 3. Age 26 4. Prior
Count 2

5. Charge
Name Driving Under the Influence

6. Detailed
Charge
Degree

felony 7. Days in
custody 1
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What do you think our machine learning model will predict for this defendant?
A. The model will predict this defendant will reoffend within two years
B. The model will predict this defendant will not reoffend within two years

Question 7: Consider three defendants with the following profiles:
Defendant 1:

1. Race Hispanic 2. Sex male 3. Age 41 4. Prior
Count 1

5. Charge
Name Driving Under the Influence

6. Detailed
Charge
Degree

misde-
meanor

7. Days in
custody 1

Defendant 2:

1. Race White 2. Sex male 3. Age 24 4. Prior
Count 3

5. Charge
Name Driving Under the Influence

6. Detailed
Charge
Degree

misde-
meanor

7. Days in
custody 1

Defendant 3:

1. Race White 2. Sex male 3. Age 25 4. Prior
Count 3

5. Charge
Name Driving with a Suspended License

6. Detailed
Charge
Degree

misde-
meanor

7. Days in
custody 172

For one of these three defendants, our machine learning model predicts that the defendant
will reoffend. Which one do you think is this defendant?

A. Defendant 1
B. Defendant 2
C. Defendant 3

A.5 Error Detection
Question 8: Consider a defendant with the following profile:

1. Race White 2. Sex male 3. Age 22 4. Prior
Count 0

5. Charge
Name Possession of Cocaine

6. Detailed
Charge
Degree

felony 7. Days in
custody 1

Our machine learning model predicts that this defendant will reoffend [and also gives its ex-
planation on the right side]. Do you believe this prediction is correct? (w/ or w/o ML explanation)

A. Yes, I think this prediction is correct
B. No, I think this prediction is wrong
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Question 9: Consider a defendant with the following profile:

1. Race Black 2. Sex male 3. Age 52 4. Prior
Count 7

5. Charge
Name Grand Theft

6. Detailed
Charge
Degree

misde-
meanor

7. Days in
custody 1

Our machine learning model predicts that this defendant will not reoffend [and also gives its
explanation on the right side]. Do you believe this prediction is correct? (w/ orw/oML explanation)

A. Yes, I think this prediction is correct
B. No, I think this prediction is wrong

B EFFECTS OF MODEL EXPLANATIONS ON INFLUENCING EACH ASPECT OF
OBJECTIVE UNDERSTANDING OF THE MODEL (EXPERIMENT 3)

Fig. B.1. Comparing how different types of explanations change the five aspects of participants’ objective un-
derstanding of the neural network model compared to when no model explanation is provided in Experiment
3. Error bars represent 95% bootstrap confidence intervals.

Since the multi-layer neural network model we used in Experiment 3 was inherently more dif-
ficult to understand, it is interesting to explore whether and how the provision of different model
explanations changes participants’ objective understanding of the model from different perspec-
tives. To do so, we computed a participant’s normalized score in each objective understanding
survey component (i.e., compare feature importance, specify a feature’s marginal effect on predic-
tions, etc.) for each of the six experimental treatments in Experiment 3. In Figure B.1, for each
component of objective understanding, we show the average changes of the normalized score be-
tween each treatment with a specific type of model explanation and the control treatment, along
with the 95% bootstrap confidence intervals.

According to the figure, we find that when compared with the control treatment, the provision
of the SHAP feature contribution explanations mainly helps increase participants’ objective under-
standing of the model by increasing their capability in simulating the model behavior. In addition,
the LIME feature contribution explanation can also increase participants’ ability to simulate the
model behavior, and the counterfactual explanation is shown to increase participants’ ability in
better understanding feature importance for the model, despite they both could not improve par-
ticipants’ overall objective understanding of the model when considering all components together.
In contrast, we also notice that none of the explanation seems to affect participants’ capability
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in specifying a feature’s marginal effect on the model’s predictions, conducting counterfactual
thinking, or detecting model errors.
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