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ABSTRACT
Crowdsourcing has become a popular tool for large-scale data col-

lection where it is often assumed that crowd workers complete

the work independently. In this paper, we relax such independence

property and explore the usage of peer communication—a kind of

direct interactions between workers—in crowdsourcing. In particu-

lar, in the crowdsourcing setting with peer communication, a pair
of workers are asked to complete the same task together by first

generating their initial answers to the task independently and then

freely discussing the task with each other and updating their an-

swers after the discussion. We first experimentally examine the

effects of peer communication on individual microtasks. Our results

conducted on three types of tasks consistently suggest that work

quality is significantly improved in tasks with peer communication

compared to tasks where workers complete the work independently.

We next explore how to utilize peer communication to optimize

the requester’s total utility while taking into account higher data

correlation and higher cost introduced by peer communication. In

particular, we model the requester’s online decision problem of

whether and when to use peer communication in crowdsourcing

as a constrained Markov decision process which maximizes the

requester’s total utility under budget constraints. Our proposed ap-

proach is empirically shown to bring higher total utility compared

to baseline approaches.
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1 INTRODUCTION
Crowdsourcing has gained increasing popularity recently as a scal-

able data collection tool for various purposes, such as obtaining

labeled data for training machine learning algorithms and getting

high-quality yet cheap transcriptions for audio files. On a typical

crowdsourcing platform like Amazon Mechanical Turk (MTurk),
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task requesters can post small jobs (e.g., image labeling or audio tran-

scription tasks) as “microtasks” along with the specified payment

for completing each task. Workers then can browse all available

tasks on the platform and decide which ones to work on. Crowd

workers are often assumed to complete tasks independently, and a

substantial amount of crowdsourcing research has been focused on

how to make better use of the independent workers. For example,

a rich body of research has explored how to aggregate independent

contributions from multiple workers by inferring task difficulties,

worker skills, and correct answers simultaneously [10, 41, 49, 53].

Moreover, given a limited budget, researchers have further exam-

ined how to intelligently decide the number of independent workers

needed for each task at the first place [8, 21, 34].

However, the validity and value of this independence assump-

tion in crowdsourcing has been challenged recently. Through a

combination of ethnographic and experimental methodologies,

researchers have found that crowd workers, in fact, communi-

cate and collaborate with each other through both online forums

(like TurkerNation
1
and MTurkCrowd

2
) and one-on-one chan-

nels [19, 20, 25, 37, 44, 51]. Different from such collaboration which

is organically arisen within the crowd and mostly about exchang-

ing meta-level information related to crowd work (e.g., how to find

well-paid tasks), an increasing number of studies in the human-

computer interaction community have started to design certain

level of interactions between workers in their actual work, which

is shown to improve crowdsourcing outcomes in many cases. For

example, various workflows are developed to coordinate workers to

work on different subtasks and interact with each other through the

pre-defined input-output handoffs [4, 9, 30–32, 35, 40, 42], which

enable the crowd to jointly complete complex tasks.

More recently, worker interactions are further introduced be-

tween workers of the same task: Drapeau et al. [18] and Chang

et al. [7] showed that in image/text labeling tasks, workers can

improve their labeling accuracy when indirect interactions—in the

form of showing each worker the alternative answer and associated

justification produced by another worker who works on the same

task—are enabled, and Schaekermann et al. [45] observed that in

text classification tasks, worker performance increases when they

can debate their answers through direct, real-time deliberation with

one another. While these research show the promise of an alterna-

tive way to structure crowd work that leads to higher performance,

they also raise a number of open questions.

First, on the “micro” level, it is important to empirically examine

whether adding interactions between workers working on the same

task leads to an increase in work quality for individual tasks of
different types, especially for those tasks with a large number of

possible answers (rather than just a few options as in image labeling

and text classification tasks). Indeed, when the number of possible

1
http://turkernation.com/

2
https://www.mturkcrowd.com/
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answers in a task becomes large, workers may hardly agree with

each other so it is unclear whether interactions between them

would be meaningful and effective. It is also impractical for workers

to argue against all alternative answers during their interactions,

which may imply the need for new formats of interactions beyond

providing justification and argumentation.

Furthermore, from a more “macro” point of view, requesters typ-

ically have a large batch of tasks at hand and need to solicit answers
from multiple workers for each task. Their goal is to optimize their

overall utility such as maximizing the quality obtained across all
the tasks under a fixed budget. Yet, compared to independent work,

allowing worker interactions in a task can bring up not only work

quality improvement in that task, but also higher cost and higher

correlation in workers’ answers. Thus, for requesters to make bet-

ter use of worker interactions, a critical problem to address is that

given a limited budget, whether and when should worker interac-

tions be used in each task, such that after combining the possibly

correlated answers together for each task, the work quality for the

entire batch of tasks is maximized when the budget is exhausted.

In this paper, we attempt to answer these two questions. In par-

ticular, inspired by the concept of peer instruction in education [12],

we focus on studying a specific format of worker interactions that

we refer to as peer communication—a pair of workers working on
the same task are asked to first provide an independent answer

each, then freely discuss the task with each other, and finally pro-

vide an updated answer, again independently, after the discussion.

Compared to worker interaction formats used in the early research

(e.g., justification and argumentation), we consider peer communi-

cation as a kind of direct and synchronous interaction that can be

generalized to different types of tasks more easily. Our goal is to

better understand not only whether and how peer communication

would affect the outcome of crowd work for various types of tasks,

but also how requesters can use algorithmic approaches to better

utilize the potential benefits brought up by peer communication.

To understand the effects of peer communication on crowd work,

we design and conduct randomized experiments with three differ-

ent types of tasks: image labeling, optical character recognition,

and audio transcription. For all types of tasks in our experiments,

regardless of how large the number of possible answers in the task

is, we have consistently observed an increase in work quality when

workers can talk with their peers in the task compared to workers

who work independently. Yet, we do not observe any spillover ef-

fects of such quality improvement whenworkers who have engaged

in peer communication work on similar tasks again independently.

Moreover, to examine how peer communication can be better

utilized, we propose an algorithmic framework to help requesters

make online decisions on whether and when to use peer communi-

cation for each task in their batch, with the goal of maximizing the

overall work quality produced in all tasks given a budget constraint.

One of the key challenges here is how to infer the correct answer

for a task given multiple answers solicited from workers, where

some of them may be produced following the peer communication

procedure and thus may be correlated. To this end, we introduce

the notions of meta-workers and meta-labels to describe a pair of

workers who have engaged in a task with peer communication

and the pair of answers produced by them. Such notions enable

us to characterize the possible correlation in data, which further

allow us to solve the requester’s online decision-making problem

by modeling it as a constrained Markov decision process.

We evaluate the effectiveness of the proposed algorithmic ap-

proach on real data collected through our experimental study. Re-

sults show that using our approach to decide the usage of peer

communication in tasks, the requester can achieve higher overall

quality across all her tasks when the budget is exhausted, compared

to when baseline approaches are adopted where peer communica-

tion is always used in all tasks or never used in any of the tasks, or

when correlation in data is not explicitly considered. In addition,

through two sets of simulated experiments, we further examine how

the proposed algorithmic approach performs in various scenarios

when the differences in work quality and cost between hiring pairs

of communicating workers and hiring independent workers vary,

and when answers produced by pairs of communicating workers

are correlated to different extent.

In summary, we make the following contributions:

• We introduce peer communication, a general mechanism adapted

from the concept of peer instruction in education for including

worker interactions in crowd work.

• We empirically show that on different types of tasks, compared

to independent work, peer communication consistently leads to

a 32%–47% improvement in work quality for individual tasks.

• We propose an algorithmic framework to help requesters dynam-

ically decide whether and when to use peer communication for

each task in their batch, so as to maximize the overall quality

obtained across all tasks given a budget constraint.

• Through evaluations on both real data from crowd workers and

synthetic data, we demonstrate that compared to baseline ap-

proaches, using our proposed algorithm to determine the deploy-

ment of peer communication leads to higher requester utility.

2 RELATEDWORK
Our work joins a long line of research on improving the quality

of crowd work. In traditional settings where it is assumed that

workers independently complete tasks, various methods have been

proposed to address this problem, including post-hoc aggregation

of workers’ answers [10, 14, 15, 26, 41, 49, 53], designing effective

extrinsic incentives [23, 24, 38, 50] and intrinsic motivation [33, 43,

47], appropriate assignment of tasks to workers [22, 27, 28], etc.

We explore how to improve the quality of crowd work from a

different angle, that is, by adding interactions between workers.

Researchers have previously designed workflows for complex tasks

to allow workers to work on different subtasks while indirectly

interacting with one another through the pre-defined input-output

handoffs [4, 9, 30–32, 35, 40, 42]. Different from these workflow-

based approaches, we consider the addition of interactions between

workers of the same task. A few previous studies [7, 18, 45] have

showed that enabling interactions between workers working on

the same task, in the form of asking workers to provide justification

for their answers, can lead to improvement in work quality, but

these studies only test this idea on classification tasks. We aim to

extend this idea to a wider range of tasks, especially for tasks with

a large number of possible answers.

In this paper, we study a specific format of interactions, peer
communication, which is adapted from “peer instruction” [12] and



“think-pair-share” strategies [36] in the educational settings. There

is a rich literature in the collaborative learning community sug-

gesting that asking students to discuss conceptual questions with

other students after they independently answer the questions leads

to higher levels of understanding and post-test performance [11,

16, 48]. We thus design the peer communication procedure as first

asking a pair of workers to provide an independent answer each,

then allowing them to freely discuss the task with each other, and

finally independently update their answers. While evidence in the

collaborative learning community and results for adding argumen-

tation in classification tasks seem to indicate peer communication

would lead to higher work quality, other studies showed that allow-

ing workers to chat during work doesn’t change work quality [52].

Thus, it is necessary to re-examine the impact of peer communi-

cation on the quality of crowd work, if any. In addition, as prior

research on inter-task effects [1, 6, 39] suggests that when working

on a sequence of tasks, workers’ responses for later tasks could be

influenced by the earlier tasks, we further examine whether peer

communication brings any “spillover” effect on work quality. That

is, whether workers produce higher independent work quality after

engaging in similar tasks with peer communication.

Besides empirically showing the benefits of peer communication

on work quality, we further provide an algorithmic framework

for helping requesters better utilize such benefits. Early work has

explored how indirect interactions between workers of different

tasks that are embedded in certain workflows can be algorithmically

controlled in order to maximize requester utility [13]. In contrast,

the purpose of our algorithmic framework is to dynamically decide

whether and when to deploy peer communication between workers

of the same task for each task in requesters’ batch to maximize their

utility. Our framework is built on top of the work by Chen et al.

[8], in which they used a Markov decision process to sequentially

decide which task in requesters’ batch needs an additional worker

to work on given a budget constraint. However, our framework

has a few key differences: First, in addition to choose which task

needs further work, we also decide on how to design that piece

of work—hiring one independent worker or two communicating

workers? Second, when making inference for each task, we need

to consider the possible correlation in the answers for this task.

Finally, since peer communication and independent work incurs

different cost, this decision-making problem does not degenerate
into a finite-horizon Markov decision process. Thus, we explicitly

model the problem as a constrained Markov decision process.

3 EXAMINING PEER COMMUNICATION VIA
REAL-WORLD EXPERIMENTS

In this section, we first present our experimental study, in which we

carefully examine the effects of introducing peer communication

between pairs of workers on the quality produced in individual tasks

through a set of randomized experiments conducted on Amazon’s

Mechanical Turk (MTurk). In particular, we ask:

• Question 1 (Q1): Do workers produce higher work quality in

tasks with peer communication compared to that in tasks where

workers work independently?

Previous studies on the effects of adding worker interactions

in image and text classification tasks [7, 18, 45] seem to imply a

positive answer for Q1. Compared to these studies, our study has

two key differences that warrant a re-examination of Q1: (1) the

main format of interaction in peer communication is a synchronous,
free-form chat rather than required justification and argumentation;

(2) we consider different types of tasks beyond classification, espe-

cially tasks with a large number of possible answers so workers

can hardly agree with each other or argue against all alternative

answers. Moreover, we are also interested in examining whether

there is any “spillover” effects of the impact of peer communication

on work quality. Specifically:

• Question 2 (Q2): Do workers produce higher independent work
quality after engaging in similar tasks with peer communication,

compared to workers who always complete tasks on their own?

Both positive and negative answers might be possible for Q2:

On the one hand, if communication between workers in tasks al-

low them to resolve misconception about the tasks or learn useful

problem-solving strategies from each other, we might expect a

positive answer; on the other hand, if the benefits of peer commu-

nication are mostly due to workers being able to exchange their

confidence levels on a task and eventually converge to the more

confident answer [2], the answer for Q2 would likely be negative.

3.1 Independent Tasks vs. Discussion Tasks
In our experiments, we considered two ways to structure the tasks:

• Independent tasks (tasks without peer communication). In an

independent task, workers are instructed to complete the task

on their own.

• Discussion tasks (tasks with peer communication). In discus-

sion tasks, we designed a procedure which guides workers to

communicate with each other and complete the task together.

Specifically, each worker is paired with another “co-worker” on

a discussion task. Both workers in the pair are first asked to

work on the task and submit their answers independently. Then,

the pair enters a chat room, where they can see each other’s

independent answer. Workers are instructed to freely discuss the

task with their co-workers for two minutes; for example, they

can explain to each other why they believe their answers are

correct. After the discussion, both workers get the opportunity

to independently update and submit their final answers.

3.2 Experimental Treatments
The most straight-forward experimental design would include two

treatments, where workers in one treatment are asked to work on a

sequence of independent tasks while workers in the other treatment

complete a sequence of discussion tasks. However, if we adopt such

a design, the different nature of independent and discussion tasks

(e.g., discussion tasks require more time and effort from workers

but can be more interesting to workers) implies the possibility

of observing severe self-selection biases in the experiments (i.e.,

workers may self-select into the treatment that they can complete

tasks faster or find more enjoyable).

To overcome the drawback of this simple design, we design our

experiments in a way that each treatment consists of the same

number of independent tasks and discussion tasks, so neither treat-

ment appears to be obviously more time-consuming or enjoyable.

Figure 1 illustrates the two treatments used in our experiments. In
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Discussion	Task
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Independent	Task Independent	Task

Independent	Task Independent	Task

Discussion	Task Discussion	Task

Independent	Task Independent	Task

Treatment 1

Treatment 2

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6

Session 1: Examine Peer Communication Session 2: Examine Spillover Effects Session 3: Balance Task Types
Figure 1: The two experimental treatments. This design enables us to examine whether peer communication improves the
quality of crowd work (by comparing work quality in Session 1) and if so, does the improvement spill over to the follow-
ing independent tasks (by comparing work quality in Session 2), while not creating significant differences between the two
treatments (by adding Session 3 to make the two treatments containing equal number of independent and discussion tasks).

particular, we bundle 6 tasks in each HIT (i.e., Human Intelligence

Task on MTurk). When a worker accepted our HIT, she was told

that there are 4 independent tasks and 2 discussion tasks in the HIT.

There are two treatments in our experiments:

• Treatment 1: Workers are asked to complete 4 independent tasks

followed by 2 discussion tasks.

• Treatment 2: Workers are asked to complete 2 discussion tasks

followed by 4 independent tasks.

Importantly, we did not tell workers the ordering of the 6 tasks,

which helps us to minimize the self-selection biases as the two

treatments look the same to workers. We refer to the first, middle,

and last two tasks in the sequence as Session 1, 2, 3 of the HIT, re-

spectively. Thus, we can answer Q1 by comparing the work quality

produced in Session 1 between the two treatments, while a compar-

ison of work quality in Session 2 between the two treatments would

allow us to answer Q2. Finally, Session 3 is used for balancing the

number of independent and discussion tasks in each HIT.

3.3 Experimental Tasks
We conducted our experiments on three types of tasks:

• Image labeling. In each task, the worker is asked to identify

whether the dog shown in an image is a Siberian Husky or a

Malamute. Dog images we use are collected from the Stanford

Dogs dataset [29].

• Optical character recognition (OCR). In each task, theworker
is asked to transcribe a vehicle’s license plate numbers from

photos. The photos are taken from the dataset provided by Shah

and Zhou [46].

• Audio transcription. In each task, the worker is asked to tran-

scribe an audio clip which contains about 5 seconds of speech.

The audio clips are collected from VoxForge
3
.

We decided to conduct our experiments on these three types of

tasks for two main reasons: First, these tasks are all very common

types of tasks on crowdsourcing platforms [17], so experimenting

with them would allow us to better understand the effects of peer

communication on typical kind of crowd work. Second, in terms of

the number of possible answers, these tasks span a wide spectrum

from two (image labeling) to infinitely many (audio transcription),

enabling us to both confirm the effects of peer communication in

tasks with just a few possible answers and explore its effects in tasks

with many possible answers. As a final note, tasks we bundled in

3
http://www.voxforge.org

the same HIT had a certain degree of similarity
4
, hence a spillover

effect of peer communication on work quality is not impossible

as knowledge/strategy that workers may learn in one task can

potentially be transferred to another task.

3.4 Experimental Procedure
Enabling synchronous work among crowd workers is quite chal-

lenging, as discussed in previous research on real-time crowdsourc-

ing [3, 5]. We address this challenge by dynamically matching pairs

of workers and sending them to simultaneously start working on

the same sequence of tasks. In particular, when each worker arrived

at our HIT, we first checked whether there was another worker

in our HIT who didn’t have a co-worker yet—if yes, she would be

matched to that worker and assigned to the same treatment and

task sequence as that worker, and the pair then started working on

their sequence of tasks together. Otherwise, the worker would be

randomly assigned to one of the two treatments as well as a ran-
dom sequence of tasks, and she would be asked to wait for another

co-worker to join the HIT for a maximum of 3 minutes. In the case

where no other workers arrived at our HIT within 3 minutes, we

asked the worker to decide whether she was willing to complete

all tasks in the HIT on her own (and we dropped the data for the

analysis but still paid her accordingly) or get a 5-cent bonus to keep

waiting for another 3 minutes.

We provided a base payment of 60 cents for all our HITs. In

addition to the base payments, workers were provided with the

opportunity to earn performance-based bonuses, that is, workers

can earn a bonus of 10 cents in a task if the final answer they

submit for that task is correct. Our experiment HITs were open to

U.S. workers only, and each worker was only allowed to take one

HIT for each type of tasks.

3.5 Experimental Results
In total, we have 388, 382, and 250 workers who successfully formed

pairs and completed the image labeling, OCR, and audio transcrip-

tion tasks in our experiments, respectively. We then answer Ques-

tions 1 and 2 separately for each type of task by analyzing experi-

mental data from Session 1 and 2 in the HIT, respectively.
5

4
For example, image labeling tasks are all about the key concept of distinguishing

Siberian Husky from Malamute, OCR tasks have similar image quality, and audio

transcription tasks contain similar accents.

5
On a side note, analyzing the data collected in Session 3 leads to conclusions that are

consistent with our findings reported below, and including such data only strengthens

our results. However, since we have decided not to use it in the experiment design

phase, we do not include the data in the analysis. The reason of the decision is that

http://www.voxforge.org


3.5.1 Work Quality Metrics. For all three types of tasks, we evalu-
ate the work quality using the notion of error. In the image labeling

task, we define error as the binary classification error—the error is

0 for correct labels and 1 for incorrect labels. For OCR and audio

transcription tasks, we define error as the edit distance between the

worker’s answer and the correct answer, divided by the number of

characters in the correct answer. Naturally, for all tasks, a lower

rate of error implies higher work quality.

3.5.2 Q1: Peer Communication Improves Work Quality. In Figure 2,

We plot the average error rate for workers’ final answers in the

first two tasks (i.e., Session 1) of Treatment 1 and 2 using white and

black bars, respectively. Visually, it is clear that for all three types

of tasks, the work quality is higher in discussion tasks (i.e., Session

1 of Treatment 2 HITs) when workers are able to communicate with

others about the work, compared to that in independent tasks (i.e.,

Session 1 of Treatment 1 HITs) where workers need to complete the

work on their own. Indeed, we observe a substantial 37%, 32%, and

47% deduction in the average error rate for image labeling, OCR, and

audio transcription tasks when peer communication is enabled. We

further conduct two-sample t-tests to check whether these changes

are statistically significant, and p-values are 2.42×10−4, 5.02×10−3,

and 1.95 × 10
−11

respectively, suggesting that introducing peer

communication in crowd work can significantly improve the work

quality produced for various types of tasks.

We then look into the chat logs to gain some insights on how

and what workers have communicated with each other during

the discussion. On average, the length of the discussions in image

labeling, OCR and audio transcription tasks are 4.2, 5.1 and 5.4

turns
6
, yet the amount of discussion is not correlated to the quality

of worker’s final answers after discussion. Furthermore, by looking

into the content of discussions, we find several types of information

workers are exchanging during their communication:

• Providing Justification: e.g., “triangle ears that stand erect are

traits of a Siberian Husky” (image labeling)

• Communicating Confidence: e.g., “I’m pretty sure about UR to

start, but not very sure after that” (OCR); “I had no idea what the

last word was” (audio transcription)

• Exchanging Strategy: e.g., “If you can zoom in on it you will

see what I mean” (OCR); “He pronounces ‘was’ with a v-sound

instead of the w-sound” (audio transcription)

• Expressing Agreement: e.g., “I agree”; “Listening to it again, I think
you are right” (audio transcription)

• Collaborative Work: the pair of workers work together to solve

the task, e.g., guessing a digit on the car plate for the OCR task

that neither worker can recognize independently

Interestingly, as an anecdotal observation, we notice that in

image labeling tasks the majority of workers tend to provide justi-

fications for their answers. In OCR and audio transcription tasks,

instead of “defending” their own answers, many more workers

choose to team up with their co-workers to solve the task together.

workers’ conditions in Session 3 of the two treatments differ to each other both in terms

of whether they have communicated with other workers about the work in previous

tasks and whether they can communicate with other workers in the current tasks,

making it difficult to draw any causal conclusions on the effect of peer communication.

6
We count each chunk of sentences a worker entered in the chat room as a “turn.”

Figure 2: Comparisons of work quality produced in tasks
with orwithout peer communication. Error bars indicate the
mean ± one standard error.

3.5.3 Q2: There are no spillover effects. We now move on to Q2:

Compared to workers who always complete tasks independently, do

workers who have participated in tasks with peer communication

continue to produce work of higher quality in future tasks of the

same type, even if they need to complete those tasks on their own?

To answer this question, we compare the work quality produced

in Session 2 (i.e., the middle two independent tasks) of the two

treatments for all three types of tasks. For image labeling, OCR,

and audio transcription tasks, the average error rates for Session 2

in Treatment 1 (workers never engage in peer communication) are

0.324, 0.175, and 0.209 respectively, while the average error rates

for Session 2 in Treatment 2 (workers have previously engaged

in peer communication) are 0.334, 0.168, and 0.244. Thus, we do

not observe any spillover for the effects of peer communication on

work quality, that is, the quality improvement brought up by peer

communication does not carry on to future independent work.

3.5.4 Discussions. Results of our experimental study suggest that

peer communication improves the quality of crowd work for vari-

ous types of tasks, even when the number of possible answers in

the task is very large, yet such effect does not spill over to later in-

dependent work. Cautions should be used when generalizing these

results to substantially different contexts, such as when workers

can interact with each other for an extended period of time rather

than just 2 minutes, when the tasks are significantly more complex

or more subjective, or when workers engage in peer communica-

tion for a longer sequence of tasks. It is, thus, an important future

direction to obtain an thorough understanding on how tuning var-

ious parameters of the design space (e.g., length of interactions,

complexity/subjectivity of tasks) would change the effects of peer

communication.

4 AN ALGORITHMIC FRAMEWORK FOR
UTILIZING PEER COMMUNICATION

Our experimental study focuses on understanding the impact of

peer communication on individual tasks. Now, we turn to our next

question, that is, for a requester who has a large batch of tasks, how
can he better utilize peer communication to improve the overall
utility that he can obtain across all the tasks? In particular, we

address the following research question: Given a budget and a batch
of tasks to complete, whether and when should a requester deploy peer
communication in each task to maximize his total utility?

To answer this question, there are two main challenges. First,

when peer communication is deployed, workers communicate with



each other before submitting their answers. Therefore, their an-

swers might be correlated. Yet, existing aggregation methods all

assume each worker complete the work independently, making it

necessary for us to develop new ways to address the data correla-

tion issue. Second, deploying peer communication incurs higher

cost, since it requires us to hire workers in pairs to work for longer

period of time and may need additional effort for worker synchro-

nizations. Therefore, even though peer communication produces

higher work quality for individual tasks, it is not clear deploying

peer communication is always beneficial for the overall utility.

In this section, we focus on the setting in which a requester aims

to collect labels for a batch of binary classification tasks with a fixed

budget, and the “utility” to maximize is the average accuracy the

requester obtains across all classification tasks
7
. In the following,

we first discuss how to deal with the data correlation issue, that

is, how to infer the correct label for a task given multiple labels

solicited from workers, where some of the labels may be correlated.

We then describe our algorithmic framework, a constrained Markov

decision process, which adaptively decides whether and when peer

communication should be deployed in each task under the budget

constraint while taking into account data correlation and differing

cost in deploying peer communication.

4.1 Dealing with Data Correlation
When peer communication is used in a task, a pair of workers di-

rectly interact with each other. Naturally, their contributions (e.g.,

labels in image labeling tasks) might be correlated. For categorical

tasks with a finite number of labels, we could use the covariance

notion to measure the correlation of workers’ contributions. For-

mally, let X ,Y be the random variables representing the answers

generated by a pair of workers for the same task. The correlation

of workers’ answers can be formulated using covariance cov (X ,Y ),
defined as cov (X ,Y ) = E[XY ] − E[X ]E[Y ]. By definition, when a

pair of answers X ,Y are independent, the covariance should be 0.

4.1.1 Measuring Data Correlation. To see whether the answers

from a pair of workers are correlated when they work together on

a task with peer communication, we examine workers’ answers in

Session 1 of both treatments in our experiments on image labeling

tasks. For each of the 20 images in the experiments (with labels in

{0,1}), we calculate the covariance between pairs of labels generated

in independent tasks (Session 1 of Treatment 1) and discussion tasks

(Session 1 of Treatment 2)
8
, in which we use the empirical average

to replace the expectation in the definition. The results are shown

in Figure 3. Perhaps not surprisingly, data collected in independent

tasks is mostly independent (with covariance close to 0), while data

collected in discussion tasks is correlated to various degrees.

We also calculate the covariance of workers’ answers in Session 2

of both treatments to see if the data correlation caused by peer com-

munication has any spillover effect. We find the covariance is close

7
Our discussion can be extended to classification tasks with any finite number of labels.

Extending our results to general types of tasks (such as transcription tasks) requires

a well-defined utility notion that can quantify the total utility for any given set of

worker contributions. It is an interesting and important future direction.

8
Recall that in our experiment, we always send a pair of workers to work on the

same sequence of tasks. Thus, an independent task is also completed by a pair of

workers except that they don’t communicate with each other. This allows us to directly

calculate the covariance for labels generated in independent tasks.
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Figure 3: Covariance for data collected in independent tasks
and discussion tasks in Session 1 in the image labeling HITs.
to 0 for both treatments, indicating the correlation in data caused by

peer communication does not carry on to later independent work.

4.1.2 Meta-Workers and Meta-Labels. The above observations con-
firm that workers’ answers are indeed correlated when peer com-

munication is deployed. To deal with data correlation, we introduce

the notions of meta-workers and meta-labels. In particular, we de-

note a pair of workers who talk with each other through the peer

communication procedure as a meta-worker, and the pair of la-

bels they generate as a meta-label. As no communication happens

between different pairs of workers, we assume each meta-label is

drawn independently.

Formally, for a binary classification task, let the true label z ∈
{0,1}. When peer communication is deployed in a task, we obtain a

pair of labels, which can be {1,1}, {0,1}, or {0,0}, and we use the

meta-label s11, s01, and s00 to denote them, respectively. Moreover,

denote s1 and s0 as the label 1 and 0 obtained from a single worker

who works independently.

To simplify the discussion, we assume workers are homoge-

neous. We propose a model to characterize the correlation in data

produced in tasks with peer communication as follows: Denote p as

the probability of independent workers providing correct labels, i.e.,

p = P (s1 |z = 1) = P (s0 |z = 0). Additionally, we denote p+,p0,p− as

the probability for workers in tasks with peer communication to

contribute two correct labels, one correct and one incorrect label,

and two incorrect labels
9
:

p+ = P (s11 |z = 1) = P (s00 |z = 0)

p− = P (s00 |z = 1) = P (s11 |z = 0)

p0 = P (s01 |z = 1) = P (s01 |z = 0)

This model provides a principled way to capture different levels

of correlation. For example, when the pair of labels are independent,

and the probability for each worker in the pair to submit a correct

label is still p, we should have p+ = p2,p− = (1 − p)2, and p0 =
2p (1 − p). When the correlation between a pair of labels is 1 (i.e.,

the two labels are always the same), we have p0 = 0.

4.1.3 Utilizing Meta-labels. The idea of introducing meta-workers

and meta-labels are intuitive but powerful. Below we use maxi-

mum likelihood aggregation as an example to demonstrate how the

9
This is the extension to the standard one-coin model in crowdsourcing literatures.

Extending the discussion to model the confusion matrix (e.g., using two different

probability values for P (s11 |z = 1) and P (s00 |z = 0)) is straightforward. We do not

include the discussion here due to space constraints.



concepts of meta-workers and meta-labels can be incorporated in

standard aggregation methods, which provides us with key insights

on how to utilize these concepts in our algorithmic framework (we

will detail this in Section 4.2).

For a task with unknown true label z ∈ {0,1}, given a set of N
labels (or meta-labels)L = {l1, ...,lN }, where li ∈ {s11,s1,s01,s0,s00},
the maximum likelihood estimator for the value of z is defined as:

Definition 1. Let the ground truth of the task be z. Given a set
of labels L = {l1, . . . ,lN }. ẑ is a maximum likelihood estimator if

ẑ =



1 if P (L|z = 1) ≥ P (L|z = 0),
0 otherwise.

We assume p, p+, p0, and p− are all known. Note that in our

algorithmic framework as explained in Section 4.2, we adopt a

Bayesian setting to learn how to aggregate the data over time

without prior knowledge on values of these parameters. However,

when such prior knowledge is available, a weighted majority voting

rule can lead to maximum likelihood estimation:

Lemma 1. Given a set of labels L. Let n11,n1,n01,n0,n00 denote
the number of labels s11,s1,s01,s0,s00 in L. Consider the following
weighted majority voting rule that generates an aggregation ẑ

ẑ =



1 ifw11n11 +w1n1 ≥ w00n00 +w0n0

0 ifw11n11 +w1n1 < w00n00 +w0n0

This weighted majority voting rule leads to maximum likelihood
estimation when the weights are set as: w11 = w00 = ln

p+
p− , and

w1 = w0 = ln
p

1−p .

Proof. We can write the probabilities on both sides as follows:

P (L|z = 1) = pn11

+ pn1pn01

0
(1 − p)n0pn00

−

P (L|z = 0) = pn11

− (1 − p)n1pn01

0
pn0pn00

+

Therefore, we have

P (L|z = 1)

P (L|z = 0)
=

(
p+
p−

)n11

(
p

1 − p

)n1

(
1 − p

p

)n0

(
p−
p+

)n00

Note that, in maximum likelihood estimator, ẑ = 1 if P (L|z =
1)/P (L|z = 0) ≥ 1. Therefore, ẑ = 1 if(

p+
p−

)n11

(
p

1 − p

)n1

≥

(
p

1 − p

)n0

(
p+
p−

)n00

The proof is completed by taking logarithm on both sides. □

As a sanity check, we can see that when a pair of labels are

independent (i.e., p+ = p
2
and p− = (1−p)2), we havew11 = w00 =

2w1 = 2w0, implying that the weight of {1,1} label is twice as the

weight of {1} label, and this is essentially a simple majority voting.

Note that in the maximum likelihood aggregation, the number

of meta-label s01 does not play a role in the aggregation process.

In other words, we may interpret the generation of meta-labels

as follows: with probability p+ (or p−), a meta-worker generates a

correct label s11 (or incorrect label s00), while with probability p0
she generates no label at all. The above weighted majority voting

rule then simply indicates that different weights need to be used

for labels generated by independent workers or meta-workers. Fol-

lowing a similar idea, in the following algorithmic framework, we

only take the meta-label s00 and s11 into consideration and discard

the meta-label s01 when inferring the correct labels of a task from

a collection of labels and meta-labels.

4.2 Our Algorithmic Framework
With the notions of meta-workers and meta-labels in place, we

have a principled way to deal with correlated data in peer commu-

nication. However, we still need to address the second challenge of

balancing the quality and cost. In particular, while introducing peer

communication leads to a significant improvement in work quality

for individual microtasks, such improvement comes with extra cost,

such as the financial payment incurred to recruit more workers

(e.g., at least two workers are needed for peer communication to

happen), the compensation for longer task completion time due to

discussions, and the additional administrative costs for synchroniz-

ing the work pace of worker pairs. As a result, a requester needs to

face the quality-cost tradeoff when deploying peer communication.

We now describe our algorithmic framework, built on the con-

strained Markov decision process (CMDP), that adaptively decides

for a requester with a limited budget, whether and when peer com-

munication should be deployed in each of his tasks with the goal

of maximizing his total utility (i.e., the average accuracy for all

classification tasks), while taking into account data correlation and

differing costs for deploying peer communication.

4.2.1 Problem Setup. Our problem setup is inspired by the method

by Chen et al. [8] to optimally allocate budget among task instances

in crowdsourcing data collection. Our setup differs from theirs in

two fundamental ways due to the presence of peer communica-

tion strategy. First, they don’t and don’t need to consider the issue

of data correlation. Second, in their setting, the cost for acquir-

ing labels is fixed, while we need to deal with the differing costs

when peer communication is deployed in a task. Therefore, instead

of modeling the decision-making problem as a Markov decision

process framework (as in Chen et al. [8]), we adopt a constrained

Markov decision process framework and include the meta-label

concept in our formulation.

Formally, suppose a requester gets a budget of B and a batch of

K binary classification tasks, and he needs to estimate the label for

each of these tasks. The goal of the requester is to maximize the

average accuracy of the estimated labels across all tasks through

spending the budget to solicit labels from crowd workers and then

aggregating the collected labels. We describe the setting in which

workers are homogeneous (however, their performance might be

different when working independently or when working with peer

communication). Extensions to settings with heterogeneous work-

ers are straightforward as described by Chen et al. [8].

Assume the K tasks are independent from each other, and Zk ∈
{0,1} represents the true label for task k (1 ≤ k ≤ K). We use

the notations θk ∈ [0,1], αs ∈ [0,1], and αp ∈ [0,1] to model the

label generation process, where θk characterizes the difficulty of

task k , αs and αp characterize workers’ performance when working

independently and working with peer communication. In particular,

we denote pk,s,1 (or pk,s,0) as the probability for a single worker

(who works independently) to provide label 1 (or 0) for task k . We

define pk,s,1 = αsθk + (1 − αs ) (1 − θk ) and pk,s,0 = 1 − pk,s,1. To
obtain intuition for the parameters of the model, assume αs = 1,

we can see that θk captures the difficulty of task k : When θk is



close to 0.5, workers are effectively making random guess (hence

the task is difficult), and when θk is close to 0 or 1, independent

workers can consistently provide the same label (hence the task is

easy). Similarly, αs can then be interpreted as the worker skill and

a larger αs implies a higher skill. We assume θk is consistent with

the label Zk , which means Zk = 1 if and only if θk ≥ 0.5.

Recall that we denote a meta-worker as a pair of workers in

tasks with peer communication. We use αp to denote the skill of

meta-workers, and the probability for a meta-worker to generate a

meta-label s01 for task k is denoted as qk . Conditioned on a meta-

worker contributing a meta-label other than s01, αp is similarly

defined as αs . That is, when pk,p,1 and pk,p,0 is the probability

for a meta-worker to generate meta-labels s11 and s00, we have

pk,p,1 = (1−qk ) (αpθk + (1−αp ) (1−θk )) andpk,p,0 = 1−pk,p,1−qk .
After describing the data generation model, we formulate the

online decision problem faced by the requester. The requester re-

cruits workers to label his tasks in a sequential manner. Specifically,

at each time step t , the requester decides on a task kt to work on,

and he can solicit label(s) from crowd workers on this task using

one of the two strategies (the strategy is denoted as xt ): first, the
requester can recruit a single worker to work on the task (xt = 0),

and thus obtain a label for that task; second, the requester may

recruit a meta-worker (i.e., a pair of workers following the peer

communication procedure) to work on the task (xt = 1), and thus

obtain a meta-label for the task. We denote cs as the cost for re-

cruiting a single worker and cp (cp > cs ) as the cost of recruiting a

meta-worker through peer communication strategy.

Naturally, the requester’s activity in each time step can be sum-

marized through the tuple (kt ,xt ). We also denote yt as the label
(or meta-label) obtained by the requester at time t for task kt . By
the time tB that the requester exhausts his budget, his activity

history isHB = {(k0,x0,y0), ..., (ktB ,xtB ,ytB )}. The requester then
aggregates the data he has collected and infers the true labels for

each of the K tasks such that the expected accuracy across all K
tasks, conditioned on the activity historyHB , is maximized.

4.2.2 A Constrained Markov Decision Process Formulation. We now

formally model the requester’s decision-making problem as a con-

strained Markov decision process:

• States: the state st is a K × 4 matrix, where st (k, ·) is a 1 × 4

vector with each entry representing before time t , the number

of label (or meta-labels) s0,s1,s00,s11 obtained for task k . Note
that following the idea that we have discussed in Section 4.1.3,

we consider the meta-label s01 to contributes zero utility to the

requester and thus we do not include the count of it in the state.

• Actions: at = (kt ,xt ), where kt is the task to work on at time t ,
and xt ∈ {0,1} represents the worker recruiting strategy, with 0

being recruiting a single worker working independently and 1

being recruiting a pair of workers to follow the peer communi-

cation procedure.

• Transition probabilities: When at = (kt ,xt = 0),

Pr (st+1 |st ,at ) =




pkt ,s,1 if st+1 = st + (0,ekt ,0,0)
pkt ,s,0 if st+1 = st + (ekt ,0,0,0)
0 otherwise

where ekt is a K × 1 vector with value 1 at the kt -th entry and 0

at all other entries. On the other hand, when at = (kt ,xt = 1),

Pr (st+1 |st ,at ) =




pkt ,p,1 if st+1 = st + (0,0,0,ekt )
1 − pkt ,p,1 − qkt if st+1 = st + (0,0,ekt ,0)
qkt st+1 = st

0 otherwise

• Rewards: We adopt the same reward function as that used by

Chen et al. [8]. Specifically, we assume the parameters θk ,αs ,αp
are sampled from three separate Beta prior distributions, and we

update the posteriors of these distributions through variational

approximation where hyper-parameters are decided by moment

matching. Doing so, we can then define the reward as R (st ,at ) =
E(h(P t+1kt

)−h(P tkt
)), where P tk is the probability of the parameter

θk taking on a value of at least 0.5 given the posterior of θk at

time t , h(x ) = max(x ,1 − x ), and the expectation is taken over

all possible label yt observed after action at .

• Constraint: Different from the setting in the work by Chen

et al. [8], as different actions imply different costs, we need to

explicitly characterize the budget constraint for our problem.

Formally, the requester needs to ensure the budget constraint is

satisfied.

∑tB
t=0 cs1(xt = 0) + cp1(xt = 1) ≤ B, where 1(.) is the

indicator function.

4.2.3 Proposed Algorithm. We adopt the method of Lagrangian

multipliers to solve the above constrained optimization problem,

which converts the problem of maximizing the total reward (i.e.,∑tB
t=0 R (st ,at )) under the budget constraint into a simpler problem

ofmaximizing the auxiliary function

∑tB
t=0 R (st ,at )−λ

∑tB
t=0 (cs1(xt =

0) + cp1(xt = 1)). Notice this optimization problem is equivalent

to solve a (unconstrained) Markov decision process where reward

in each step is redefined as R
′

(st ,at ) = R (st ,at ) − λ(cs1(xt =
0) + cp1(xt = 1)). We use the optimistic knowledge gradient tech-

nique introduced by Chen et al. [8] to solve the optimal policy

of this MDP, which produces a single-step look-ahead policy that

maximizes the highest reward at each step. Note that in theory,

we can compute the optimal value of λ by solving the dual of the

constrained MDP. In practice, we have experimented with multiple

different λ values and find that the choice of λ has limited influence

on the performance of our algorithmic approach.

4.3 Evaluations
We evaluate the effectiveness of our algorithmic approach using

both real-world data and synthetic data.

4.3.1 Experiments on Real Data. Using the real data that we col-

lected in image labeling tasks of our experimental study, we com-

pare the performance of our algorithm with a couple of baseline

algorithms. In our evaluation, we set the cost of recruiting a single

worker as cs = 1.0 and the cost of recruiting a pair of workers

to work on a task with peer communication (i.e., a meta-worker)

cp = 2.5. Note that we have examined a range of different values of

cp from 1.5 to 3.5 and the results are qualitatively similar. The prior

distribution for θk is set as Beta(1,1), where the prior distributions
for αs and αp are all set to be Beta(4,1). For this evaluation, we
only considered the final labels that workers in our experimental



study submit in the first two tasks of the image labeling HIT
10
. Thus,

when at = (kt ,0), we randomly sampled a label from Treatment 1

workers who had completed task kt in their first two (independent)

tasks, and when at = (kt ,1), we randomly sampled a label from

Treatment 2 workers who had completed task kt in their first two

(discussion) tasks.

The performance of our algorithmic approach is compared against

the following baseline approaches:

• Round robin: in each round, the requester decides which task to

work on in a round robin fashion, and he always recruit a single

worker to work on that task independently.

• Single workers only: in each round, the requester recruits a single

worker to work on a task independently, and this task is optimally

decided (effectively by considering only actions with xt = 0 in

our algorithm).

• Peer communication only: in each round, the requester recruits a

pair of workers to work on a task with peer communication, and

this task is optimally decided (effectively by considering only

actions with xt = 1 in our algorithm).

• Our algorithm [No correlation]: in each round, the requester uses

our algorithm to decide whether to deploy peer communica-

tion and which task to work. The only difference is that this

baseline treats the two labels from peer communication as two

independent labels while our algorithm incorporates the concept

of meta-labels to deal with data correlation.

We conduct this evaluation on a range of budget level from 20

to 400 with an interval of 20. At each budget level, we implement

each of the decision-making strategies for 100 times, and we report

the average level of overall accuracy the requester obtains across

the 20 tasks when she exhausts the budget in Figure 4.

As shown in Figure 4, our proposed algorithm outperforms all

baseline strategies. In particular, we make a few observations as

follows. First, comparing the performance of our algorithm and

that of the “No Correlation” strategy, it is clear that incorporat-

ing meta-labels to deal with data correlation has improved the

requester’s overall utility. In fact, even for the “peer communi-

cation only” strategy, we also implement two versions, and the

version for which the idea of meta-labels is used also outperforms

the other version treating two labels generated by pairs of workers

as independent. In the following discussion, unless otherwise spec-

ified, we adopt the meta-worker ideas in our implementation when

peer communication is used. Second, strategies involving peer com-

munication converge to a better overall accuracy than strategies

without peer communication does. This is due to the fact that for

some tasks in our experiment, the majority of workers who work

independently provide incorrect answers while the majority of

workers with peer communication provide correct answers. Third,

adaptively determining whether and when to deploy peer commu-

nication outperforms fixed recruiting strategies, as illustrated by

the superior performance of our algorithm over both the “single

workers only” and “peer communication only” strategies. Finally,

adaptively deciding which task to label next significantly improves

10
Recall that we set out to examine the effects of peer communication using the first

two tasks in each HIT.

the total utility than random task assignment does, e.g., through ob-

serving the significantly worse performance of the baseline “round

robin” strategy.
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Figure 4: Evaluating the performance of the proposed ap-
proach on real datasets.

4.3.2 Experiments on Synthetic Data. To the best of our knowledge,
our dataset is the only dataset that deploys peer communication

for crowdsourcing data collection. Therefore, to further investigate

the properties of our proposed algorithm, we generate synthetic

data to evaluate our algorithm. In particular, we explore how the

performance of our algorithm changes along the following three

dimensions: 1) the level of data correlation of workers’ answers in

tasks with peer communication, 2) the performance gap between

workers who work independently and workers who discuss with

others via peer communication, and 3) the cost differences of hiring

a singleworker and hiring a pair of workers for peer communication.

In the base setup, we set θk to be uniformly drawn from [0.5,1], αs
drawn from a normal distribution with mean 0.7 and variance 0.01,

αp drawn from a normal distribution with mean 0.9 and variance

0.1. We also set cs = 1 and cp = 2.5.

We first modify the level of data correlation of workers’ answers

in peer communication. This can be done by changing the value

of qk , i.e., the probability of a pair of workers in peer communi-

cation to generate the meta-label s01. In strong correlation, we set

qk = 0, which means the two workers are entirely correlated (al-

ways generating the same label). In no correlation, we set qk to the

value such that the two labels in a meta-label are independently

generated (i.e., qk = 2

√
pk,p,1pk,p,0, which can be derived using

our model discussed in Section 4.1.2). In weak correlation, qk is

uniformly drawn between the above two values. We compare the

performance between our algorithm and “our algorithm [no correla-

tion]”, which treats the two labels from a meta-label as independent

labels. As shown in Figure 5, the performance gap becomes larger

as the correlation becomes stronger
11
. This validates the benefits

of incorporating meta-labels in our framework when there is data

correlation.

11
As a side note, the overall performance is lower in strong correlation since we

fixed αp in all three plots; two independent labels brings more information than two

correlated labels. Since our goal is to measure the gap between two algorithms, we

didn’t tune the parameter to normalize the algorithm performance.
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(a) No Correlation

50 100 150 200 250 300 350 400
Budget

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Our algorithm
Single workers only
Round robin
Our algorithm [No Corrlation]

(b) Weak Correlation
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(c) Strong Correlation

Figure 5: The performance comparison under different levels of correlation in peer communication.
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Figure 6: Modify the cost of peer communication.

We then change the cost of deploying peer communication cp
to be from {1.5,2.5,3.5}. As shown in Figure 6, our algorithm per-

formance decreases as cp increases. However, even when the cost

of peer communication is pretty large (i.e., cp = 3.5), utilizing peer

communication is still beneficial. Next, we vary the performance

gap between single workers (who work independently) and meta-

workers by fixing the mean of αp to be 0.9 and set the mean of

αs to be 0.8, 0.7, and 0.6. The results are qualitatively similar to

changing cp (e.g., larger skill gap corresponds to smaller cp ). To
provide more insights for our algorithm, we demonstrate this re-

sult in a different plot. In particular, we fix the budget to be 200

and run our algorithm 100 times. We record the worker recruiting

strategy (hiring single workers or deploying peer communication)

our algorithm takes at every step, and then calculate the ratio of

peer communication strategy as a function of the budget spent so

far. As shown in Figure 7, our algorithm always starts by deploying

peer communication. When the marginal rewards for hiring peer

communication is not high enough to justify the higher cost, our

algorithm gradually switches to hire single workers. These two fig-

ures demonstrate that our algorithm brings in benefits under a wide

range of settings and has stronger benefits when cp is small or when

the performance gap between single workers and meta-workers

(with peer communication) are higher.
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Figure 7: Ratio of peer communication strategies deployed.

5 CONCLUSION
In this paper, we relax the common assumption of data indepen-

dence in crowdsouring data collection. In particular we explore

peer communication, in which a pair of crowd workers directly

communicate when producing the data. We first examine the effects

of peer communication on the quality of crowd work produced.

Randomized experiments conducted on Amazon Mechanical Turk

demonstrate that the work quality significantly improves in tasks

with peer communication. We then study how to utilize peer com-

munication in crowdsourcing data collection. In particular, we in-

troduce the notions of meta-workers and meta-labels to deal with

data correlation caused by peer communication. We then develop

an algorithmic framework, built on constrained Markov decision

process, to optimally determine whether and when to deploy peer

communication in crowdsourcing data collection, with the goal of

maximizing the total utility of requesters while satisfying budget

constraints. Experiments conducted on both real data and synthetic

data demonstrate the advantage of our proposed algorithms over

baseline approaches.

Our results suggest the potential benefits of incorporating peer

communication in crowdsourcing and provide a framework for bet-

ter utilizing these benefits. We hope this work could open more dis-

cussions on designing and leveraging more complex, useful worker

interactions to further enhance crowdsourcing.
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