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ABSTRACT
Decision-making aids powered bymachine learningmodels become
increasingly prevalent on the web today. However, when applied
to a new distribution of data that is different from the training data
(i.e., when covariate shift occurs), machine learning models often
suffer from performance degradation and may provide misleading
recommendations to human decision-makers. In this paper, we con-
duct a randomized experiment to investigate how people rely on
machine learning models to make decisions under covariate shift.
Surprisingly, we find that people rely on machine learning models
more when making decisions on out-of-distribution data than in-
distribution data. Moreover, while increasing people’s awareness
of the machine learning model’s possible performance disparity on
different data helps decrease people’s over-reliance on the model
under covariate shift, enabling people to visualize the data distri-
butions and the model’s performance does not seem to help. We
conclude by discussing the implication of our results.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in HCI; •
Computing methodologies → Machine learning.

KEYWORDS
Machine Learning, covariate shift, human-AI interaction, appropri-
ate reliance

ACM Reference Format:
Chun-Wei Chiang and Ming Yin. 2021. You’d Better Stop! Understanding
Human Reliance on Machine Learning Models under Covariate Shift. In
13th ACMWeb Science Conference 2021 (WebSci ’21), June 21–25, 2021, Virtual
Event, United Kingdom. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3447535.3462487

1 INTRODUCTION
Internet users today are increasingly assisted by recommendations
supplied by machine learning (ML) models to make better deci-
sions online in diverse domains from entertainment to investment.
Achieving the optimal human-machine partnership, however, re-
quires humans to rely upon the model recommendations appro-
priately, that is, rely on the model when its recommendation is
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right and override it when it is wrong [6]. A typical scenario for
ML models to provide unreliable recommendations is when the
distribution of data on which a model is trained is different from
that to which the model is applied, leading to what is known as
covariate shift [21]. Indeed, many ML models are developed based
on the assumption that the training data is drawn from an identical
distribution as the test data. Yet, this assumption often does not
hold in reality due to practical issues like sampling biases in the
training data collection process [4] and the constant evolvement of
the deployment environment. Unfortunately, when covariate shift
occurs, the performance of MLmodels may significantly deteriorate
[18], implying that the use of machine assistance in these scenarios
potentially poses risks to effective human decision-making.

A critical but currently under-explored question, thus, is how
humans rely on ML models when making decisions under covari-
ate shift: Can people recognize the changes in data distributions?
How would they adjust their reliance on ML models on out-of-
distribution data? And what can be done to help people rely on
ML models more appropriately under covariate shift? In this work,
we provide some initial answers to these questions to understand
how laypeople—who are increasingly the end-users of ML-powered
decision aids—rely on ML models when covariate shift occurs.

Specifically, we conducted a randomized controlled experiment
with 549 human subjects recruited from Amazon Mechanical Turk.
Subjects were asked to predict house sale price with the assistance
of an ML model in a sequence of 20 tasks, which were divided
into two phases of 10 tasks each. In Phase 1, subjects interacted
with the ML model and observed its performance on some houses
drawn from the in-distribution held-out validation dataset. Then, in
Phase 2, subjects needed to decide whether to delegate the decision
making right to the model for predicting the price for some unseen
houses. Subjects were randomized into treatments where houses
they saw in Phase 2 came from either the same distribution as the
training data of the ML model or a different distribution. Moreover,
to overcome people’s possible inability to recognize data distribu-
tion changes and/or their possible tendency to generalize an ML
model’s performance from one data distribution to another, we
designed two types of external interventions that aimed at helping
people address these limitations. Subjects in our experiment were
randomly assigned to receive one of these two interventions or
receive no intervention at all.

Our experimental results show that, surprisingly, laypeople tend
to rely on anMLmodelmorewhen covariate shift occurs, effectively
resulting in over-reliance on an ML model when its performance is
poor. A closer look into the data suggests that people have some
capability in detecting the change of data distribution. However,
they actively choose to rely on the model more under covariate
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shift because they expect the model to maintain its performance
on out-of-distribution data, while they believe their own decision-
making performance would decrease on those data. Besides, we
find that providing people with a brief education session about the
possible performance disparity of an ML model on different data
can effectively reduce people’s over-reliance on ML models under
covariate shift. In contrast, equipping people with an interactive
tool to visualize the distribution of data and the model’s perfor-
mance on different data is ineffective in helping people rely on an
ML model more appropriately on out-of-distribution data.

Taken together, our results reveal a concerning finding that
laypeople may have misbelief about an ML model’s capacity, and
thus overly rely on an erroneous model when the distribution of
data changes. These results highlight the importance of clearly and
transparently communicating to people the scope of application
and potential limitation of anMLmodel, as well as actively assisting
people in understanding the range of cases that they can generalize
a model’s observed performance to. There is also a pressing need
to increase people’s AI literacy, such as raising people’s awareness
of the possible performance degradation of ML models on out-of-
distribution data. We conclude by discussing the implications of
our study on promoting appropriate reliance on AI.

2 RELATED WORK
The increasing prevalence of ML-aided decision making has in-
spired a growing number of empirical studies that aim at under-
standing how people interact with, trust, and rely upon ML models.
For example, previous research has shown that while laypeople
tend to adopt recommendations supplied by ML models over hu-
man suggestions in an objective and unfamiliar domain [13], they
are in general unwilling to rely on algorithmic models in highly
subjective domains [30], or after witnessing the model makes er-
rors [8]. Researchers have also identified a variety of factors that
could influence people’s reliance on ML models. For example, peo-
ple are shown to increase their reliance on models with higher
levels of accuracy [31]. In addition, people’s first impression and
mental model of an ML model [2, 26], the model’s confidence and
interpretability [22, 29, 32], and the consistency between the model
and humans in both their decisions and rationales [15, 33] are all
shown to impact people’s reliance on the model.

A major risk in ML-aided decision making is that people may
rely on a model inappropriately, and such risk is elevated when
ML models are operated on out-of-distribution data. Indeed, the
phenomenon of the distribution of input variables (i.e., features)
changes between the data of training and deployment stages is
known as “covariate shift” [21, 24]. Many ML models are known to
be not good at adapting to new and unfamiliar data [18, 25], which
raises the question of how people would rely on ML models when
covariate shift occurs.

In this paper, we focus on understanding, under covariate shift,
whether people rely on ML models appropriately and how to pro-
mote appropriate reliance. Previously, researchers mainly attempt
to enhance people’s appropriate reliance on ML models through
calibrated model confidence scores [32] or carefully designed model
explanations [22, 32]. These approaches have mixed success when
being evaluated on in-distribution data, and their effectiveness in

promoting appropriate reliance onMLmodels on out-of-distribution
data is unclear. For example, it is shown that the state-of-the-
art ML models that produce calibrated confidence scores on in-
distribution data often come with uncalibrated confidence scores
on out-of-distribution data [19], while increasing an ML model’s
transparency actually decreases people’s capability in detecting
obvious model mistakes on out-of-distribution data [20].

In light of this, here, we design two alternative interventions,
specifically for improving people’s appropriate reliance on ML un-
der covariate shift. In the first intervention, similar to the general
user education used in other domains like automated-driving [10],
we provide people with information that increases their understand-
ings of the performance of ML models, especially on ML models’
possible performance disparity on different data. Our second inter-
vention involves a visualization tool that helps people explore both
the data distribution and the model’s performance on different data;
this is inspired by previous efforts that use interactive visualizations
to explain the behavior of ML models [11].

3 STUDY DESIGN
To understand people’s reliance on ML models under covariate
shift, we conducted a randomized behavioral experiment1, in which
human subjects were recruited from Amazon Mechanical Turk
(MTurk) to complete some decision-making tasks with assistance
from an ML model. Our main research questions are:
• RQ1: When covariate shift occurs, how will people adjust their
levels of reliance on ML models?

• RQ2: Can external interventions, such as educating people about
the performance of ML models and enabling people to visualize
the distributions of decision-making tasks as well as the model’s
performance on different tasks, help people rely on ML models
more appropriately when covariate shift happens?

3.1 Experimental Task
The decision-making task that subjects worked on in our experi-
ment was to predict the sale prices of houses. In each task, subjects
were presented with information about a house on eight features
(e.g., living area size, quality, year built), and were asked to make
a prediction of the sale price of the house. The housing data we
used came from a public dataset [7] containing houses sold in Iowa,
United States, from 2006 to 2010.

We chose the task of house price prediction for several reasons.
First, this task characterizes a kind of decision-making activity in
people’s daily life; thus, it is easily understandable by our human
subjects. Second, it represents a realistic scenario where ML models
are developed to assist human decision-making. Another critical
reason for us to select this task in our experiment is that the hous-
ing dataset we used allowed us to simulate changes in the data
distribution and build real ML models whose performance would
decrease when applied to a new distribution of data. In particular,
by applying the K-means clustering algorithm on the entire set of
houses, we obtained two distinctive clusters of houses—Cluster 1
mostly consisted of houses with small living areas and low quality,
while Cluster 2 mostly contained houses that were bigger and of

1Our experiment was approved by the Purdue IRB.
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Pre-experiment Survey

S1 How much expertise do you have in estimating house price?
S2 How much knowledge do you have in machine learning?

Post-experiment Survey

S3 Based on your observations, are the houses you saw in phase 2 similar to those that you saw in phase 1?
S4 Do you think the model’s performance in phase 2 would be better than its performance in phase 1?
S5 Do you think your performance in phase 2 would be better than your performance in phase 1?
S6 [checkbox] What are the factors that make you stop using the model in phase 2? (for subjects who stopped using the model in phase 2)
S7 [checkbox] What are the factors that make you use the model for all the tasks in phase 2? (for subjects who always used the model in phase 2)

Table 1: Survey questions we asked in our experiment. For S1–S5, subjects answered each question using a 5-point Likert scale.
For S6 and S7, checkbox options are determined via a pilot study in which subjects provided free-form answers to the same
questions.

high-quality. Moreover, we found that the linear regression model
M that was trained using houses from Cluster 1 performed much
better on Cluster 1 than on Cluster 2 (e.g., the R2 of M on Clus-
ter 1 and Cluster 2 are 0.47 and 0.17, respectively). As a result, in
our experiment, we used M as our ML model and presented the
predictions of M to subjects in each task as the model’s recom-
mendations, making houses in Cluster 2 (Cluster 1) effectively the
out-of-distribution (in-distribution) data.

3.2 Experimental Procedure
The subject started our experiment by reporting her expertise in
predicting house price and in ML on a five-point Likert scale. Then,
she performed a sequence of 20 house price prediction tasks, divided
into two phases of 10 tasks each, with the help of a pre-trained
ML model. Phase 1 was designed to help subjects understand their
ability as well as the ML model’s ability in accurately predicting
house prices. In particular, on each task of phase 1, we showed
to the subject the information of a house that was drawn from
the held-out validation dataset of M, which belonged to Cluster 1.
After reviewing the house’s information, the subject was asked first
to forecast its sale price by herself. Then, the model’s prediction,
produced byM, and the house’s actual sale price would be revealed
to her. All subjects saw the same 10 tasks in phase 1, though the
order was randomized. Upon completing all tasks in phase 1, the
subject received a mid-point feedback page, summarizing in a table
her own prediction accuracy as well as the model’s accuracy in
phase 1, in terms of both the absolute percentage error (APE) on
each of the 10 tasks and the average APE across all 10 tasks.

Next, in phase 2, the subject was asked to predict prices for 10
additional houses for real. On these 10 tasks, the subject would not
receive the immediate feedback about the actual sale price of the
house. Specifically, on each task, after viewing the house’s informa-
tion, the subject needed to decide whether to delegate the decision-
making right to the ML model—if yes, the model’s prediction on
this task would be used as the subject’s prediction; otherwise, the
subject needed to make her own prediction on this task as well as
in all future tasks. This experimental setup was designed to reflect
the real-life scenarios that people may abandon an ML model once
they find it untrustworthy [12]—people could choose to rely on an
ML model by authorizing the model to make decisions on behalf of
themselves (e.g., use an auto-trading program to trade), but they
could also override such authorization anytime later by opting out
of the usage of the model when they lose faith in it (e.g., stop paying
for the auto-trading program thus lose access to it). Depending on

the treatment a subject was assigned, the 10 houses she saw in
phase 2 could come from Cluster 1 (small and low-quality houses)
or Cluster 2 (large and high-quality houses), but the model predic-
tion the subject saw on each house in phase 2 was always generated
by the model M, which was trained using data from Cluster 1 (see
more details in Section 3.3).

After completing all the prediction tasks, the subject was asked
to complete an exit survey to report her perceptions of the tasks,
her belief of the model’s performance and her own performance in
the tasks, the factors that influence her usage of the model in phase
2, as well as some demographic information. Table 1 shows the list
of questions we asked in our surveys. In the end, we revealed to the
subject the actual sale prices for the 10 houses in phase 2, together
with the subject’s prediction accuracy on these houses.

We opened the experiment only to U.S. workers on MTurk, and
each worker can participate at most once. The base payment of
this experiment was $0.5. In addition, to encourage subjects to
carefully consider whether to rely on the ML model in phase 2,
we informed each subject at the beginning of the experiment that
for each phase 2 task, if the APE of her prediction is less than
30%, she could earn additional bonuses (APE<10%: $0.30 bonus,
10%≤APE<20%: $0.20 bonus, 20%≤APE<30%: $0.10 bonus). This
bonus scheme leads to a maximum bonus amount of $3, which
could only be earned if subjects made accurate predictions in phase
2. We also carefully selected the bonus threshold (i.e., APE<30%)
given the set of prediction tasks we used in phase 1—the model M
had an average APE of 28.3% in phase 1, and for 7 out of the 10
tasks in phase 1, the model’s APE was less than 30%. Meanwhile, we
found via a pilot study that on average, a subject’s own predictions
could achieve an APE that was less than 30% on 5.7 out of the 10
tasks in phase 1. In other words, the bonus threshold was selected
to ensure that after completing phase 1, an average subject would
feel her own prediction performance was worse than the model, but
it’s still possible for her to earn some bonuses by herself without
relying on the model.

3.3 Experimental Design
Subjects in our experiment were randomly assigned to one of the
six experimental treatments that were arranged in a 2 × 3 design.
The treatments differed along two dimensions: the type of task
distribution in phase 2, and the existence and type of external inter-
ventions that subjects received to help them appropriately rely on
ML models when covariate shift occurs. With respect to the task
distribution, we randomized subjects into one of the two levels:
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(a) Education intervention (b) Visualization intervention (phase 2)

Figure 1: Two external interventions that are designed to promote appropriate reliance onMLmodels under covariate shift. In
Figure 1b, the star on the coordinate plane represents the house for which the subject needs to predict sale price in the current
task. The circles on the coordinate plane are the houses in phase 1, with the color representing the model accuracy on them
(green means higher accuracy, and red means lower accuracy).

• Stationary distribution: The houses in phase 2 were all se-
lected fromCluster 1. That is, the prediction tasks subjects needed
to work on in phase 2 came from the same distribution as the
prediction tasks that subjects had worked on in phase 1. Model
predictions on these phase 2 tasks were produced by M, which
has an APE of 30% or less on all 10 tasks, and the average APE
of M across these 10 tasks is 16.9%.

• Shifted distribution: The houses in phase 2 were all selected
from Cluster 2. That is, the prediction tasks subjects needed to
work on in phase 2 came from a different distribution compared
to the prediction tasks that subjects had worked on in phase 1.
Model predictions on these phase 2 tasks were again produced
by M, which systematically underestimated the price of these
houses. Specifically,M has an APE of 30% or less on none of these
10 tasks, and the average APE of M is 39.1% in phase 2. This is
designed to reflect the realistic real-world scenario that model
performance degrades in a novel environment with different
data distribution, making blindly relying on the ML model a
suboptimal choice under covariate shift.
In addition, we speculated that people might inappropriately rely

on ML models when covariate shift occurs if (1) they are not able
to recognize the data distribution has changed, or (2) they are not
aware that an ML model’s performance can be different on different
data and over-generalize the model’s observed performance on
one data distribution to another. To help people better determine
whether to rely on ML models when covariate shift occurs, we
designed two interventions to assist people in addressing these

possible limitations. Specifically, we randomized subjects into one
of the three levels of interventions:
• None (Control): Subjects did not receive any external interven-
tions to help them appropriately rely on ML models.

• Education onPerformance ofMLModels: We providedwrit-
ten materials to educate subjects about the possible performance
disparity of ML models on different data at the beginning of
the experiment before subjects started to work on any decision-
making tasks in phase 1 (see Figure 1a). More specifically, we
presented subjects with a recent research finding which showed
that commercial face recognition systems have different error
rates on faces from different demographic groups [28]. We ex-
plained to subjects that one possible reason underlying such
performance disparity could be the unbalanced training dataset
and that when the face recognition system was trained mostly
using or only using faces of a certain subgroup of people, its
high performance on this subgroup of people does not mean its
performance on faces from other subgroups of people would
be equally high. We emphasized that this phenomenon is not
unique for face recognition systems but is with any kind of
ML models. We asked subjects to be aware of the possible per-
formance difference on different data when using ML models.
At the end of the page, subjects were asked to answer an un-
derstanding question regarding the information they just read.
They could only proceed to work on decision-making tasks in
phase 1 after they answered the question correctly.
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Task distributions Stationary distribution Shifted distribution

Interventions Control Education Visualization Control Education Visualization
N 95 96 93 88 85 92
Expertise in house price prediction (mean) 3.0 3.3 3.3 3.2 3.3 3.2
Expertise in machine learning (mean) 3.3 3.4 3.4 3.3 3.4 3.3
Phase 1 average APE (median) 0.35 0.34 0.35 0.34 0.33 0.32

Table 2: Subjects’ expertise and prediction performance in phase 1. We excluded the first task when computing each subject’s
phase 1 average APE, since subjects may need to use the feedback of the house’s actual price they received from the first task
to calibrate their predictions.

• Visualization of Task Properties and Model Performance:
We provided subjects with an interactive tool to visualize data
distributions as well as the ML model’s performance on different
data. Specifically, on the mid-point feedback page, along with
the table summarizing the APE of the model and the subject in
phase 1, an interactive 2D plot was also presented. In this plot,
the subject could freely determine what x- and y-axis of the plot
represents by choosing from the list of house features. Each of
the 10 houses in phase 1 was shown as a circle on this plot based
on its values on the chosen features on the axes, and its color
reflected the model’s performance on it. The default features on
the axes were “living area size” and “quality of the house,” the
two features that can well separate the two clusters of houses.
We encouraged subjects to change the axes to different features
to “explore when the model performs well or poorly, and when
you have little evidence about how well the model performs.”
In addition, in each of the tasks in phase 2, besides presenting
the feature information of the house to subjects, we also used a
similar interactive 2D plot to help subjects compare the house
in the current task with the houses that she had predicted prices
for in phase 1—houses in phase 1 were again shown as circles
with their colors representing the model’s performance, while
the house in the current task was shown as a star on the plot
(see Figure 1b).

4 RESULT
In total, 600 unique subjects participated in our experiment. We
considered subjects whose predictions were less than $1,000 for
more than 5 out of the last 9 tasks in phase 1 as not paying attention2.
After filtering out the inattentive subjects, we were left with the
data from 549 unique subjects, and our analyses were conducted
on these data.

On average, a subject in our experiment spent 15.6 seconds
on each prediction task. Table 2 compares subject’s self-reported
expertise in house price prediction, expertise in machine learning
as well as their prediction performance in phase 1 across treatments.
We did not find significant differences across treatments on subjects’
demographics, self-reported expertise in house price prediction,
expertise in ML, as well as their prediction performance in phase 1.
Moreover, across all treatments, the median value for a subject’s
average APE in phase 1 was 34%, which was not far away from
either the model’s average APE in phase 1 (28.3%) or the bonus
thresholdwe set in the experiment (30%). This confirms that subjects

2The actual sale prices for houses in phase 1 were all above $60,000. Since the actual
prices were all revealed to subjects as feedback in phase 1, subjects should be able to
learn the magnitude of the house prices after completing the first task if they were
paying attention.

in our experiment would likely perceive themselves as having some
degree of capability in making accurate house sale price predictions
after completing phase 1.

4.1 RQ1: How Do People Rely On ML Models
under Covariate Shift?

We start by examining that without any external interventions, how
subjects would adjust their reliance on ML models under covariate
shift (RQ1). Specifically, we quantified a subject’s reliance on the
ML model using the number of tasks that the subject authorized
the ML model to make predictions on behalf of her in phase 2—
intuitively, the larger the number, the more the subject relied on
the model. Figure 2a shows the survival curves—the proportion
of subjects whose usage of the ML model in phase 2 would reach
a certain number of tasks—for the two control treatments (i.e.,
the treatments with no external interventions). Surprisingly, we
found that subjects seemed to rely on the ML model more when the
prediction tasks they needed to work on in phase 2 came from a
different distribution than those in phase 1, that is, subjects increased
their reliance on the ML model under covariate shift. A Wilcoxon
rank-sum test further confirmed that this increase was significant
(Z = −2.50,p = 0.012). Recall that the design of our experiment
implies that the ML model would have a poor performance in phase
2 when tasks in phase 2 come from a different distribution compared
to tasks in phase 1. That is to say, by increasing their reliance on
the ML model on the shifted distribution of tasks, subjects actually
exhibited a degree of over-reliance on the model under covariate
shift.

4.2 RQ2: Can External Interventions Promote
Appropriate Reliance under Covariate
Shift?

Next, we move on to examine whether the use of external inter-
ventions could promote appropriate reliance on ML models under
covariate shift (RQ2). Comparing subjects’ reliance on the ML
model on out-of-distribution tasks between the treatments with
or without external interventions in Figures 2b and 2c, it seems
that educating subjects about ML models’ possible performance
disparity on different data could decrease subjects’ over-reliance
on ML models on out-of-distribution data to some degree, but the
impact of the visualization intervention was not obvious.

To rigorously test the effects of external interventions on influ-
encing subjects’ reliance on the ML models under covariate shift,
we fitted a regressionmodel to predict a subject’s reliance on theML
model in phase 2, considering the main effects of task distribution
and intervention, as well as the interaction effects between these
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(a) Control (b) Education intervention (red) (c) Visualization intervention (green)

Figure 2: Survival curves showing the fraction of subjects in each treatment who still used the ML model to make predictions
after completing X tasks in phase 2. In Figures 2b and 2c, survival curves for the control treatments are shown in grey lines as
references.

Model Parameters
Variable β̂ Std. Error z value p value

Intercept 3.232 0.447 7.231 < 0.001 ***
Education 0.904 0.630 1.434 0.152
Visualization 0.715 0.635 1.125 0.261
Shifted Distribution 1.893 0.645 2.939 0.003 **
Education × Shifted -1.888 0.915 -2.064 0.039 *
Visualization × Shifted -0.894 0.907 -0.984 0.326

Table 3: Regression models for predicting the number of
tasks subjects would delegate the decision-making right to
the ML model in phase 2 in different treatments; the treat-
ment with stationary task distribution and no intervention
was used as the reference. *, **, and *** represents the statis-
tical significance level of 0.05, 0.01, and 0.001, respectively.

two factors. Results of this model are reported in Table 3. We first
noticed that subjects who worked on a shifted distribution of tasks
in phase 2, in general, chose to rely on the ML model significantly
more (p = 0.003). However, we found a significant negative inter-
action term between the education intervention and the shifted
data distribution. This means that when making predictions on
out-of-distribution tasks, compared to subjects who did not receive
any intervention, subjects who were told the possible performance
disparity of an ML model significantly decreased their reliance on
the model thus showed more appropriate reliance on the model
(p = 0.039). In contrast, enabling subjects to visualize the distri-
butions of decision-making tasks and the model’s performance on
different tasks did not significantly influence subjects’ reliance on
the model on out-of-distribution tasks (p = 0.326).

4.3 Exploratory Analyses
So far, we have learned that without any external interventions,
laypeople tend to rely on an ML model more when covariate shift
occurs, despite the model’s poor performance on out-of-distribution
data. Meanwhile, the education intervention could promote laypeo-
ple’s appropriate reliance on the ML model under covariate shift,
but the visualization intervention could not. To understand why
laypeople behave in this way, we conducted a set of exploratory
analyses.

4.3.1 Why do people overly rely on the ML model under covariate
shift? To gain a better understanding of why subjects relied on the
MLmodel more under covariate shift when no external intervention
was provided, we restricted our attention to subjects in the two
control treatments, and we analyzed these subjects’ responses in
the exit survey on their perceptions of the prediction tasks as well
as their belief of the model’s and their own prediction performance.

First, we noticed that even without any external intervention,
people have some capability in detecting covariate shift as subjects
in the shifted distribution treatment perceived the houses in the
two phases to be more different than subjects in the stationary
distribution treatment. Specifically, in the exit survey, subjects were
asked to respond to our survey question S3 (“are the houses you
saw in phase 2 similar to those that you saw in phase 1?”) using
a 5-point Likert scale from 1 (totally different) to 5 (totally same).
On average, subjects in the shifted distribution treatment reported
the phase 2 houses to be more different than those in phase 1 (M =
2.63, SD = 1.16) compared to subjects in the stationary distribution
treatment (M = 3.09, SD = 0.81), and a two-sample t-test suggested
that the difference was significant (t(155) = 3.149,p = 0.002).

In addition, in the exit survey, subjects were also asked to com-
pare their perceived model’s prediction performance in phase 2
and phase 1 (i.e., survey question S4), as well as their perceived
prediction performance of themselves in the two phases (i.e., survey
question S5). We next analyzed subjects’ responses to these two
comparison questions, considering both the actual task distribution
that subjects worked on in phase 2 (stationary vs. shifted), and
subjects’ perceptions on whether the task distribution in phase 2
had changed from that in phase 1 (yes vs. no)3.

Interestingly, as shown in Figure 3 (top panel), subjects’ belief
of the ML model’s performance in phase 2 was not significantly
influenced by either the actual task distribution that they worked
on in phase 2, or their perceptions of whether the task distribution
they worked on in phase 2 was different from that in phase 1 or
not. However, we got a different story when examining subjects’
belief of their own prediction performance in phase 2 (Figure 3,
bottom panel). Using a two-way ANOVA, we found that although

3When a subject’s response to the phase 1 vs. phase 2 house similarity question (i.e.,
S3) in the exit survey was below 3 on a 5-point scale, we categorized this subject as
believing the task distribution has changed; otherwise, we categorized the subject as
believing the task distribution has not changed.
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Figure 3: How actual task distribution of phase 2 (stationary
vs. shifted) and subjects’ perceptions on whether task dis-
tribution has changed across the two phases affect subjects’
belief in themodel’s prediction performance (top panel) and
their own performance (bottom panel) in phase 2.

the actual task distribution subjects worked on in phase 2 did not
significantly change subjects’ belief of their own prediction perfor-
mance in phase 2 (F (1, 116) = 1.29,p = 0.259), subjects’ perceptions
of the task distribution in phase 2 do (F (1, 116) = 5.83, p = 0.017)—
when a subject felt the task distribution had changed between the
two phases, she was significantly more likely to believe her own
prediction performance in phase 2 was worse than that in phase
1. Lastly, Figure 4 shows the survival curves for subjects in the
control treatments who believed the task distribution had or had
not changed between the two phases, separately. Clearly, subjects
who believed houses in phase 2 were different than houses in phase
1 tended to rely on the ML model more in phase 2, compared to
subjects who believed houses in the two phases were similar.

Putting these analyses together, we find a plausible explanation
for why laypeople overly rely on the ML model under covariate
shift. When covariate shift occurs, a significant portion of laypeople
can recognize the change in data distributions without external
interventions. However, when people feel the data distribution has
changed, they do not expect the ML model’s performance on out-of-
distribution data to be much different than that on in-distribution
data, but they feel their own prediction performance would decrease
on out-of-distribution data. As a result, those who detect the change
of data distributions actually decide to rely on the model more,
leading to over-reliance on the model under covariate shift.

4.3.2 Why the education intervention could promote appropriate
reliance? To answer this question, we conducted the analogous
analyses as those in Section 4.3.1 on the data that we obtained from
the two treatments with the education intervention. Consistent
with the findings in Section 4.3.1, we found that subjects who re-
ceived the education intervention were able to detect changes in
the task distribution, and subjects who believed the data distribu-
tion had changed across the two phases also perceived the model’s
performance to be unchanged on out-of-distribution data compared
to that on in-distribution data, but they perceived their own perfor-
mance on out-of-distribution data to decrease. However, when we

Figure 4: Survival curves showing the fraction of subjects
who still used the model to make predictions after complet-
ing X tasks in phase 2 for subjects who believed the task dis-
tribution had/had not changed across the two phases.

looked into how a subject’s reliance on the model in phase 2 was
affected by the subject’s perception of task distribution change, we
found the effect was minimal. That is, for subjects who received
the education intervention, after recognizing the change of task
distributions, their perceived self-performance decrease on out-of-
distribution data no longer translates into higher levels of reliance
on the ML model under covariate shift.

A closer look into subjects’ responses to survey question S6 (i.e.,
“what are the factors that make you stop using the model in phase
2”) provided us with some explanations for this observation—56% of
the subjects who received the education intervention and worked
on the shifted task distribution in phase 2 indicated that one of the
reasons for them to stop using the ML model in phase 2 was that
they worried the model’s performance would get worse on a new
distribution of data; this was a 47.4% increase from the average
fraction of subjects in other treatments choosing this option as
their reason for stopping using the model. In other words, the
education intervention may have decreased people’s over-reliance
on the ML model under covariate shift mainly by raising people’s
awareness of ML model’s possible performance degradation on the
out-of-distribution data.

4.3.3 Why the visualization intervention is not effective in promoting
appropriate reliance? Finally, we turned our attention to subjects
who received the visualization intervention to understand why the
provision of the interactive visualization tool did not effectively
promote subjects’ appropriate reliance on the ML model under
covariate shift.

To our surprise, we found no significant difference in the per-
ceptions on whether phase 2 houses were similar to phase 1 houses
or not between subjects who worked on the stationary or shifted
distribution of tasks in phase 2. This suggests that subjects who
received the visualization intervention seemed to have limited ca-
pability in detecting covariate shift. We suspect this may be caused
by subjects’ insufficient engagement with the visualization tool, as
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more than half of the subjects had never changed the axis combi-
nations of the interactive 2D plot throughout the experiment. We
thus analyzed the data again by taking subjects’ engagement with
the visualization tool into consideration.

Specifically, using the average number of times that subjects in
the visualization intervention treatments changed the axis com-
bination in the 2D plot (i.e., 6.13) as a threshold, we separated
subjects into two groups whose engagement level with the visu-
alization tool was high or low. We then used a two-way ANOVA
test to examine how a subject’s perception of phase 2 tasks was
influenced by the actual task distribution the subject worked on
in phase 2 and the subject’s engagement level with the visualiza-
tion tool. Interestingly, we detected a significant interaction effect
(F (1, 174) = 4.076,p = 0.045): When working on the stationary dis-
tribution of tasks in phase 2, high engagement subjects had similar
perceptions on the similarity of phase 1 and phase 2 houses as low
engagement subjects. However, when subjects worked on a shifted
distribution of tasks in phase 2, high engagement subjects were
more likely to perceive a change in the task distribution than low
engagement subjects. This means that subjects who had a sufficient
amount of interactions with the visualization tool were still able
to detect the covariate shift. Unfortunately, the high engagement
subjects’ reaction to the detected covariate shift was to increase
their reliance on the ML model—we again found a significant in-
teraction between the actual task distribution a subject worked
on in phase 2 and the subject’s engagement with the visualiza-
tion tool in affecting the subject’s reliance on the model in phase
2 (F (1, 181) = 8.888,p = 0.003). In particular, high engagement
subjects chose to rely on the ML model for significantly more tasks
only when a shift of task distribution happens (p = 0.015).

5 DISCUSSION
In this section, we relate our findings to prior work, provide design
recommendations for promoting laypeople’s appropriate reliance
on ML models under covariate shift, and highlight opportunities for
future research. We also discuss limitations of our work, cautioning
readers to generalize our results to other settings.

Clearly and transparently communicate the intended use
cases of a ML model to end-users. Previous research has identi-
fied that a key principle for promoting appropriate reliance in AI
is to ensure people are well informed of the capabilities and limi-
tations of an AI system [1]. Detailed recommendations have been
provided on the kind of information that needs to be communicated
to end-users in a transparent model reporting process, including
the use cases of the model that were envisioned during model de-
velopment, benchmarked evaluation of the model in a variety of
conditions, and relevant details of training data of the model [17].
Our findings in this work warn about the risk of laypeople overly re-
lying on poorly-performed ML models under covariate shift if these
recommendations are not followed. In other words, one of the most
straightforward implications that we have learned from our study is
that designers of ML models should clearly and transparently com-
municate the scope of application and potential limitation of their
model to the end-users, as this information would likely be critical
for helping laypeople form right expectations about the model’s

performance on different data and therefore avoid inappropriate
reliance.

Theneed of increasing people’s understanding of performance
of ML models. Our results that providing people with a brief edu-
cation session on ML model’s possible performance disparity on
different data reduces people’s over-reliance on the ML model un-
der covariate shift highlights the importance of user education.
Indeed, without a solid understanding of ML model’s performance,
people may still exhibit inappropriate reliance on ML models under
covariate shift even when they manage to identify the changes in
data distributions, because they might have mistakenly general-
ized the model’s observed performance from one data distribution
to another. On the high level, this is related to increase the gen-
eral public’s AI literacy [9, 14], especially on enabling people to
recognize that ML models learn from data, and the data used to
train the models largely influences the results of the model. While
in our study, we used simple written material to help people bet-
ter understand the performance of ML models, future work could
explore the effectiveness of different methods (e.g., interactive tuto-
rial [10]) for educating end-users on both general knowledge of AI
and specific information related to properties of ML models under
covariate shift. An alternative approach for increasing people’s un-
derstanding of performance of ML models is to design better ways
to communicate an ML model’s performance to end-users that dis-
courage over-generalization of model performance into novel data
distributions, which provides rich opportunities for future research
in uncertainty quantification and communication [27].

Towards more effective visualizations. To encourage people to
trust/rely on ML models appropriately, previous research has ex-
plored the usage of interactive visualization to explain the model
predictions [5, 11]. Different from these studies, our interactive vi-
sualization is designed to explain the data (i.e., the decision-making
tasks) as well as the model’s performance on different data. Our
observation that the presence of this visualization tool hampers
people’s capability of detecting changes in task distributions is de-
viated from what we have expected. This might be partly caused by
laypeople’s limited data visualization literacy [3]. In fact, previous
literature has shown that even experienced users like data scientists
or students with advanced coursework in science and mathematics
sometimes can not precisely interpret the outputs of data visualiza-
tion [16]. On the other hand, our results show that subjects who are
highly engaged in interacting with the visualization tool are more
likely to detect changes in the task distributions. Future research
could consider designs that encourage people’s interactions with
the visualization as a possible direction for improving the effec-
tiveness of the visualization. Finally, we note that our visualization
does not help those people who successfully identify the changes
in the task distributions to reduce their reliance on the ML model
when covariate shift occurs. This means that when people see a
data point lying far away from the set of data points on which
they have observed the model’s performance, they might fail to
recognize it as an indication of lacking evidence for the model’s
performance on that data point. Aside from educating people about
an ML model’s potential performance drop on novel data distribu-
tion, this also highlights the need of actively assisting people to
interpret the information carried in data visualization.
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Limitations.We conducted our experiment on a crowdsourcing
platform (MTurk) on one particular type of task (i.e., house price
prediction). While the worker population on MTurk well represents
the laypeople population, which serves our purpose of studying
how laypeople would rely on ML models under covariate shift well,
cautions should be used when generalizing our findings to a differ-
ent population, such as domain experts. In fact, we have observed
that a small proportion of subjects in our experiment largely out-
perform the model in phase 1, and most of these subjects choose to
not rely on the model at all in phase 2 regardless of whether the
task distribution has changed, indicating that experts’ reliance on
ML models under covariate shift could be fundamentally different
from that of laypeople’s. The particular nature of crowdsourcing
platforms might have also shaped the results we’ve obtained to
some extent. For example, one factor that subjects reported as the
reason for them to always use the model in the experiment was that
they hope to “save time and effort” [23]. Finally, we note that how
people rely on anMLmodel under covariate shift might also depend
on people’s perceptions of the difficulty of the prediction task and
the level of model performance that people have observed on the
in-distribution data; thus, we caution the readers from generalizing
our results to different settings.

6 CONCLUSION
In this paper, we present an experimental study to understand how
laypeople adjust their reliance on machine learning models when
covariate shift occurs. We find that people increase their reliance
on the model on out-of-distribution data compared to that on in-
distribution data, both because people are not able to accurately
detect the model’s performance deterioration on out-of-distribution
data, and because people perceive their own decision-making per-
formance on out-of-distribution data to be decreasing. We design
two interventions aiming at improving people’s appropriate re-
liance on machine learning models under covariate shift, one fo-
cuses on educating people on the possible performance discrepancy
of a machine learning model on different data, and another focuses
on enabling people to visualize the properties of decision-making
tasks and the model’s performance on different tasks. We find that
people who have learned about machine learning model’s possi-
ble performance drop on a novel distribution of data are able to
decrease their over-reliance on machine learning models when co-
variate shift occurs. Our work provides important implications for
enhancing human-AI partnership in a dynamically changing world,
and we hope the findings we report in this paper can inspire more
discussions in this line.
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