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Literature Review
We screened research papers related to AI-assisted deci-
sion making that are published between 2018 and 2021 in
the ACM CHI Conference on Human Factors in Computing
Systems (CHI), ACM Conference on Computer-supported
Cooperative Work and Social Computing (CSCW), ACM
Conference on Fairness, Accountability, and Transparency
(FAccT), and ACM Conference on Intelligent User Inter-
faces (IUI) to identify different forms of AI assistance de-
veloped in the literature. We grouped different forms of AI
assistance into a few categories:

1. Immediate assistance (Lai and Tan 2018; Liu, Lai, and
Tan 2021; Nourani et al. 2021; Green and Chen 2019b;
Tsai et al. 2021; Bansal et al. 2020; Buccinca, Malaya,
and Gajos 2021; Feng and Boyd-Graber 2018; Guo et al.
2019; Lee et al. 2020, 2021; Levy et al. 2021b; Cheng
et al. 2019; Lai, Liu, and Tan 2020; Poursabzi-Sangdeh
et al. 2018; Chromik et al. 2021; Jacobs et al. 2021;
Smith-Renner et al. 2020; Desmond et al. 2021; Buc-
cinca et al. 2020; Gajos and Mamykina 2022; Gomez
et al. 2020; Abdul et al. 2020; Brown et al. 2019; Cai,
Jongejan, and Holbrook 2019; Buccinca et al. 2020; Szy-
manski, Millecamp, and Verbert 2021; Green and Chen
2019a; De-Arteaga, Fogliato, and Chouldechova 2020;
Yang et al. 2020; Kunkel et al. 2019; Das and Chernova
2020; Yu et al. 2019; Lee et al. 2019; Harrison et al. 2020;
Kocielnik, Amershi, and Bennett 2019)

2. Delayed recommendation (Zhang, Liao, and Bellamy
2020; Dodge et al. 2019; Wang and Yin 2021; Yin,
Vaughan, and Wallach 2019; Buccinca, Malaya, and
Gajos 2021; Lu and Yin 2021; Poursabzi-Sangdeh et al.
2018; Grgić-Hlača, Engel, and Gummadi 2019; Park
et al. 2019)

3. Explanation only (Lai and Tan 2018; Alqaraawi et al.
2020; Lucic, Haned, and de Rijke 2019; Rader, Cotter,
and Cho 2018; van Berkel et al. 2021; Buccinca et al.
2020; Gajos and Mamykina 2022; Anik and Bunt 2021;
Lucic, Haned, and de Rijke 2019; Rader, Cotter, and Cho
2018)

4. Interaction between human and AI: Different from the
three “static” types of AI assistance, this form of AI as-
sistance emphasizes the interaction between human de-
cision maker (DM) and the AI assistant. For example,

during the collaboration with AI, AI can provide the
accuracy feedback to help DMs recalibrate their trust
in AI (Bansal et al. 2020; Yu et al. 2019). In addition,
DMs may actively explore the decision space of AI as-
sistants (Cai et al. 2019a; Levy et al. 2021a), or they
can be provided with interactive explanations to gain a
deeper understanding of how AI models arrive at their de-
cisions (Cai et al. 2019a; Yang et al. 2020; Smith-Renner
et al. 2020; Liu, Lai, and Tan 2021; Cai et al. 2019b),
thereby enhancing their appropriate trust in AI assistants.

Given the limited number of papers in the Interaction be-
tween Human and AI category, and their unique interaction
designs, in this study, we focus on building computational
framework to model how the first three types of AI assis-
tance influence human DMs.

Additional Details of Human-Subject
Experiment

Data Validity Check. To verify the engagement of sub-
jects in our study, an attention check question was included
in which subjects were instructed to select a pre-specified
option. Among the 285 workers participated in our study,
202 passed the attention check question. Only the data from
them were considered as valid and used to train/evaluate
our models. Also, as an evidence of “consistency”, across
all decision making tasks, the average fraction of subjects
who agreed with the majority decision on the task was 82%
(though decision makers did not need to agree with others’
decisions).
Working Time. The mean completion times for a deci-
sion making task and their standard deviations in differ-
ent treatments are: Independent: 4.61s ± 3.27s, Immedi-
ate assistance: 5.03s ± 3.42s, Delayed recommendation:
9.89s ± 6.07s, Explanation only: 5.45s ± 3.54s.

Ablation Study
In our approach, we adopt a probabilistic framework to learn
a distribution of the independent human decision model
qϕ(wh). In this study, we conducted an ablation study by re-
placing the distribution of the decision model qϕ(wh) with
a deterministic logistic regression model that can be learned
in the Delayed recommendation scenario (because human
DMs need to first provide their initial decision before the AI



Number of Training Instances 5 10 15 20 25
Deterministic Decision Model 0.514 0.469 0.454 0.434 0.416

Ours 0.430 0.422 0.413 0.402 0.394

Table 1: Comparing the performance of our method against
an alternative that substitutes the distribution of decision
model qϕ(wh) of our method with a deterministic logistic
regression model in the Delayed recommendation scenario.
NLL is adopted as the evaluation metric, with a lower NLL
denoting superior performance.

recommendation is revealed). As shown in Table 1, we ob-
served that our approach consistently outperforms the coun-
terpart using the deterministic decision model as we vary the
number of training instances.

The Potential Influence of the LLM-Powered
Decision Aids on Humans

The AI model we used in our study was a supervised learn-
ing model that was trained independently without human
feedback. However, with the rapid development of large lan-
guage models (LLMs), one may envision that future AI-
based decision aids can be powered by LLMs. It is known
that LLMs may learn from human feedback and may have
the tendency to provide affirmative responses to humans,
which could reinforce human DMs’ beliefs and biases in the
long run. This could be particularly concerning if the DM
is intentionally providing feedback to LLMs in a way that
seeks approval for a decision that is flawed or biased. As the
LLM keeps internalizing the human DM’s biases through
their feedback and learns to provide affirmative response to
DMs, the DM might perceive the AI’s affirmative response
as an endorsement from an expert, leading to an increased
likelihood of confirmation bias. Moreover, the consistent af-
firmative feedback from LLMs could subtly alter the human
cognitive decision making process. For example, if LLMs
continually affirm DMs’ decisions or ideas, it may lead to
DMs’ overconfidence in their decisions. Developing com-
putational frameworks to characterize the dynamics between
the influence of AI assistance to human DMs and the influ-
ence of human DMs’ feedback to AI assistance for future
AI-based decision aids that are powered by LLMs can be a
very interesting future direction.

References
Abdul, A.; von der Weth, C.; Kankanhalli, M. S.; and Lim,
B. Y. 2020. COGAM: Measuring and Moderating Cogni-
tive Load in Machine Learning Model Explanations. Pro-
ceedings of the 2020 CHI Conference on Human Factors in
Computing Systems.
Alqaraawi, A.; Schuessler, M.; Weiß, P.; Costanza, E.; and
Bianchi-Berthouze, N. 2020. Evaluating saliency map ex-
planations for convolutional neural networks: a user study.
Proceedings of the 25th International Conference on Intelli-
gent User Interfaces.
Anik, A. I.; and Bunt, A. 2021. Data-Centric Explanations:
Explaining Training Data of Machine Learning Systems to

Promote Transparency. Proceedings of the 2021 CHI Con-
ference on Human Factors in Computing Systems.
Bansal, G.; Wu, T. S.; Zhou, J.; Fok, R.; Nushi, B.; Kamar,
E.; Ribeiro, M. T.; and Weld, D. S. 2020. Does the Whole
Exceed its Parts? The Effect of AI Explanations on Comple-
mentary Team Performance. Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems.
Brown, A.; Chouldechova, A.; Putnam-Hornstein, E.; Tobin,
A.; and Vaithianathan, R. 2019. Toward Algorithmic Ac-
countability in Public Services: A Qualitative Study of Af-
fected Community Perspectives on Algorithmic Decision-
making in Child Welfare Services. Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems.
Buccinca, Z.; Lin, P.; Gajos, K. Z.; and Glassman, E. L.
2020. Proxy tasks and subjective measures can be mislead-
ing in evaluating explainable AI systems. Proceedings of
the 25th International Conference on Intelligent User Inter-
faces.
Buccinca, Z.; Malaya, M. B.; and Gajos, K. Z. 2021. To
Trust or to Think. Proceedings of the ACM on Human-
Computer Interaction, 5: 1 – 21.
Cai, C. J.; Jongejan, J.; and Holbrook, J. 2019. The effects
of example-based explanations in a machine learning inter-
face. Proceedings of the 24th International Conference on
Intelligent User Interfaces.
Cai, C. J.; Reif, E.; Hegde, N.; Hipp, J.; Kim, B.; Smilkov,
D.; Wattenberg, M.; Viegas, F.; Corrado, G. S.; Stumpe,
M. C.; and Terry, M. 2019a. Human-Centered Tools
for Coping with Imperfect Algorithms During Medical
Decision-Making. In Proceedings of the 2019 CHI Con-
ference on Human Factors in Computing Systems, CHI ’19,
1–14. New York, NY, USA: Association for Computing Ma-
chinery. ISBN 9781450359702.
Cai, C. J.; Reif, E.; Hegde, N.; Hipp, J. D.; Kim, B.;
Smilkov, D.; Wattenberg, M.; Viégas, F. B.; Corrado, G. S.;
Stumpe, M. C.; and Terry, M. 2019b. Human-Centered
Tools for Coping with Imperfect Algorithms During Med-
ical Decision-Making. Proceedings of the 2019 CHI Con-
ference on Human Factors in Computing Systems.
Cheng, H. F.; Wang, R.; Zhang, Z.; O’Connell, F.; Gray, T.;
Harper, F. M.; and Zhu, H. 2019. Explaining Decision-
Making Algorithms through UI: Strategies to Help Non-
Expert Stakeholders. Proceedings of the 2019 CHI Con-
ference on Human Factors in Computing Systems.
Chromik, M.; Eiband, M.; Buchner, F.; Krüger, A.; and Butz,
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