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ABSTRACT
This paper addresses an under-explored problem of AI-assisted
decision-making: when objective performance information of the
machine learning model underlying a decision aid is absent or
scarce, how do people decide their reliance on the model? Through
three randomized experiments, we explore the heuristics people
may use to adjust their reliance on machine learning models when
performance feedback is limited. We �nd that the level of agree-
ment between people and a model on decision-making tasks that
people have high con�dence in signi�cantly a�ects reliance on
the model if people receive no information about the model’s per-
formance, but this impact will change after aggregate-level model
performance information becomes available. Furthermore, the in-
�uence of high con�dence human-model agreement on people’s
reliance on a model is moderated by people’s con�dence in cases
where they disagree with the model. We discuss potential risks
of these heuristics, and provide design implications on promoting
appropriate reliance on AI.
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1 INTRODUCTION
AI-assisted decision-making has become increasingly ubiquitous
over the past few years. From music recommendation [56, 60] to
�nancial risk assessment [18, 28] to medical diagnosis [15, 25], var-
ious AI-driven decision aids, which are often powered by machine
learning (ML) models, have been built and applied in a wide range
of domains to aid humans in making better decisions. As a result,
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an increasingly large number of people are interacting with and
potentially in�uenced by these MLmodels in their decision-making.

A critical step in advancing our knowledge of people’s usage of
AI-driven decision aids is to understand how do people determine
how much they could rely on the ML models underlying these
decision aids and adopt the recommendations they provide. Perhaps
intuitively, an important kind of information that people utilize to
calibrate their reliance on an ML model is the objective feedback
on the model’s performance. Indeed, previous research has shown
that people adjust their reliance on an ML model based on its
accuracy [30, 64], and correctness feedback on the level of individual
decision-making task further helps people build “mental models”
of the ML model by understanding when the model is likely to
err [3, 4]. Information on model’s con�dence, which is the model’s
own estimate of its likelihood of being correct, is also shown to
signi�cantly a�ect how much people would rely on the model [65].

However, there are cases where external performance feedback
of an ML model is not readily available. For example, model design-
ers may fail to transparently communicate the model’s performance
to its end-users. Signi�cant time delays may exist before one can
meaningfully evaluate the performance of a model (e.g., ML models
assisting college admission, long-term investment, and matchmak-
ing). Sometimes, it is even impossible to fully observe the model’s
performance due to the decisions made (e.g., decide not to admit
a student into college, thus observing how this student would do
if admitted becomes impossible). An interesting question, then, is
when salient performance feedback of an ML model is absent or
scarce (e.g., performance information is not available or only avail-
able on the aggregate level) during people’s interaction with an ML
model, how would people decide how much to rely on the model?
With limited performance feedback, are there any heuristics that
people utilize to adjust their reliance on an ML model?

While few research has systematically examined how people
would rely on an MLmodel when they have little information about
how well the model performs, decades of research in social psychol-
ogy on how people take the advice from other people into consider-
ation reveals some consistent behavior pattern [33, 39, 46, 50, 63]—
for example, the phenomenon of “naive realism” [61] suggests that
people often consider their own judgment to be objective re�ec-
tions of reality and tend to discount advice that is more di�erent
from their own opinion, while the “agreement-in-con�dence heuris-
tic” [46] further proposes that people may also utilize their own
internal decision con�dence in deciding how much to down-weight
the opinion from a disagreeing advisor. Inspired by these �ndings,
we hypothesize that people may adopt a similar strategy in deter-
mining how much to rely on an ML model when there is limited
performance feedback. For example, people may believe their own
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decisions on those tasks that they feel con�dent about to be “cor-
rect.” As a result, they may form a subjective evaluation of an ML
model’s performance based on how often the model agrees with
themselves on tasks that they are con�dent—the more often the
model matches people’s decisions, the more accurate people feel
the model is, and the more they would be willing to rely on it.

To validate this hypothesis and thoroughly examine how people
adjust their reliance on an ML model when they have limited access
to performance feedback of the model, in this study, we conducted
a series of three human-subject randomized experiments, focusing
on answering the following questions:
• When people receive no information about an ML model’s per-
formance, does the level of agreement between people and the
model on tasks that people have high con�dence in a�ect people’s
reliance on the model?

• If so, does it continue to do so after people have had the opportu-
nity to obtain some aggregate information about the model’s per-
formance (e.g., the model’s overall accuracy on a set of decision-
making tasks) in practice?

• In the real world, people may encounter both cases that they feel
con�dent and cases that they are not con�dent when interacting
with an ML model. How does the people’s own con�dence in
those cases that they agree or disagree with the model change
their reliance on the model?
In our experiments, subjects were recruited from Amazon Me-

chanical Turk to make a sequence of predictions on the outcomes of
speed dating events with the help from ML models. The prediction
tasks were divided into two phases. In both our �rst and second
experiment, subjects in di�erent experimental treatments worked
on exactly the same tasks, and the �rst phase was composed of
only tasks that people would feel con�dent about their own deci-
sions according to a pilot study we conducted. Then, in the �rst
experiment, subjects were randomly assigned to one of the three
treatments, and the ML model used in di�erent treatments made
di�erent predictions in the �rst phase, leading to varying levels of
agreement between subjects and the model on tasks that subjects
had high con�dence in. In addition, subjects received no perfor-
mance feedback about the ML model at any point throughout the
experiment. Our second experiment was completely analogous to
the �rst experiment, except that we revealed the model’s overall
accuracy in Phase 1—which was designed to be either relatively low
(50%) or high (80%)—to subjects between the two phases. Finally,
in our third experiment, in order to vary people’s con�dence in
their agreement or disagreement with the model, we used di�erent
tasks in the �rst phase of the experiment across the 4 experimental
treatments, whichwere arranged in a 2⇥2 design along two factors—
people’s con�dence in their own decisions when they agree with
the model (high vs. low), and people’s con�dence in their own deci-
sions when they disagree with the model (high vs. low). In all three
experiments, we measured subject’s reliance on the model through
their willingness to follow the model’s recommendations in Phase
2, and we also collected information on subject’s perceptions of the
model on a variety of reliance-related factors through surveys.

Our results show that when there is limited performance feed-
back about an ML model, people adjust their reliance on the model
in a sophisticated way—When they have no information about a

model’s performance at all, people’s reliance on the model is sig-
ni�cantly in�uenced by the level of agreement between the model
and themselves on tasks that they have high con�dence in. How-
ever, once people have obtained some aggregate-level performance
information about the model, people’s reliance on the model is
mostly a�ected by the model’s observed performance, but not the
level of high con�dence agreement with the model any more. Fi-
nally, we detect an interaction e�ect between people’s con�dence
in their agreement with a model and people’s con�dence in their
disagreement with the model in in�uencing people’s reliance on
the model. For example, having high con�dence disagreement with
an ML model would reduce people’s reliance on the model if people
agree with this model mostly on tasks that they are con�dent, but it
brings about no impact on reliance if people agree with this model
mostly on tasks that they have low con�dence in.

Taken together, our study shows that with limited performance
feedback of an ML model, people indeed adopt some heuristics to
adjust their reliance on the model based on the level of agreement
between the model and themselves. Moreover, how the human-
model agreement/disagreement a�ects reliance on the model varies
with people’s con�dence in their agreement and disagreement with
the model, and it may also change after people have obtained some
aggregate information about the model’s performance in practice.
We highlight that the usage of these heuristics have both bene�ts
and risks. Notably, when people are not aware of their own limita-
tions in decision making (e.g., biases or poor degree of calibration),
they may show over-reliance on models sharing the same biases
as themselves and show under-reliance on complementary models.
On the other hand, by overly relying on a model’s observed perfor-
mance in practice to gauge how much to rely on the model, people
might miss the opportunity to leverage useful information carried
in their agreement and disagreement with the model to further
di�erentiate reliable models from the unreliable ones. We conclude
by discussing the design implications and limitations of our work.

2 RELATEDWORK
The rapid development of automation over the past decades has in-
spired active research in understanding reliance on automation [10,
44, 49]. For example, researchers have identi�ed that reliance on
automated systems could be a�ected by factors related to humans
(e.g. trust disposition, a�ective process) [38], factors related to the
automation (e.g. error types) [52], as well as factors related to the
context (e.g. time pressure, risk) [8]. Theoretical models and frame-
works have been proposed to explain human’s reliance on the
automation in various situations [12, 19, 20, 31, 57]. In practice,
however, collaborations between humans and automation often fail
to achieve optimal outcomes due to human’s inappropriate reliance
on the automation [13, 43], including both over-reliance on the au-
tomation when it performs poorly (i.e., misuse) and under-reliance
on the automation when it is well-functioning (i.e., disuse).

More recently, with the widespread usage of machine learning
(ML) based technologies in aiding human decision-making, a new
line of research examining human’s reliance on ML emerges [22,
55, 64]. Compared to traditional automated systems, ML models are
built on a massive amount of data. As a result, they often become



CHI ’21, May 8–13, 2021, Yokohama, Japan

highly sophisticated and sometimes even opaque in order to cap-
ture the complex nonlinearity in real-world data, and uncertainty is
baked into every prediction of MLmodels. Correspondingly, studies
on how people rely on ML models often emphasize on people’s
capability of utilizing external, explicit information about a model,
such as explanations and uncertainty quali�cations of the model’s
decisions to adjust their reliance on the model. For example, it was
shown that people’s reliance on an ML model is a�ected by the
model’s stated accuracy on a set of held-out data [30], the model’s
observed accuracy on real-world trials [64], and the model’s con�-
dence associated with each individual recommendation [65]. On
the other hand, while a number of studies have shown the promise
that explanations of an ML model enhance people’s understand-
ing of the model and therefore lead to more appropriate reliance
on the model [30, 48, 62], the impact of model intelligibility and
transparency on reliance also seems to vary across decision-making
tasks of di�erent properties, explanations of di�erent types, and
people with di�erent characteristics [7, 9, 47, 53, 65].

In comparison to the growing literature on how people’s re-
liance on an ML model is a�ected by external information about
the model, much less attention has been paid to understand how
people’s reliance on an ML model is determined when people have
limited access to such information. In a di�erent context of human
advice-taking, however, psychologists have revealed rich insights
into how people decide whether to rely on another human advisor’s
advice during their decision making without objective feedback
on the quality of the advice. For example, research has identi�ed
that people exhibit a degree of “naive realism” [23, 61], that is, they
tend to believe they perceive the world objectively and people who
disagree with themselves are uninformed or biased. As a result,
people often discount or even ignore the advice provided by ad-
visors who disagree with them [14, 33, 39, 63]. In practice, it was
shown that using the frequency of agreement between oneself and
an advisor as a proxy can help reliably estimate the quality of the
advisor’s advice when judgements between the person and the
advisor are independent, but could also cause systematic errors in
decision-making when the person su�ers from the “false-consensus
e�ect” [36, 50, 63] and shows more trust to advisors who simply
share the same biases as themselves [46]. Moreover, as humans
often use their own con�dence as a way to express their estimated
likelihood of making correct decisions [17, 45], it was found that
both the advisor and advisee’s con�dence in their own decisions,
as well as the advisee’s con�dence in their agreement with the
advisor, a�ects the likelihood of the advice being taken [46, 54, 58].
In particular, previous study showed that when the agreement be-
tween advisor and advisee mostly occurs on cases that the advisee
is con�dent, the advisee shows higher levels of trust towards the
advisor, and also gets in�uenced by the advisor more [46].

Inspired by these �ndings, we hypothesize that when interacting
with an ML model, people may also use their agreement with the
model as a heuristic to gauge how much they could rely on the
model when performance feedback of the model is limited. To this
end, while a few recent studies have examined how the alignment
between a model’s explanations and human logic a�ects people’s
reliance on the model [41, 66], there is no systematic investigation
into how the agreement between people and a model on decisions
they make a�ects reliance, thus our study �lls in this gap.

3 EXPERIMENT 1
In Experiment 1, we set out to understand how do people adjust
their reliance on a machine learning (ML) model when they have
not obtained any feedback on how well the model performs. We
speculate one heuristic that people may adopt in such a scenario is
to use the level of agreement between the MLmodel and themselves
on tasks that they are highly con�dent about their own predictions as
a proxy to estimate the performance of the model and adjust their
levels of reliance accordingly. Speci�cally, we hypothesize that:

• [H1] When people receive no information about an ML model’s
performance, the level of agreement between people and the
model on tasks that people have high con�dence in signi�cantly
a�ects people’s reliance on the model; the higher the level of
agreement, the more people rely on the model.

To formally test this hypothesis, we conducted a randomized
experiment where human subjects were recruited from Amazon
Mechanical Turk (MTurk) to complete a sequence of 30 decision-
making tasks, with the help of di�erent ML models, which showed
varying levels of agreement with subjects on tasks that subjects
had high con�dence in.

3.1 Experimental Task
The decision-making task that we asked subjects to complete in this
experiment is to predict the outcome of speed dating events. This
task is suitable for our experimental study because human subjects
do not need to possess specialized knowledge to make predictions
on such a task, and subjects may feel con�dent about their own
predictions on some of these tasks. Moreover, it also represents a
realistic scenario where people can be assisted by an ML model to
make better decisions. Similar tasks have been used in previous
research to understand how performance information of an ML
model a�ects people’s trust and reliance on ML models [64].

Speci�cally, in each task, the human subject was presented with
a set of information about one participant in a speed dating event
and his/her date, including a total of 22 features on (1) basic de-
mographics of the participant and the date (e.g., gender, age, race),
(2) the participant’s preferences in romantic partners (e.g., out of
100 points, how many points does the participant assign to attrac-
tiveness when evaluating whether a person is an ideal romantic
partner or not?), and (3) the participant’s impression of the date
(e.g., the participant’s rating of the attractiveness of the date). After
the subject reviewed these information, she was asked to make a
binary prediction on whether the participant would like to meet
with the date again in the future, following the steps as listed below:
• First, the subject was asked to make an initial prediction on her
own about whether the participant in this event wanted to see
his or her date again.

• Then, the subject was presented with the information on an ML
model’s binary prediction on this task, and accordingly, whether
the model agreed with her or not.

• Finally, the subject was asked to submit a �nal prediction.
Figure 1 shows an example of the interface of the prediction task

in our experiment. The information on speed dating participants
and their dates that we showed to subjects in each task were taken
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Figure 1: Interface of the prediction task.

from real speed dating events that were conducted in the experi-
mental study of Fisman et al. [16], which also provided us with the
ground truth answer of whether participants in each speed dating
event were willing to see each other again.

Task Instance Categorization. To enable our experimental ma-
nipulation (i.e., varying the level of agreement between an ML
model and subjects on tasks that subjects are highly con�dent; will
be detailed in Section 3.2), we �rst conducted a pilot study on a
set of 214 speed dating outcome prediction tasks to collect neces-
sary information on them, including what the subjects’ majority
prediction on a task is, whether the majority prediction is correct,
and how con�dent subjects are about their predictions. A total of
315 subjects were recruited from MTurk to take our pilot study, in
which they needed to complete a random sample of 20 prediction
tasks, and for each task, they were also asked to indicate their con-
�dence level in their prediction. Based on these data, for each task,
we determined subjects’ majority prediction on it, the accuracy
of the majority prediction, as well as the average con�dence of
subjects’ predictions on the task. For more details of the pilot study,
see the supplementary materials (SM) Section 2.

Using the �rst quartile and third quartile of the average con�-
dence on a task as the thresholds, we identi�ed a set of 54 tasks that
subjects are highly con�dent about their predictions (i.e., subjects’
average con�dence is above Q3) and 52 tasks that subjects have low
con�dence in their predictions (i.e., subjects’ average con�dence is
below Q1). Note that when subjects are highly con�dent about their
own predictions, they are not necessarily correct. This could be
caused by a number of reasons, including subjects overestimating
or underestimating the importance of certain features in in�uenc-
ing the speed dating outcome, subjects’ over-con�dence in their
own predictions, and a degree of uncertainty inherent in predicting
human behavior.

3.2 Experimental Design
Each subject completed exactly the same 30 prediction tasks in our
experiment, which were divided into two phases. Phase 1 consisted
of the �rst 20 tasks in the sequence, and we varied the level of
agreement between people and the ML model on these tasks to
create our experimental treatments. Phase 2 included the rest 10
tasks, and was designed for measuring how much people would be
willing to rely on the ML model in their decision-making.

Experimental Treatments. Three treatments were created in this
experiment. Each treatment was associatedwith a uniqueMLmodel,
and the three models di�ered on how often their predictions agreed
with those of subjects’ on Phase 1 tasks. Importantly, the 20 predic-
tion tasks of Phase 1 were all selected from those high con�dence
tasks that we identi�ed from our pilot study. To make it easy to con-
trol the level of agreement between the ML models and the human
subjects, the 20 tasks we included in Phase 1 further satis�ed an
additional criterion that for each task, our pilot study had shown
that at least 80% of subjects made the same prediction on it. Thus,
depending on whether people’s majority prediction on a task was
correct or not, Phase 1 included both tasks on which most subjects
would make correct predictions with high con�dence (“CH” tasks)
and tasks on which most subjects would make incorrect predictions
with high con�dence (“IH” tasks).

Given our knowledge of what the majority of people would pre-
dict for each task, we then created three experimental treatments
where the ML model used in these treatments was designed to
make the same predictions as the majority of people on 40% (low
agreement), 70% (medium agreement), or 100% (high agreement)
of the 20 Phase 1 tasks, respectively1. To single out the e�ect of
the human-model agreement on reliance, we minimized the dif-
ferences across treatments by ensuring that the three ML models
had exactly the same accuracy and the same positive prediction rate2

on these 20 tasks (both accuracy and positive prediction rate were
set at 70%). Practically, we did this by �rst setting the ML model’s
prediction to be the same as people’s majority prediction on all
Phase 1 tasks in order to create the “high agreement” treatment. The
other two treatments were then created by “�ipping” the model’s
predictions on some tasks, hence decrease the level of agreement
between people and the model. Importantly, whenever we had the
model disagree with people’s majority prediction on a task that the
majority prediction is correct, we also needed to have the model
disagree with people’s majority prediction on another task that
the majority prediction is wrong (hence the model accuracy was
kept at the same level across treatments). Similarly, changing the
model’s prediction on a task where the majority of people made
a positive prediction was always accompanied by changing the
model’s prediction on another task for which people’s majority
prediction was negative (hence the model’s positive prediction rate
was kept at the same level across treatments).

1Predictions of ML models on each task were arti�cially set based on the designed level
of human-model agreement in di�erent treatments. However, we note that in reality,
di�erent ML models can be trained to match such predictions, as sophisticated models
are shown to be able to approximate any continuous function [32]. Empirical studies
also showed that real-world prediction problems often admit competing models that
make wildly con�icting predictions [37].
2That is, the fraction of tasks where the model predicted “the participant wants to see
the date” was kept the same across treatments.
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Figure 2: Predictions of the three ML models on Phase 1 tasks of Experiment 1. Each row represents the predictions made by
the MLmodel in one treatment: “A” means the model agreed with the predictions made by the majority of people on the tasks,
and “D” means the model disagreed with the majority predictions. Bars with stripes represent tasks on which the model’s
prediction agreed with people’s majority prediction. Bars with the green (red) outline are tasks where the model made correct
(wrong) predictions. Bars with the yellow background are tasks where the model made a positive prediction (i.e., predicted 1,
the participant wants to see the date again). On the 20 tasks in Phase 1, the three models have the same accuracy of 70%, the
same positive prediction rate of 70%, but di�erent levels of agreement with people’s majority predictions.

Figure 2 illustrates the details for the 20 task instances that we
selected to use in Phase 1 of this experiment, as well as the ML
models’ predictions on them in the three treatments. With such
design, we expect that human subjects who are assigned to the high
agreement treatment �nd that on Phase 1 tasks, there is a higher
level of agreement between the predictions made by the model and
the initial predictions made by themselves, compared to subjects
who are assigned to the medium agreement treatment, who in turn
have a higher level of agreement with the model than subjects in
the low agreement treatment.

Lastly, Phase 2 was designed to measure whether the perceived
level of agreement between people and an ML model (in Phase 1)
a�ects people’s reliance on the model. Thus, ML models in the three
treatments were designed to make exactly the same predictions on
the 10 tasks in Phase 2. To maximize the possible e�ect, all Phase 2
tasks were selected from those task instances that people had low
con�dence in their own predictions according to the pilot study.
To minimize the di�erence between the two phases, we made sure
that the model’s accuracy and positive prediction rate in Phase 2
were still 70%, which was the same as that in Phase 1.

Experimental Procedure. Our experiment was posted as a HIT
on MTurk that was open to U.S. workers only, and each worker
was allowed to take the HIT only once. Each HIT contained exactly
the same 30 prediction tasks separated in two phases, and the order
of tasks was randomized within each phase. Besides, an attention
check question was added at a random position in the task sequence,
and the subject was asked to select some pre-speci�ed options in
the attention check question.

Upon arrival at the HIT, each subject was �rst presented with
an instruction of the task interface. Then, the subject needed to
answer three quali�cation questions to show that she understood
the meanings of various information presented to her on the task
interface, and she could only proceed on after correctly answering

all these questions. Once quali�ed, the subject would be randomly
assigned to one of the three experimental treatments to work on
the sequence of 30 prediction tasks. On each task, the subject was
asked to make initial and �nal predictions following the three-
step procedure described above. On tasks in Phase 1, subjects in
di�erent treatments saw the MLmodel making di�erent predictions,
leading to di�erent perceived levels of agreement with the model.
The subject did not receive any feedback on whether her own
prediction or the model’s prediction was correct on each of the
tasks. After completing all 20 tasks in Phase 1, the subject was
asked to take a pause and re�ect on her experience in the �rst
phase of the experiment by �lling in a few survey questions. In
particular, the subject was asked to �rst make a guess about the
model’s accuracy in Phase 1. Then, the subject rated on a 7-point
Likert scale about how much she agrees with each of the following
statements from 1 (strongly disagree) to 7 (strongly agree):
• (Competence) The recommendation that the machine learning
model provides to me is as good as that which a highly competent
person could provide.

• (Reliability) The machine learning model provides the reliable
recommendation to me in each task.

• (Understandability) I understand how the machine learning
model will assist me with predictions I have to make.

• (Faith) If I am not sure about my prediction in a task, I have faith
that the machine learning model will provide the best solution.
After completing the survey, the subject proceeded to Phase 2

to work on the rest of 10 prediction tasks. Again, the subject was
asked to make initial and �nal predictions on each of the Phase 2
tasks, without receiving any feedback on their own accuracy or the
model’s accuracy on any task. Finally, before submitting the HIT,
the subject was asked to answer the following question to indicate
her overall trust in the ML model on a 7-point Likert scale, with
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1 representing “do not trust the model at all” and 7 representing
“fully trust the model.”:
• (Overall trust) Overall, how much do you trust the predictions
of our machine learning model?
The base payment of our HIT was $1.5. To motivate subjects to

carefully consider whether and how much to rely on the ML model
when making their predictions, we also provided a performance-
based bonus to subjects: after the subject completed the HIT, we
randomly selected one prediction task in the sequence to check
whether the subject’s �nal prediction on that task was correct. If so,
the subject would receive a $1 bonus on top of the base payment.
Note that in this experiment, we never provided any feedback to
subjects on the accuracy of the ML model on any of the tasks.

3.3 Experimental Data and Analysis Methods
In total, 301 subjects passed the attention check and completed
our HIT. For each subject, we recorded her initial prediction and
�nal prediction on each of the 30 prediction tasks. Besides, we
also recorded the subject’s responses to our survey questions both
between the two phases and at the end of the HIT.

Similar to previous studies [30, 64, 65], based on the information
we collected in our experiment, we operationalized the measure-
ment of reliance on ML models using two metrics which evaluate
subject’s willingness to follow the model’s predictions in Phase 2:
• Agreement fraction: in Phase 2, the fraction of tasks on which
subject’s �nal prediction agreed with the model’s prediction3.

• Switch fraction: in Phase 2, the fraction of tasks on which sub-
ject’s �nal prediction agreed with the model’s prediction, among
all tasks that subject’s initial prediction was di�erent from that
of the model’s.
Intuitively, the higher agreement fraction and switch fraction are,

the more subjects rely on the ML model in their decision-making.
Since Phase 2 tasks were exactly the same across the three treat-
ments and the model in di�erent treatment also made exactly the
same predictions on these tasks, di�erences in agreement fraction
and switch fraction across treatments can be causally attributed to
the subject’s perceived level of agreement with the model in Phase
1. To formally examine whether the level of agreement between
people and an ML model in Phase 1 a�ects people’s reliance on the
model, we conducted the one-way analysis of variance (ANOVA)
on the two measures of reliance (i.e., agreement fraction, switch
fraction) across the three treatments4.

In addition, to explore themechanisms throughwhich the human-
model agreement on tasks that people have high con�dence in
a�ects people’s reliance on the model, we also analyzed the data
on subject’s perceived accuracy, technical competence, reliability,
and understandability of the model, as well as subject’s faith and
overall trust in the model, all of which are previously identi�ed as
key constructs that would a�ect people’s reliance in an automated
system [8, 31, 35, 51]. In particular, we conducted one-way ANOVA

3Agreement fraction concerns how often a subject’s �nal prediction son Phase 2 tasks
agreed with the model, thus it is a measure of reliance. This should not be confused
with the level of agreement between a subject and the ML model, which examines
how often a subject’s initial predictions agree with the model on Phase 1 tasks.
4Additional non-parametric tests and regression analyses show consistent results. See
details in SM Section 3.

on subject’s perceived model accuracy and overall trust on the
model. We also conducted proportion tests on the proportion of
subjects who agreed/disagreed with the four statements regarding
the competence, reliability, understandability of the model, and
their faith in the model to see whether subject’s perceptions on
these aspects di�er signi�cantly across treatments5. Following all
these tests, post-hoc Tukey HSD tests or pairwise proportion tests
were then used to identify pairs of treatments in which subjects ex-
hibited signi�cant di�erences in their reliance on the model or their
reliance-related perceptions in the model (we adjusted p-values in
post-hoc analyses to control for a family-wise error rate of 0.05).

3.4 Experimental Results
To beginwith, we checkedwhetherwe successfully created di�erent
levels of agreement between subjects and the ML model in di�erent
treatments. The average fraction of Phase 1 tasks on which subjects’
initial predictions were the same as the model’s predictions was
0.446, 0.673, and 0.902 for low, medium, and high agreement treat-
ment, respectively, and one-way ANOVA test con�rmed that the
di�erence was statistically signi�cant (? < 0.001). This means that
the agreement level between people and the model was successfully
varied across the three treatments in this experiment.

Does High-Con�dence Agreement A�ects Reliance When
Performance Feedback is Absent?We plot the comparisons of
subjects’ average agreement fractions and average switch frac-
tions on all Phase 2 tasks across the three treatments in Figures 3a
and 3d, respectively. Visually, it is clear that when subjects did
not know how well a model performs, they were more likely to
follow the predictions of the model if there was a higher level of
agreement between the model and themselves on tasks that they
are highly con�dent about their own predictions. Our one-way
ANOVA test results con�rmed that the di�erences in subject’s re-
liance on the model across treatments were statistically signi�cant
(agreement fraction: 𝐹 (2, 298) = 3.67, ? = 0.027; switch fraction:
𝐹 (2, 298) = 5.24, ? = 0.006). Post-hoc pairwise comparisons further
suggested that the di�erences in subjects’ reliance on the ML model
were signi�cant between the low agreement and high agreement
treatments (? = 0.037, Cohen’s 3 = 0.34 for agreement fraction;
? = 0.004, 3 = 0.49 for switch fraction).

A closer look into the data further suggests that higher levels of
high-con�dence agreement between an ML model and people lead
to increased reliance on the model regardless ofwhether the model’s
predictions are correct or not. For example, Figures 3b and 3e show
subject’s reliance on the ML model on Phase 2 tasks where the
model made correct predictions, while Figures 3c and 3f compare
subject’s reliance on the ML model across the three treatments
on Phase 2 tasks where the model was wrong. Although it seems
that subjects tended to rely on the model more when the model
was correct, we observed the same increasing trend with respect to
how the level of human-model agreement on high con�dence tasks
a�ects people’s reliance on the ML model, both when the model

5On a 7-point Likert scale, we considered subjects who provided a rating of 1–3 as
disagreeing with the statement, and subjects who provided a rating of 5–7 as agreeing
with the statement. Due to a mistake in Experiments 1 and 2, for subject’s evaluations
on the competence, reliability, understandability, and faith statements, ratings of 6
and 7 were all recorded as 5. Thus, we were not able to conduct more �ne-grained
analyses on these data for Experiments 1 and 2.
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(a) Agreement Fraction: All (b) Agreement Fraction:MLCorrect (c) Agreement Fraction: ML Wrong

(d) Switch Fraction: All (e) Switch Fraction: ML Correct (f) Switch Fraction: ML Wrong

Figure 3: The average values of agreement fraction and switch fraction in Phase 2 across three treatments in Experiment 1, on
all Phase 2 tasks (Fig. 3a, 3d), on the subset of Phase 2 tasks where the ML model was correct (Fig. 3b, 3e), and on the subset
of Phase 2 tasks where the ML model was incorrect (Fig. 3c, 3f). Error bars represent the standard errors of the mean. Upward
trends are observed in all plots, indicating H1 is supported.

was correct and when the model was wrong. Indeed, on Phase 2
tasks where the model made correct predictions, the di�erences in
subject’s switch fraction across the three treatments were found
to be statistically signi�cant (𝐹 (2, 295) = 5.56, ? = 0.005), so do the
di�erences in subject’s agreement fraction on Phase 2 tasks where
the model made wrong predictions (𝐹 (2, 298) = 4.94, ? = 0.008).

ExploringWhyHigh-Con�denceAgreementA�ectsReliance.
To gain some insights into why agreement level between a subject
and the model in Phase 1 signi�cantly a�ects subject’s reliance on
the model, we proceed to examine how such agreement in�uenced
subject’s perceptions of the model on a variety of aspects that relate
to reliance behaviors.

We found that, in fact, without observing a model’s performance,
subjects who experienced a higher level of agreement with the
model on tasks that they had high con�dence in tended to con-
sider the model to be more accurate, more competent, more reliable,
more understandable and they also have more faith and trust in the
model. One-way ANOVA and proportion test results again showed
that the di�erences in subject’s perceptions on all these reliance-
related aspects were consistently and signi�cantly di�erent across
treatments (? < 0.001). This provides a solid explanation for why
subjects in di�erent treatments show di�erent levels of reliance on
the models in Phase 2, despite all models made exactly the same
predictions on Phase 2.

Overall, the results we obtained from our Experiment 1 support
H1. That is, we indeed found that people tend to rely on an ML
model more if the model has a higher level of agreement with them
on cases that they feel con�dent about. Our data suggest that people
may have used the level of such high con�dence agreement as a
proxy to gauge the key properties of the ML model, such as the
model’s accuracy, competence and reliability, which then guide
people to adjust their reliance on the model accordingly.

4 EXPERIMENT 2
Experiment 1 shows that the agreement level between people and
themodel on decision-making tasks that people are highly con�dent
about their own decisions signi�cantly a�ects people’s reliance on
the model when they receive no information about the ML model’s
performance at all. However, such agreement may not necessarily
be an accurate approximation of the performance of the ML model.
Naturally, one may wonder whether the level of high-con�dence
agreement between people and amodel still a�ects people’s reliance
on the model after people obtaining some feedback on how well the
model performs, such as the aggregate information of the model’s
accuracy on a set of decision-making tasks.

To answer this question, we conducted our second experiment:
Subjects were again asked to complete the same sequence of 30
prediction tasks as those used in Experiment 1, but this time, be-
tween the two phases, subjects received feedback on the model’s
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Figure 4: Predictions of the MLmodels on Phase 1 tasks in the four treatments of Experiment 2. Each row represents a unique
model used in one treatment. “A” means the model agreed with the predictions made by the majority of people on the tasks,
and “D” means the model disagreed with the majority predictions. Bars with stripes represent tasks on which the model’s
prediction agreed with people’s majority prediction. Bars with the green (red) outline are tasks where the model made correct
(wrong) predictions. Bars with the yellow background are tasks where the model made a positive prediction (i.e., predicted 1,
the participant wants to see the date again).

overall accuracy in Phase 1. In addition to varying the level of
human-model agreement on Phase 1 tasks, we also controlled the
model’s accuracy in Phase 1 to be either relatively low or high to
understand whether and how the impact of high con�dence human-
model agreement is moderated by the level of model performance
in in�uencing people’s reliance on the model. We hypothesize that:
• [H2] The level of agreement between people and an ML model
on tasks that people have high con�dence in still signi�cantly
a�ects people’s reliance on the model after the model’s accuracy
is observed in practice, regardless of the level of the observed
accuracy; the higher the level of agreement, the more people rely
on the model.

4.1 Experimental Design

Experimental Treatments. Subjects were randomly assigned to
one of the four treatments in Experiment 2, which were arranged
in a 2 ⇥ 2 factorial design di�ering along two dimensions:
• the level of high con�dence human-model agreement in Phase 1:
the model agreed with the majority of people on 50% of the 20
Phase 1 tasks (low agreement) or 80% of the 20 Phase 1 tasks
(high agreement).

• the model’s overall accuracy in Phase 1: either 50% (low accuracy)
or 80% (high accuracy.)
We associated each treatment with a unique ML model. To mini-

mize the di�erences across treatments, we made sure that the four
ML models had the same positive prediction rate of 70%. Figure 4
illustrates the details on the ML models’ predictions on the 20 tasks
of Phase 1 across the four treatments. Similar to that in Experi-
ment 1, when the model’s accuracy in Phase 1 was �xed, we varied
the agreement level between people and the model in Phase 1 by
starting from the high agreement treatment and then coupling the
addition of disagreement on tasks where the majority is correct
with the addition of disagreement on tasks where the majority
is wrong. In addition, we were able to obtain treatments with the

same level of agreement between people and the model but di�erent
levels of model accuracy by controlling how often the agreement
occurs on tasks where the majority of people are correct. Finally,
on each Phase 2 task, all ML models in di�erent treatments made
the same prediction.

Experimental Procedure.We again posted this experiment as a
HIT on MTurk to U.S. workers only. It had an identical procedure
as that of Experiment 1 except for the following di�erences: (1)
Workers who had participated in Experiment 1 were not allowed
to participate in this experiment; (2) After completing the 20 tasks
in Phase 1, the subject was �rst shown a feedback screen with
information about the ML model’s overall accuracy on the tasks in
Phase 1 (by design, it was either 50% or 80%) before she was asked
to make an assessment on the four statements on the competence,
reliability, understandability of the model as well as her faith in the
model. In addition, the subject was not asked to guess the model’s
accuracy in Phase 1 this time since themodel’s accuracywas already
revealed to the subject.

4.2 Experimental Results
In total, we collected valid data from 466 subjects who completed
our second experiment and answered the attention check question
correctly. We used the same metrics and followed the same methods
as discussed in Section 3.3 to conduct our statistical analysis, except
for that all one-way ANOVAs were replaced by two-way ANOVAs
now given the two-factor design of this experiment. Again, as a
validity check of our design, we con�rmed that subjects in the high
agreement treatments found the ML model’s predictions agreed
with their own predictions in Phase 1 tasks signi�cantly more than
subjects in the low agreement treatments (? < 0.001).

Does High-Con�dence Agreement Still A�ect Reliance Af-
ter SomePerformance Feedback isObtained? Figures 5a and 5b
compare subject’s agreement fractions and switch fractions on all
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(a) Agreement Fraction (b) Switch Fraction

Figure 5: The average values of agreement fraction and
switch fraction in Phase 2 across four treatments in Exper-
iment 2, on all Phase 2 tasks. Error bars represent the stan-
dard errors of the mean. Without observing a clear and con-
sistent upward trend in either plot, H2 is not supported.

Phase 2 tasks across the 4 treatments, respectively. Using two-
way ANOVA tests, we found that after observing the model’s per-
formance in practice, only the model’s observed accuracy has a
signi�cant impact on people’s reliance on the model in Phase 2
(agreement fraction: 𝐹 (1, 462) = 17.69, ? < 0.001, Cohen’s 3 = 0.39;
switch fraction: 𝐹 (1, 462) = 12.28, ? < 0.001, Cohen’s 3 = 0.32),
but not the level of agreement between a subject and the model
in Phase 1. We also detected a signi�cant interaction between
the level of high con�dence human-model agreement and the
model’s accuracy on in�uencing subject’s switch fraction in Phase
2 (𝐹 (1, 462) = 4.80, ? = 0.029). Looking into this interaction in more
depth, we further found a surprising trend—while a higher level of
human-model agreement in Phase 1 seems to have little e�ect on
subject’s reliance on the model after the model’s low performance
is observed, it actually leads to a decrease in subject’s reliance on
the model in Phase 2 after they observe the model’s accuracy is
relatively high, though post-hoc pairwise comparison suggests the
decrease is not signi�cant (? = 0.166). Similar patterns have been
consistently observed when we looked into subject’s reliance on
the ML model on Phase 2 tasks where the model was correct and
on Phase 2 tasks where the model was incorrect separately (see SM
Section 4.1 for additional analyses).

Exploring Why High-Con�dence Agreement No Longer Af-
fects Reliance.We now turn to see how people’s reliance on the
model might have been in�uenced by their perceptions of the model
(i.e., model competence, reliability, understandability, faith and trust
in the model) after they obtain some feedback about the model per-
formance. Detailed results are included in SM Section 4.2.

Overall, we found that after subjects observed the model’s accu-
racy in Phase 1was 50%, the fraction of subjects who agreed/disagreed
that the model was competent, reliable, understandable, and they
have faith in the model was not a�ected by the level of agreement
that subjects had with the model in Phase 1. Further, subject’s self-
reported overall trust in the model was not a�ected by the level
of human-model agreement in Phase 1 either. In fact, after a low
performance of the ML model is observed, people tend to believe
the model’s competence, reliability, and understandability are at
relatively low levels, and their faith and trust in the model are also
low, which may all have led to their limited reliance on the model

regardless of how often the model agrees with them previously on
cases that they feel con�dent about.

On the other hand, after subjects observed the model’s accuracy
in Phase 1 was 80%, subjects still perceived the model that has a
higher level of agreement with themselves in Phase 1 to be more
competent, more reliable, and more understandable, they had a
marginally increased trust in the model, though they did not show
a higher level of faith in the model. Interestingly, such perceptions
are not re�ected in people’s reliance behavior—in fact, we even �nd
higher levels of high con�dence human-model agreement results
in a non-signi�cant, but seemly consistent, decrease in people’s
reliance on the model when the model’s performance is high. A
possible explanation for this phenomenon is that people’s reliance
behavior may be not only a�ected by people’s perceptions of the
model but also be in�uenced by people’s belief about their own
capability on the decision-making tasks. In our experiment, subjects
only obtained the aggregate information of the model’s overall
accuracy in Phase 1, but not the �ne-grained performance feedback
on the level of individual tasks, making it impossible for them to
reason about their own performance in Phase 1 precisely6. Thus,
when a model has a low level of agreement with a subject but still
turns out to be highly accurate, the subject may suspect that she
was not competent at the prediction tasks herself. As a result, the
subject might have increased her reliance on the model as compared
to the case when the model has a high level of agreement with her.

In sum, our results in Experiment 2 do not support H2. We did
not �nd su�cient evidence that the level of agreement between
people and an ML model on tasks that people have high con�dence
in still in�uences people’s reliance on the model after people have
obtained some aggregate performance information of the model.

5 EXPERIMENT 3
In the previous two experiments, we examine the e�ects of the
human-model agreement on people’s reliance on the model by
varying the level of agreement between people and an ML model
on tasks that people are highly con�dent about their own predictions.
As a result, in these experiments, both agreement and disagreement
between subjects and the ML model always occurred on high con-
�dence tasks. However, when people interact with an ML model
in the real world, they may be highly con�dent about their own
predictions on some tasks, while not con�dent on the others, thus
they may agree or disagree with an ML model both on high con-
�dence tasks and low con�dence tasks. An interesting question,
then, is when people receive no information about an ML model’s
performance, whether and how people’s con�dence in the tasks
that they agree or disagree with the model changes their reliance on
the model. For example, when people agree with the model on tasks
that they are not con�dent about their own predictions, do they
have a similar level of reliance on the model as when they agree
with the model on tasks that they are highly con�dent? Similarly,
does disagreement with a model on low con�dence tasks make
people rely on the model to a similar degree as when they disagree
with the model on high con�dence tasks?

6It is possible in real life that only aggregate-level information of model performance
is available due to various reasons like privacy concerns.
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To answer these questions, we conducted a third experiment in
which we controlled the level of agreement between people and an
ML model to be similar across treatments, while varying whether
the agreement/disagreement occurs on tasks that people have high
con�dence or not. We hypothesize that:
• [H3]: When people receive no information about an ML model’s
performance, people’s con�dence in their own predictions on
tasks that they agree with the model signi�cantly a�ects people’s
reliance on the model; the higher the con�dence, the more people
rely on the model.

• [H4]: When people receive no information about an ML model’s
performance, people’s con�dence in their own predictions on
tasks that they disagree with the model signi�cantly a�ects peo-
ple’s reliance on the model; the higher the con�dence, the less
people rely on the model.

5.1 Experimental Design
Experimental Treatments. Same as before, each subject was still
asked to complete a sequence of prediction tasks divided into two
phases, where Phase 1 was used for creating the treatment and
Phase 2 was designed for measuring reliance.

We had two goals in mind when designing experimental treat-
ments for Experiment 3: First, we hope to maintain a similar level
of agreement (and therefore disagreement) between people and the
ML model in Phase 1 for subjects in di�erent treatments—without
such control, it would be di�cult to tell whether di�erences in
people’s reliance on the model across di�erent treatments are due
to di�erences in people’s con�dence in the tasks where agreement
or disagreement occurs, or due to the varying levels of agreement
between people and the model. Second, we aim to understand the
impact of people’s con�dence in their own predictions during an
agreementwith the model on their reliance on the model, separately
from that impact during a disagreement. This implies that we can
not design our experimental treatments by having subjects in di�er-
ent treatments work on the same sequence of Phase 1 tasks, which
are composed of both low con�dence and high con�dence tasks—in
that case, since both the task instances in Phase 1 and the designed
agreement level between people and the model need to be �xed
across treatments, we would have to couple the decrease of human-
model agreement on high con�dence tasks with the increase of
agreement on low con�dence tasks. As a result, we would not be
able to tell whether changes in people’s reliance on the model, if
any, are resulted from the increase of high con�dence disagreement
or the increase of low con�dence agreement.

With these goals in mind, we used di�erent tasks in Phase 1 for
di�erent treatments. We created a set of 4 experimental treatments
arranged in a 2⇥2 design along two factors:
• human’s con�dence on agreement with the model in Phase 1: We
included 6 tasks in Phase 1 on which the ML model would make
the same predictions as the majority of people, and we varied
whether on these tasks, people are highly con�dent about their
own predictions (i.e., high con�dence agreement, “HA”) or not con-
�dent about their own predictions (i.e., low con�dence agreement,
“LA”). Practically, we selected 6 high con�dence tasks and 6 low
con�dence tasks from the pilot study. In high (low) con�dence
agreement treatments, the 6 high (low) con�dence tasks were

included in Phase 1, and the model’s predictions on these tasks
always agreedwith the prediction given by the majority of people.

• human’s con�dence on disagreement with the model in Phase 1: We
included another 4 tasks in Phase 1 onwhich theMLmodel would
make di�erent predictions than the majority of people, and we
varied whether on these tasks, people are highly con�dent about
their own predictions (i.e., high con�dence disagreement, “HD”)
or not con�dent about their own predictions (i.e., low con�dence
disagreement, “LD”). Similar as before, we selected another set
of 4 high con�dence tasks and 4 low con�dence tasks from the
pilot study. In high (low) con�dence disagreement treatments,
the 4 high (low) con�dence tasks were included in Phase 1, and
the model’s predictions on these tasks always disagreed with the
prediction given by the majority of people.
Again, we controlled the accuracy and positive prediction rate

for ML models in di�erent treatments to be the same to minimize
the di�erences across treatments. After adding this constraint, we
found that the feasible combination of tasks we could select for
Phase 1 turned out to only include task instances where the ma-
jority of people would make a positive prediction according to our
pilot study. To minimize subject’s tendency to make some unnec-
essary negative predictions in the experiment—which may cause
varying levels of agreement between subjects and the model across
treatments—we further added the same set of two task instances to
all four treatments, and on these two tasks, the majority of people
would correctly make negative predictions. Together with the pre-
vious 10 tasks, subjects in each treatment would see a total of 12
tasks in Phase 1. Figure 6 shows the details on the task instances
we selected for Phase 1 in each of the 4 treatments, as well as the
ML models’ predictions on them. We expect following such design,
subjects in di�erent treatments have roughly similar levels of agree-
ment with the ML model in Phase 1, but their con�dence in the
tasks where they agree or disagree with the model di�ers.

Finally, we included in Phase 2 the same 10 low con�dence tasks
as those used in Experiments 1 and 2, and theMLmodels in di�erent
treatments made the same prediction on each of these tasks.

Experimental Procedure. This experiment had an identical pro-
cedure as that of Experiment 1 except for the following changes:
(1) Workers who had participated in the previous two experiments
were not allowed to participate in this experiment; (2) After intro-
ducing the task interface to subjects, we gave subjects a preview
of possible prediction tasks that they might work on by showing
each subject the same set of 4 pro�les of speed dating events which
represented task instances that people would likely be con�dent
or not con�dent about their own predictions; this was intended to
give subjects a sense of the range of con�dence they might have
in their own predictions on di�erent tasks. Subjects were asked to
review these pro�les for at least 30 seconds before proceeding on
to answer the quali�cation questions; (3) After completing Phase
1, in addition to report her perceptions of the model (e.g., guess
model’s accuracy, evaluate statement on model’s competence, etc.),
the subject was also asked to make a guess about the accuracy of
her own independent predictions in Phase 1 (i.e., the predictions
that she made in each task before seeing the model’s predictions);
(4) The base payment of the HIT was $1.2.
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Figure 6: Predictions of the 4 ML models on Phase 1 tasks of Experiment 3. Each row represents the predictions made by
one ML model (each model was used in an experimental treatment): “A” means the model agreed with the predictions made
by the majority of people on the tasks, and “D” means the model disagreed with the majority prediction. Bars with stripes
represent tasks onwhich themodel’s prediction agreedwith people’s majority prediction. Bars with the green (red) outline are
tasks where the model made correct (wrong) predictions. Bars with the yellow background are tasks where the model made a
positive prediction (i.e., predicted 1, the participant wants to see the date again). On the 12 tasks in Phase 1, the four models
have the same accuracy of 83.3%, the same positive prediction rate of 50%, and the same level of agreement with people’s
majority predictions (i.e., agree on 66.7% of the tasks), though agreement/disagreement occurs on tasks where people have
di�erent levels of con�dence in their own predictions.

5.2 Experimental Results
We collected valid data from 402 subjects who completed this ex-
periment and answered the attention check question correctly.

Despite our best e�ort, we found that there was still a small but
signi�cant di�erence in the actual level of agreement between sub-
jects and the model in Phase 1 across the 4 experimental treatments.
The average number of Phase 1 tasks on which a subject’s initial
predictions were the same as those of the model’s was 7.46, 8.27,
6.61, and 7.33 for the HA–HD, HA–LD, LA–HD, and LA–LD treat-
ments, respectively, and one-way ANOVA test indicates that the
di�erence is statistically signi�cant (? < 0.001). To enable a valid
comparison across our experimental treatments, we then searched
for a range such that when limiting our analyses only to those
subjects whose actual agreement with the model in Phase 1 (i.e.,
the number of Phase 1 tasks that their initial predictions were the
same as those of the model’s) fall into this range, the actual level of
human-model agreement in Phase 1 across the 4 treatments was
statistically the same. The maximum such range that we could �nd
was [0, 8]. That is, when focusing on the subset of subjects who
agreed with the ML model on at most 8 tasks in Phase 1, we did
not �nd a statistically signi�cant di�erence in the actual level of
agreement between subjects and the model across the 4 experimen-
tal treatments (? > 0.05). In total, 308 subjects (76% of all subjects)
belong to this subset. Therefore, in the following, we restrict our
analyses to this subset of subjects. We con�rmed that, within this
subset, subjects’ con�dence in the tasks that they agreed or dis-
agreed with the model across di�erent treatments aligned well with
our expectations (see SM Section 5.1 for more details).

ExploringHowCon�dence onAgreement/Disagreement Af-
fects Reliance.We start by examining how subject’s con�dence
in their own predictions when they agree or disagree with the
model a�ects their reliance on the model. Figures 7a and 7b com-
pare the average values of agreement fraction and switch fraction
on all Phase 2 tasks for subjects across the 4 treatments, respec-
tively. A �rst glance at these �gures suggests that there seem to be
interaction e�ects between the two factors—subject’s con�dence
on agreement and subject’s con�dence on disagreement—in in-
�uencing subject’s reliance on the model. That is, whether high
con�dence human-model agreement increases people’s reliance on
the model, as compared to low con�dence agreement, seems to be
dependent on whether people disagree with the model on tasks
that they are con�dent about their own predictions or not. Indeed,
two-way ANOVA test results con�rm that the interactions between
the two factors are statistically signi�cant for both two measures
of reliance (agreement fraction: 𝐹 (1, 304) = 4.93, ? = 0.027; switch
fraction: 𝐹 (1, 304) = 7.66, ? = 0.006).

More speci�cally, in Figure 7, we observed a trend that when
having low con�dence disagreement with the model, subject’s high
con�dence in their agreement with the model leads to higher re-
liance on the model (i.e., subjects in the HA–LD treatment relied
on the model more than those in the LA–LD treatment), but this
trend was reversed when subjects had high con�dence disagree-
ment with the model. Post-hoc Tukey HSD tests, however, suggest
that subject’s con�dence in their agreement with the model only
had a marginal impact on switch fraction when subjects had low
con�dence disagreement with the model (? = 0.094). Meanwhile,
with respect to how people’s con�dence in their disagreement with
a model a�ects their reliance on the model, we found that subjects



CHI ’21, May 8–13, 2021, Yokohama, Japan

(a) Agreement Fraction (b) Switch Fraction
Figure 7: The average values of agreement fraction and
switch fraction in Phase 2 across four treatments in Exper-
iment 3, on all Phase 2 tasks. Error bars represent the stan-
dard errors of the mean. Without observing blue lines are
consistently above red lines, H3 is not supported. Without
observing consistent upward trends, H4 is not supported.

in the HA–HD treatment relied on the model signi�cantly less than
subjects in the HA–LD treatment (agreement fraction: ? = 0.005,
Cohen’s 3 = 0.28; switch fraction: ? = 0.002, Cohen’s 3 = 0.27),
but there was no signi�cant di�erence in subject’s reliance on the
model between the LA–HD and LA–LD treatments.

Again, when we looked into subject’s reliance on the model
within Phase 2 tasks where the model made correct/wrong predic-
tions separately, we observed the same interaction patterns. For
more details, see SM Section 5.2.

Understanding the Interaction. Next, we turn our attention to
data on the subject’s perceptions of the model and themselves in
di�erent treatments to explore why people’s con�dence in their
agreement or disagreement with an ML model a�ects their reliance
on the model in the way that we have observed above.

To begin with, we plot the average values of the subject’s per-
ceived model accuracy in Phase 1 across the 4 treatments in Fig-
ure 8a. To give a more complete picture, we also plot subject’s
perceived accuracy of their own in Phase 1 in Figure 8b, and Fig-
ure 8c presents the comparison on subject’s perceived di�erence
between the model’s accuracy and their own accuracy across treat-
ments. Interestingly, it appears that compared to subjects in the
HA treatments, subjects in the LA treatments tended to believe the
model to be less accurate, but they also perceived themselves as less
accurate on the prediction tasks. In addition, compared to subjects
in the HD treatments, subjects in the LD treatments seemed to
believe the model to be more accurate while perceiving themselves
as less accurate. Therefore, when we put both perceptions together
and examine subjects’ perceived accuracy di�erence between the
model and themselves in Figure 8c, we found a similar cross-over
interaction pattern as that in subjects’ reliance on the model.

Moreover, we also found the similar pattern that people’s con�-
dence in their agreement and disagreement with the model interact
with each other in in�uencing people’s perceptions of the model’s
competence, the model’s understandability, as well as people’s over-
all trust in the model (see SM Section 5.3 for detailed �gures and
analyses). Notably, though, the cross-over interaction pattern was
not observed in subject’s perception in the reliability of a model or
their faith in a model. To the contrary, we found that compared to

low con�dence disagreement, high con�dence disagreement con-
sistently results in a signi�cantly lower perceived level of model
reliability (? < 0.001), while low con�dence human-model agree-
ment leads to higher faith in the model compared to high con�dence
human-model agreement (? = 0.042).

As an attempt to connect our observations on how people’s
con�dence in their agreement and disagreement with the model
a�ects their perceptions and reliance on the model together, we
conjecture that human-model agreement/disagreement with vary-
ing levels of human con�dence may in�uence people’s reliance
on an ML model from di�erent perspectives. For example, people
might use the number of high con�dence disagreement they have
experienced with a model to determine whether the model makes
any “obvious mistakes” (as people may tend to believe they are
correct on tasks that they feel con�dent about), which largely dom-
inates their perceptions of the reliability of the model. For those
models that do not make obvious mistakes, a larger number of high
con�dence human-model agreement possibly serve as a piece of ev-
idence for people to believe the model has the capability to provide
correct recommendations, again based on the assumption that peo-
ple are themselves correct on tasks that they have high con�dence
in. Moreover, although low con�dence human-model agreement
may provide limited clues for people to gauge the correctness of
the model as people are not sure whether their own predictions are
correct or not, it may make people feel the model shares a similar
reasoning process as themselves, thus increase their faith in the
model based on such similarity. People’s �nal level of reliance on
the model, then, is jointly determined by multiple factors including
these reliance-related perceptions, and future studies are needed to
rigorously study the relationships between them.

To summarize, our results in Experiment 3 do not support H3
or H4. Rather, the experimental data we obtained indicate that
when people decide how much to rely on an ML model without
knowing any information about the model’s performance, they
take an integrated view to examine their con�dence in both their
agreement with the model and their disagreement with the model
together. As a result, we observed that how people’s con�dence
in their agreement (disagreement) with an ML model a�ects their
reliance on the model is dependent on their con�dence in those
cases where they disagree (agree) with that model.

6 DISCUSSION
Via three experiments, we examined the possible heuristics that
people may use to adjust their reliance on an ML model when per-
formance feedback about the model is limited. Table 1 summarizes
the design and �ndings of the three experiments. In this section,
we provide discussions on the potential bene�ts and risks brought
by people’s usage of these heuristics, and steps that can be taken to
reduce the risks. We also provide design implications for enhancing
human-AI collaboration and discuss the limitations of our work.

Bene�ts and risks of the heuristics. We �nd that without any
information about an ML model’s performance, people seem to
use the level of high con�dence agreement between the model and
themselves to decide how much to rely on the model. Such heuris-
tics can bring about both bene�ts and risks. On the one hand, if
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(a) Model Accuracy (b) Self Accuracy (c) Accuracy Di�erence
Figure 8: Average values of subjects’ perception ofmodel accuracy, their own accuracy, and the di�erence between the accuracy
of the model’s and their own, in Phase 1 of Experiment 3 (constrained to subjects who agreed with the MLmodel’s predictions
on at most 8 tasks in Phase 1). Error bars represent the standard errors of the mean.

Experiment 1 Experiment 2 Experiment 3

Hypothesis
to test

H1: High-con�dence human-model
agreement a�ects reliance when
performance is unknown.

H2: High-con�dence human-model
agreement a�ects reliance after
performance feedback is obtained.

H3/H4: Human’s con�dence on their
agreement/disagreement with the model
a�ects reliance when performance is unknown.

Independent
variables

Human-model agreement level in Phase 1:
low, medium, high

Agreement level in Phase 1: low, high;
Model accuracy in Phase 1: 50%, 80%

Con�dence on agreement in Phase 1: low, high;
Con�dence on disagreement in Phase 1: low, high

Phase 1
20 high-con�dence tasks
same tasks, but di�erent ML predictions
across treatments

20 high-con�dence tasks
same tasks, but di�erent ML predictions
across treatments

12 high-con�dence and low-con�dence tasks
di�erent tasks for di�erent treatments

Phase 2
10 low-con�dence tasks
same tasks and same ML predictions for
all treatments

10 low-con�dence tasks
same tasks and same ML predictions for
all treatments

10 low-con�dence tasks
same tasks and same ML predictions for
all treatments

Phase 1 accuracy
revealed? No Yes No

Findings H1 supported H2 not supported
Model accuracy a�ects reliance

H3, H4 not supported
Interactions between the two factors detected

Table 1: Summary of the design and �ndings of the three experiments.

people are highly calibrated in their own predictions—for example,
if people are almost always correct when they are con�dent—and
the ML model does not have substantial performance disparity on
tasks with di�erent properties (e.g., tasks that humans are con�dent
vs. not con�dent), such heuristic indeed allows people to estimate
the performance of an ML model accurately and thus establish an
appropriate level of reliance on the model, even without access to
any objective information about the model performance. On the
other hand, there also exist conditions where such heuristic fails
to help people rely on an ML model appropriately. For example,
people may overestimate their own accuracy on tasks that they
are con�dent due to factors like their inaccurate interpretation of
the decision-making task and their cognitive biases (e.g., the Dun-
ning–Kruger e�ect [29]). As a result, by comparing the model’s
predictions to their own on tasks that they have high con�dence
in, people may systematically underestimate an ML model’s accu-
racy, which potentially leads to underreliance. Furthermore, when
people’s predictions are not independent of those of the model’s
and they still use the level of high con�dence agreement between
the model and themselves to calibrate their reliance on the model,
people may overly rely on models that share the same biases as
themselves while showing a degree of underreliance on models
that are complementary to themselves.

The usage of such heuristics may raise additional risks if the ML
model’s performance has systematic discrepancy on di�erent data,
which in fact is not rare in real-world applications of ML models [6,
42, 59]. In such scenario, by adjusting the reliance on an ML model
simply based on the level of human-model agreement on high
con�dence tasks, people may inappropriately over-generalize their
perceived model performance on tasks with certain characteristics
to other tasks with di�erent characteristics. In fact, this risk has
been partly re�ected in our experiment as we observed that once
seeing a high level of agreement between the model and themselves
on tasks that they are con�dent, people tend to rely on theMLmodel
more no matter whether its prediction is correct or not.

Interestingly, we �nd that once observing an ML model’s perfor-
mance, people tend to use this observed performance rather than
their perceived level of high con�dence agreement with the model
to decide their reliance on the model. This behavior also poses
both bene�ts and risks. On the positive side, when the observed
model performance is an accurate re�ection of the model’s overall
performance in the real world, it enables people to correct their over-
reliance on models that share the same biases as themselves while
overcoming their under-reliance on models that are complementary
to themselves. However, the model’s observed performance on a
small set of decision-making tasks does not necessarily accurately
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re�ect the model’s average performance in practice. Thus, simply
adjusting one’s reliance based on the observed model performance
on a limited number of real-world trials makes people overlook
useful cues about model performance that is carried in their agree-
ment and disagreement with the model, and may again result in
inappropriate reliance on the model.

Finally, our observations on how people utilize their own con�-
dence in cases where they agree and disagree with an ML model
to adjust their reliance on the model, again, reveal some potential
risks. Notably, when people and an ML model mostly agree with
each other on cases that people lack con�dence, people’s con�dence
in their disagreement with the model no longer in�uences their
reliance on the model. This indicates the possibility that for people
who feel they lack expertise in a decision-making task, they might
not be su�ciently alarmed by the high con�dence disagreement
between the ML model and themselves, and may therefore show
inappropriate over-reliance on the model.

Theneed of enabling people to understand their owndecision-
making performance.Using high con�dence human-model agree-
ment to estimate the performance of an ML model would not be
reliable if people are not calibrated in their own decisions (i.e., if
people’s con�dence in their decisions does not accurately re�ect
their accuracy). A critical step towards helping people to make
reliable estimation, thus, is to facilitate people’s understanding
of their own decision-making performance. This includes raising
people’s awareness of biases in their own decision-making [2, 24],
designing methods to allow people assess their own independent
decision-making performance (e.g., ask people to make decisions
on historical data and provide performance feedback), and encour-
aging people to serve as their own devil’s advocate by challenging
themselves to probe why they make certain decisions and how they
might possibly be wrong [11]. Only if people have a solid under-
standing of when their own decision-making accuracy is high and
when not, obtaining an accurate estimate of the ML model’s per-
formance without performance feedback would become possible.

The need of helping people better understand ML model’s
performance. Our experimental results suggest that people may
have a tendency to over-generalize the performance of anMLmodel,
which is either estimated or observed by themselves, between tasks
with di�erent characteristics. To overcome this problem, e�orts
should be made to improve people’s capability of interpreting the
ML model’s performance. For example, tutorials can be provided
to end-users of ML models to increase their general knowledge of
ML, including that ML models are often learned from data, and de-
pending on the quality of the data, ML models may exhibit di�erent
performance on di�erent data [34]. Designers of ML models should
transparently report properties of a model to people, including its
intended uses and potential limitations [40]. The uncertainty inher-
ent in the process of model performance estimation process should
also be properly communicated to people, so that people can better
understand how much they can generalize the model performance
they have observed to other contexts [27].

Implications for enhancing human-AI collaborations. Our
work also provides implications for designing better ML models
to enhance the partnership between humans and machines. In the

context of AI-assisted decision-making, the ultimate goal is to opti-
mize the human-AI joint team decision-making performance [5, 26],
and achieving this goal requires humans and AI to complement
each other. However, our results in this work indicate when per-
formance feedback of the AI is limited, people might be unwilling
to rely on the complementary AI partner, due to the limited agree-
ment between them. Our �ndings suggest one possible way to
minimize such undesirable human reaction to AI is to maximize
the agreement between humans and AI on those cases that humans
are con�dent and actually correct, for example, by integrating ex-
pert knowledge into the development of ML models [21]. Model
designers can also provide explanation of the model decision when
high con�dence human-model disagreement occurs, to help people
better understand why the disagreement exists and mitigate the
potential negative impact such disagreement brings about.

On the conceptual level, our �ndings echos that of other work in
human-AI collaboration [1, 3, 4, 26] and reiterates that the design
and development of ML-based decision aids should not be isolated
from the people who will use them. Only by taking people’s per-
ceptions and reactions to the ML model into consideration can the
decision aids release their full potential to improve the joint perfor-
mance of the human-AI team. However, critically, we emphasize
that the consideration of human behavior in the AI development
process should not be used for nudging people into blindly relying
on the AI, which would be unethical and even dangerous.

Limitations and future work. Our study was conducted with
laypeople (i.e., subjects recruited from Amazon Mechanical Turk)
on one speci�c type of prediction task. Cautions should be used
when generalizing results in this work to di�erent settings, such as
how the agreement level between anMLmodel and an expert would
a�ect the expert’s reliance on the model on some tasks involving
signi�cant higher levels of stakes (e.g., ML assists doctors in medical
decision-making). More experimental studies should be carried
out in the future with di�erent populations on di�erent types of
tasks to understand to what extent the results reported here can
be generalized. In addition, people’s perception of their agreement
with a model may involve not only how frequently the model
agrees with themselves on decisions for speci�c cases, but also
how consistent the model’s predicted orderings of di�erent cases
are compared to their own’s, which may relate to the perceived
internal consistency of the model. Separating the impact of the
frequency of human-model agreement on reliance from the impact
of human-model agreement on the relative ordering of di�erent
cases on reliance would be a challenging but exciting future work.

7 CONCLUSION
In this paper, we present our initial attempt to uncover the heuris-
tics that people adopt to adjust their reliance on machine learning
models in AI-assisted decisionmaking, when objective performance
feedback of the models is limited. Via three randomized human-
subject experiments, we show that people tend to use their levels of
agreement with a model on cases that they are highly con�dent as a
proxy to estimate the model performance and adjust their reliance
on the model accordingly, but such agreement shows limited impact
in in�uencing reliance after people have observed the model’s per-
formance in practice. Moreover, holding the level of human-model
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agreement constant, how people’s con�dence in their agreement
with a model a�ects their reliance on the model depends on their
con�dence in those cases where they disagree with the model. We
highlight people’s usage of these heuristics may raise risks of in-
appropriate reliance on ML models, and we discuss both actions
that can be taken to reduce these risks and possible directions to
improve human-AI collaboration by taking human’s heuristics into
account.
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