
When Confidence Meets Accuracy:
Exploring the E�ects of Multiple Performance Indicators on

Trust in Machine Learning Models
Amy Rechkemmer
Purdue University

West Lafayette, Indiana, USA
arechke@purdue.edu

Ming Yin
Purdue University

West Lafayette, Indiana, USA
mingyin@purdue.edu

ABSTRACT
Previous research shows that laypeople’s trust in a machine learn-
ing model can be a�ected by both performance measurements of
the model on the aggregate level and performance estimates on in-
dividual predictions. However, it is unclear how people would trust
the model when multiple performance indicators are presented at
the same time. We conduct an exploratory human-subject experi-
ment to answer this question. We �nd that while the level of model
con�dence signi�cantly a�ects people’s belief in model accuracy,
both the model’s stated and observed accuracy generally have a
larger impact on people’s willingness to follow the model’s pre-
dictions as well as their self-reported levels of trust in the model,
especially after observing the model’s performance in practice. We
hope the empirical evidence reported in this work could open doors
to further studies to advance understanding of how people perceive,
process, and react to performance-related information of machine
learning.

CCS CONCEPTS
•Human-centered computing! Empirical studies in HCI; •
Computing methodologies!Machine learning.

KEYWORDS
Machine learning, con�dence, accuracy, trust, human-subject ex-
periments

ACM Reference Format:
Amy Rechkemmer and Ming Yin. 2022. When Con�dence Meets Accuracy:
Exploring the E�ects of Multiple Performance Indicators on Trust in Ma-
chine Learning Models. In CHI Conference on Human Factors in Computing
Systems (CHI ’22), April 29-May 5, 2022, New Orleans, LA, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3491102.3501967

1 INTRODUCTION
Today, numerous innovative machine learning (ML) models have
been rapidly developed and applied to a wide range of application
scenarios to assist people, from decision-making in everyday life to
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problem-solving in critical societal challenges. For example, neural
networks have been used to forecast tra�c speed in large-scale
transportation networks and recommend optimal routes [16, 40].
Researchers have trained ML models to predict poverty in develop-
ing countries and help local governments better allocate their scarce
resources [27]. ML has also shown potential in accurately predict-
ing the household re-entry to homeless system, which can further
inform the design of more e�ective intervention strategies [23, 32].

With the rapid growth of user-facing systems that are built on
top of ML models, a growing line of research on understanding
whether and how do end-users trust these models has recently
emerged [52, 57, 58]. Many di�erent factors have been identi�ed as
in�uencing people’s trust in ML, such as people’s understanding of
how the model works [19, 37] and people’s perceptions on whether
the model is biased [9, 62]. Perhaps more intuitively, people’s trust
in an ML model is also highly dependent on how well the model
can perform. For example, it was found that people’s trust in an
ML model is signi�cantly a�ected by the model’s performance, as
measured by both the model’s stated accuracy on some held-out
data and its observed accuracy in practice [35, 58].

While a performance metric like accuracy may provide useful
summary information for people to evaluate the overall reliability
of an ML model across a set of predictions, it contains little insight
into how likely each individual prediction that the model makes
is correct. On the other hand, an ML model can often quantify its
uncertainty on each individual prediction using a con�dence score,
which represents the model’s accuracy estimate on that particular
prediction [25, 43, 46, 60]. More recently, researchers have found
that such model con�dence also in�uences howmuch people would
be willing to trust the model [61]—people trust the ML model more
in cases when the model has higher con�dence.

Our knowledge of how di�erent kinds of performance indicators
of anMLmodel alone a�ects people’s trust in themodel continues to
grow. However, there remains a key, but currently under-explored,
aspect in further advancing our understanding of people’s trust in
ML—that is, howwould people trust anMLmodel in the presence of
multiple performance indicators of it. For example, when informa-
tion on both the model’s accuracy measurements (on some held-out
data and/or on a number of real-world trials) and the model’s con-
�dence estimates on individual predictions are provided, which
one(s) would people choose to rely upon in deciding how much to
trust the model? And what’s the role of one performance indicator—
say model con�dence—in moderating or even changing the e�ects
of other performance indicators (e.g., model accuracy) on people’s
trust in the model?
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Speci�cally, we are interested in �nding out the answers to these
questions for those users ofMLmodels who are laypeople. This is be-
cause laypeople’s interactions with MLmodels are becoming highly
prevalent today, especially in various low-stakes decision making
settings such as optimal route planning [16, 40] and entertainment
selection [6]. This implies that, due to the legal requirement of trans-
parency and design guidelines of best practices [1], laypeople are
increasingly exposed to a variety of performance information of an
ML model during their usage of the model. However, our empirical
understanding of how laypeople would interpret and act upon this
rich set of performance information of the ML model and whether
their reactions to this information leads to appropriate trust in the
model is still largely lacking. In fact, prior research has indicated
that laypeople may experience di�culty in making use of numerical
information [44, 48], and they may follow an incorrect ML model
recommendation even when performance information about the
recommendation suggesting it as less trustworthy is given [51].
Thus, such understanding is critical for us to analyze how e�ective
the current ways of ML model performance communication are for
a target user population of laypeople, and it can also inform us of
how to make such communication truly useful to laypeople.

Therefore, in this paper, we conduct an exploratory study to
experimentally examine how multiple performance indicators of
an ML model, together, a�ect laypeople’s trust in the model in a
low-stakes decision-making task. Speci�cally, we ask:
• When people receive information on both the model’s stated
accuracy on held-out data and the model’s con�dence on indi-
vidual predictions, but have not observed the model’s accuracy
in practice yet, does the stated accuracy (alternatively, the model
con�dence) a�ect people’s trust in the model?

• Does the answer for the question above change after people
have observed the model’s accuracy in practice?

• Does a model’s observed accuracy in practice a�ect people’s
trust in the model, in the presence of model con�dence?

• How do model con�dence and model accuracy interact with
each other to in�uence people’s trust in the model?
Conjecturing the answer to any of these questions turns out to

be quite challenging. On the one hand, compared to a model’s stated
accuracy, model con�dence is provided on the level of individual
prediction and appears more directly relevant for people to evaluate
whether each of the model’s predictions is trustworthy. After all,
the model’s stated accuracy is obtained on held-out data which
may be fundamentally di�erent from the current use cases at hand.
Following this line of thinking, one may expect to see a signi�cant
impact of model con�dence on people’s trust in the model, and
perhaps the e�ect of the model’s stated accuracy on trust is minimal,
if any. On the other hand, a model’s con�dence on a prediction is
only the model’s “estimate” on how likely the prediction would
be correct, and it has been shown in many studies in the machine
learning community that the raw con�dence scores produced by
an ML model can be poorly calibrated [25, 33, 42]. That is, the
con�dence estimate anMLmodel associates to a prediction does not
necessarily re�ect the true correctness likelihood of that prediction.
In this case, it is reasonable to hypothesize that people’s trust in an
ML model would still be a�ected by the model’s stated accuracy,
but not so much by model con�dence.

Even more complicated, after people get the chance to interact
with the ML model and observe its accuracy in practice, people may
make additional inference on how calibrated the model’s con�dence
and how reliable themodel’s stated accuracy is through their limited
interactions with the model. Thus, in deciding how much to trust
the model after observing its performance in practice, people may
need to consider both relevance and reliability for each of the three
pieces of information that can be used to gauge the trustworthiness
of the ML model—model con�dence, stated accuracy, and observed
accuracy. It is unclear how these three factors would a�ect trust,
separately and collectively.

To answer these questions, we designed and conducted a random-
ized behavioral experiment in which we recruited human subjects
from Amazon Mechancial Turk to complete a sequence of decision
making tasks (i.e., predict speed dating outcome) with the help of an
ML model. Our experiment consisted of a total of eight treatments,
arranged in a 2⇥2⇥2 design, and ML models used in di�erent treat-
ments di�ered along three factors—the ML model’s con�dence level,
stated accuracy, and observed accuracy. Due to the multidimensional
nature of trust, we used a variety of measures to quantify subjects’
trust in the ML model in our experiment, including subjective mea-
sures focusing on trust perceptions (e.g., subject’s belief in model
competence and self-reported trust level) and more objective mea-
sures characterizing trusting behavior (e.g., frequency for a subject
to “follow” a model’s prediction).

Our experimental results show that, overall, model con�dence
a�ects people’s belief in model competence but has no reliable
impact on their self-reported levels of trust in the model or their
willingness to follow the model’s predictions, both before and after
they have observed the model’s performance through real-world
trials. In contrast, the model’s accuracy, including both the stated
accuracy and observed accuracy, consistently and signi�cantly af-
fects people’s trust in the model in all dimensions. Comparing the
magnitude of the e�ects of di�erent performance indicators on var-
ious measures of trust, we found that model accuracy—especially
the model’s observed accuracy after it has been obtained from real-
world trials—has a larger e�ect on all measures of trust except for
people’s belief in model competence. Further analyses also reveal
that there exist some interactions between model con�dence and
model accuracy in in�uencing people’s trust in an ML model.

Taken together, our results provide exploratory evidence that
model con�dence and model accuracy play di�erent roles in in�u-
encing people’s trust in an ML model. They also highlight behavior
of people when they react to multiple performance indicators that
can potentially be irrational, such as their over-reliance on amodel’s
observed accuracy despite it having been obtained through a small
number of real-world trials. We conclude by discussing the design
implications and limitations of our work. In particular, proper cau-
tions should be used when generalizing our results to other settings.
More con�rmatory studies should be conducted to examine to what
extent our exploratory �ndings still hold for di�erent populations,
on di�erent types of tasks, and using di�erent ways to communi-
cate model performance. We hope these �ndings will inspire more
theoretical investigations into the mechanisms of how people make
sense of and make use of various performance-related information
of machine learning.
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2 RELATEDWORK
Research on understanding whether, when, and how do people trust
the outputs of an ML system has received increased attention over
the years. It was shown that, for example, people accept ML model
recommendations over human suggestions or their own judgment
in an unfamiliar domain [11, 38], but they quickly lose trust in an
algorithm after seeing it err [17]. Such decrease in trust is reduced
if people are given the control to adjust the algorithm predictions
rather than simply accepting them as is [18]. However, loss of trust
due to incorrect ML system decisions cannot be fully gained back
by the same amount of correct decisions made by the system [59].

More recently, a growing number of experimental studies have
been conducted to examine what the key in�uencing factors are
in determining people’s trust in an ML model and how. One such
factor is the ML model’s intelligibility [19], though di�erent stud-
ies showed inconsistent results to this end. For instance, Lai and
Tan [35] found that in the context of deception detection, show-
ing explanations of an ML model signi�cantly increases people’s
trust in the model. In contrast, the transparency of an ML model,
in terms of whether the model is a clear or black-box model, was
shown to not a�ect people’s trust in the model [47], while provid-
ing explanations for a text emotion predicting system only a�ected
trust before people experienced the system [50]. Moreover, it was
found that the type of explanation presented to users impacted their
ability to appropriately calibrate trust in a model [55]. Other than
the model’s intelligibility, researchers have also demonstrated that
the level of agreement between humans and the ML model [39],
a human’s mental model of the ML model’s error boundary [4],
and the compatibility of an ML model update with humans’ prior
experience of the model [5], can all a�ect how much people will
trust the model.

Another natural in�uencing factor of trust in an ML model is
the model’s performance. Indeed, Yin et al. [58] ran a sequence of
human-subject experiments and found that both an ML model’s
stated accuracy on held-out data and its observed accuracy in prac-
tice signi�cantly a�ect laypeople’s trust in the model. Yet, even
for models with the same level of accuracy, the ways that expecta-
tions on model performance are set prior to the use of them were
also found to a�ect people’s perceptions and acceptance of the
model [31]. Beyond the accuracy measurements, a model’s con�-
dence on each individual prediction is also relevant in in�uencing
end-user’s trust. For example, a few previous studies have found that
for context-aware systems and autonomous systems, displaying
system con�dence on the quality of its decision aids (e.g., memory
aids or location predictions) would both improve user’s trust in the
system [2, 54] and increase user performance in the task [3, 15].
Lim and Dey [36], however, showed that displaying low con�dence
levels of a context-aware system allows users to realize the limited
capabilities of the system and thus leads to decreased trust. Most
recently, Zhang et al. [61] conducted an experimental study and
showed that con�dence scores of an ML model help people to cali-
brate their trust with con�dence levels, such that they trust an ML
model more when its con�dence is high. Suresh et al. [51], however,
found that a person’s capability of calibrating trust in an ML model
based on its con�dence may vary with the person’s characteristics,
such as the person’s math and logic skills.

Di�ering from previous research, we look into how people trust
in an ML model when they have multiple types of performance
information that they can leverage to infer the trustworthiness
of the model. Earlier literature has explored how humans would
utilize multiple, possibly probabilistic, pieces of information dur-
ing their decision-making when machines are not in the loop. For
example, in processing multiple pieces of performance informa-
tion of stocks in a sequence, a recency e�ect was observed among
investors showing that they heavily relied upon the most recent
information in their �nal decisions [45]. Various mechanisms have
also been studied on how decision-makers aggregate a probabilis-
tic forecast of multiple experts with di�erent levels of con�dence
and bias [8, 53, 56]. However, to the best of our knowledge, there
are no experimental studies or theoretical models on how humans
interpret multiple performance-related information of ML-based
decision aids, especially when di�erent pieces of information are
of di�ering nature and provided at di�erent granularity (i.e., local
accuracy estimate vs. aggregate accuracy measurements).

3 EXPERIMENTAL DESIGN
To understand how laypeople’s trust in an ML model for making
low-stakes decisions is a�ected by bothmodel con�dence andmodel
accuracy, we designed and conducted a randomized behavioral ex-
periment with human subjects recruited from Amazon Mechanical
Turk (MTurk).

3.1 Experimental Tasks: Predicting Speed
Dating Outcome

Each subject in our experiment was asked to complete a sequence of
40 tasks on predicting the outcome of speed dating events with the
help from a pre-trained ML model. Speci�cally, in each prediction
task the subject was presented with a pro�le of one participant in
a speed dating event along with some information about his or her
date, including:
• Basic demographics of the participant and the date, e.g., gender,
age, �eld of study, and race.

• The participant’s dating preferences, which consisted of the par-
ticipant’s allocation of 100 points to six attributes (e.g., attrac-
tiveness, sincerity, intelligence) to show the relative importance
of them in relation to one another when it comes to romantic
attraction, as well as the level of importance for the participant
to date someone of the same race.

• The participant’s rating of the date, with respect to the six at-
tributes using a scale from one to ten, and two additional self-
reported scores on how happy the participant expected to be
with the date and how much the participant liked the date, again
in the range of one to ten.
Figure 1 shows an example of the task interface. Pro�les that we

showed to subjects (e.g., Figure 1A) were taken from participants
of real-life speed dating events in an experimental study [22]. At
the end of each speed dating event, the participant was asked to
indicate if he/she would want to see the date again in the future, and
this is what we asked the subject to predict. In particular, the subject
followed a 4-step procedure in each task to make the prediction:
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Figure 1: Interface of the experimental task in Phase 1. A:
subjects are shown a pro�le of one participant in a speed dat-
ing event alongwith some information about his or her date;
B: based on this pro�le, subjects are asked tomake an initial
binary prediction of the speed dating event outcome; C: the
MLmodel’s binary prediction and con�dence score are then
shown to subjects; D: subjects are asked to make a �nal pre-
diction of the speed dating event outcome; E: subjects are
asked to indicate their belief in the model’s prediction be-
ing correct; depending on whether subjects’ �nal prediction
agreed with themodel’s prediction or not, we rephrased this
question as equivalent to reporting subjects’ belief in their
own �nal prediction being correct (if agreed) or wrong (if
disagreed).

• Step 1: the subject needed to carefully review the pro�le and
make her own binary prediction about whether or not the partic-
ipant in the pro�le would want to see the date again (Figure 1B).

• Step 2: then, the subject was shown an ML model’s binary pre-
diction on the current case as well as a con�dence score between
0 and 1 representing how con�dently the model believed its
prediction was correct; the higher the score, the more certain
the model was that it made a correct prediction (Figure 1C).

• Step 3: after considering both her own prediction and the model’s
prediction, the subject was asked to make a �nal binary predic-
tion on whether or not the participant would want to see the
date again (Figure 1D).

• Step 4: �nally, before moving on to the next task, the subject
needed to indicate her belief in the ML model’s prediction be-
ing correct as a number between 0 (“the model’s prediction is
absolutely wrong”) and 1 (“the model’s prediction is absolutely
correct”)1. To help the subject contextualize this question, de-
pending on whether the subject’s �nal prediction in the task
agreed with the model’s prediction, we further indicated to sub-
jects that this question is e�ectively the same as reporting how
much they believe their �nal prediction was “also correct” (if
agreed) or “wrong” (if disagreed) (Figure 1E).
The task of predicting romantic relationship is suitable for our

study for two main reasons. First, such a task does not require
special expertise or domain knowledge and involves relatively lim-
ited risks, so it can be easily understood by our laypeople subjects
(i.e., MTurk workers) while still representing realistic low-stakes
decision-making tasks that laypeople undertake in their day-to-day
life well. Second, ML models have been developed to make predic-
tions in romantic attraction and compatibility [24, 28, 41], which
makes the experimental setting su�ciently credible and ensures
the ecological validity of our study. Note that similar prediction
tasks were previously used in [58] to explore the e�ects of model
accuracy alone on people’s trust in ML models.

3.2 Experimental Procedure
Figure 2 shows a �owchart of our experiment, in which each subject
completed a sequence of 40 prediction tasks that were divided into
two phases. Speci�cally, before a subject started to work on any
prediction tasks, we explained the prediction tasks to the subject
and walked through an example of the task interface with step-
by-step instructions detailing each component of the speed dating
pro�le (Figure 1A). Subjects were also given basic written instruc-
tions on how to complete the task and explaining the meaning of
a con�dence score assigned to a prediction by the model. We also
revealed the ML model’s stated accuracy to the subject by stating
“We previously evaluated this model on a large data set of speed
dating participants and its accuracy was x%, i.e., the model’s pre-
dictions were correct on x% of the speed dating participants in this
data set.” After reading the instruction, the subject started Phase 1
of the experiment to work on a set of 20 prediction tasks in succes-
sion, and in each task, the subject followed the 4-step procedure as
described above. In particular, when the model’s binary prediction
was shown to the subject in Step 2 of each task, we communicated
the model’s con�dence about this prediction to the subject through
the sentence “The model makes this prediction with a con�dence
score of , (i.e., the model believes the chance for this prediction
to be correct is 100⇥%),” and we also reminded the subject of the
model’s stated accuracy (Figure 1C).

The subject received no feedback on whether her prediction or
the model’s prediction was correct on each of the individual tasks
in Phase 1. However, after all 20 tasks in Phase 1 were completed,

1Both a slider and a text box were provided for subjects to indicate their belief in the
model’s correctness, and the number could be reported to the hundredths place.
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Figure 2: Flowchart of the experiment.

we provided a brief summary to the subject reporting the model’s
overall accuracy on the 20 tasks of Phase 1 (i.e., the model’s “ob-
served accuracy”) along with the subject’s own accuracy on those
20 tasks before seeing the model predictions (accuracy feedback on
individual tasks was not given though). Then, the subject went on
to complete another set of 20 prediction tasks in Phase 2 following
a similar procedure. The only di�erence was that whenever the
model prediction was shown in each of the tasks in Phase 2, in
addition to displaying the model’s con�dence, we reminded the
subject of not only the model’s stated accuracy, but also its observed
accuracy on the 20 tasks in Phase 1.

Finally, after completing all 40 prediction tasks, the subject was
asked to report her level of trust in the ML model in each phase of
the experiment by answering two exit-survey questions:
• How much did you trust our machine learning model’s predic-
tions on the �rst twenty speed dating participants (that is, before
you saw any feedback on your performance and the model’s
performance)?

• How much did you trust our machine learning model’s predic-
tions on the last twenty speed dating participants (that is, after
you saw any feedback on your performance and the model’s
performance)?

The subject answered these questions using a scale from 1 (“I didn’t
trust it at all”) to 10 (“I fully trusted it”). We also collected some
basic demographic information (e.g., gender, age, and highest level
of education) from the subject through the exit survey.

3.3 Experimental Treatments
We considered a total of 8 experimental treatments with a 2⇥2⇥2
design along three factors:
• Con�dence level: the level of con�dence scores that the MLmodel
associates to its predictions, which has two levels — low and
high. In the low con�dence treatments, the con�dence scores of
the ML model on all 40 tasks were between 0.5 and 0.8, while
the con�dence scores of the ML model for the high con�dence
treatments were between 0.8 and 1 on all tasks.

• Stated accuracy: the ML model’s stated accuracy on the held-out
data, which has two levels — 60% and 90%.

• Observed accuracy: the MLmodel’s accuracy on the Phase 1 tasks
(i.e., the �rst 20 tasks), which also has two levels — 55% and 95%.
Figure 3 illustrates the design of our experimental treatments.

To minimize the di�erences across treatments as much as possible,
we had subjects in di�erent treatments see exactly the same 40

prediction tasks. The predictions of ML models shown to subjects
in di�erent treatments, including both the binary predicted labels
and the con�dence scores, were produced by real ML models that
we developed prior to the experiment deployment. We trained 4 ML
models for this experiment, including a neural network, a random
forest, a naive Bayes classi�er, and a support vectormachine (SVM)2.
For the neural network, random forest, and naive Bayes models, we
directly used the conditional probability of the predicted label as the
con�dence score. For the SVM model, we adopted Platt scaling [46]
to compute the probability of the predicted label given the binary
prediction and used that as the con�dence score. On the 40 tasks
in our experiment, the Pearson correlation between the model’s
con�dence on a task and the model’s accuracy on that task was
found to be positive for all 4 models, though with di�erent levels
of signi�cance (neural network: r=0.643, p < 0.001; random forest:
r=0.281, p=0.079; naive Bayes: r=0.175, p=0.281; SVM: r=0.254,
p=0.114).

Note that in our experiment, for any two treatments with the
same level of model con�dence and observed accuracy, but di�erent
stated accuracies, model predictions shown to the subject were
taken from the same pre-trained ML model. For example, as shown
in Figure 3, T1 (i.e., “stated-60%, observed-55%, low con�dence”) and
T2 (i.e., “stated-90%, observed-55%, low con�dence”) shared exactly
the same model predictions (including both binary predicted labels
and con�dence scores) on all 40 tasks, which were generated from
a single SVM model3. As such, the only di�erence between these
two treatments is the level of stated accuracy for the ML model.

3.4 Other Experimental Control
Our experiment was implemented as a Human Intelligence Task
(HIT) on Amazon Mechanical Turk (MTurk), and we limited the
subjects of our experiments to be U.S. workers on MTurk only.
Upon arrival, each subject was randomly assigned to one of the
eight treatments.

The 20 prediction tasks in Phase 1 were carefully selected such
that ML models for the 4 treatments with a 55% model’s observed
accuracy (i.e., T1–T4) always had the same binary predicted labels
on each of these 20 tasks, and 11 out of these 20 labels were correct

2These models were chosen because they naturally tend to produce di�erent extremes
of observed accuracies and con�dence scores. For instance, neural networks can be
trained to have high observed accuracy, but they are often overcon�dent in their
incorrect predictions, leading to in�ated con�dence scores.
3We note that in reality, di�erent levels of stated accuracy can be claimed for a single
ML model when the set of held-out data on which the model is evaluated is di�erent.
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Figure 3: Design of experimental treatments. Model predictions presented to subjects in treatments with the same level of
model con�dence and observed accuracy (e.g., T1 and T2, or any two treatments shown in the same color) were taken from
the same pre-trained ML model. In Phase 1, treatments with the same level of observed accuracy (i.e., T1–T4 as highlighted in
the yellow dashed box, or T5–T8 as highlighted in the purple dashed box) had the same binary predicted labels on each of the
20 tasks (but model con�dence di�ered between low con�dence treatments and high con�dence treatments). In Phase 2, all
treatments (i.e., T1–T8 as highlighted in the blue dotted box) had the same binary predicted labels on each of the 20 tasks (but
again, model con�dence may di�er).

(see the yellow dashed box in Figure 3). Similarly, ML models for
the other 4 treatments with a 95% model’s observed accuracy (i.e.,
T5–T8) also had the same binary predicted labels on each of these
20 tasks, while 19 out of these 20 labels were correct (see the purple
dashed box in Figure 3). So, within each set of 4 treatments that
shared the same level of observed accuracy, the only di�erences
among these treatments in Phase 1 were themodel’s stated accuracy
and its con�dence score for each prediction. Importantly, since there
was no overlap in the range of con�dence scores between the low
con�dence treatments and the high con�dence treatments, on any
of the 20 prediction tasks in Phase 1, the con�dence score produced
by models of low con�dence treatments was lower than the score
produced by models of high con�dence treatments.

Moreover, the 20 prediction tasks in Phase 2 were also carefully
selected such that ML models for all 8 treatments made exactly the
same binary predictions on each of them (see the blue dashed box
in Figure 3). 16 out of these 20 predictions were correct, although
the subject received no feedback on the model’s accuracy during
Phase 2. So, the only di�erences across all eight treatments in Phase
2 were the model’s stated accuracy, observed accuracy in Phase 1,
and con�dence scores that the model associated with its predictions.
Again, on any of the 20 tasks in Phase 2, models of high con�dence
treatments were more con�dent about their prediction than models
of low con�dence treatments.

The order of prediction tasks was randomized within each phase.
To incentivize high-quality predictions from subjects, in addition
to the $1.5 base payment that each subject was guaranteed to
receive once they submitted the experiment HIT, we also pro-
vided performance-contingent bonuses—we told the subject that
we would randomly select one task from the 40 prediction tasks,

and we would pay a $1 bonus to her if her �nal prediction on that
task was correct. As the median amount of time subjects spent on
our HIT was about 17 minutes, the bonus payment we provided
was roughly equivalent to an additional hourly wage of $3.5/hour;
this is 75% higher than workers’ median hourly wage on MTurk
(about $2/hour, [26]) and likely provided considerable motivation
for workers to carefully decide whether to trust the ML model in
their decision making.

4 DATA
After removing workers who had accidentally completed our HIT
more than once, we were left with a total of 1,224 unique subjects
who participated in our experiment4. Among these subjects, 42.3%
of them were female, and their average age was 35. When each
subject worked on a prediction task, we recorded her initial predic-
tion on whether the participant in that task would want to see the
date again before seeing the model’s prediction, her �nal prediction
after seeing the model’s prediction, and her reported belief on how
likely the model’s prediction would be correct. At the end of the
experiment, we also recorded the subject’s responses to the survey
questions, which asked her to report the level of trust she had on
our model in each phase. Based on these data, we used four di�erent
measures to quantify the subject’s trust in the ML model, and we
computed the values of these measures separately for each phase:
• Subject’s belief in model accuracy (belief): the average value of
the number that the subject gave in Step 4 of each prediction
task indicating how much they believed the model’s prediction
would be correct.

4The number of subjects in T1–T8 were 163, 156, 138, 150, 145, 159, 154, and 159.
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• Agreement fraction (agreement): the number of tasks that the
subject’s �nal prediction agreed with the model’s prediction,
divided by the total number of tasks.

• Switch fraction (switch): the number of tasks for which the subject
initially made an opposite prediction as compared to the model,
but after seeing the model’s prediction she decided to switch her
�nal prediction to agree with the model, divided by the number
of tasks that the subject initially disagreed with the model.

• Self-reported trust level (self-report): the level of trust that the
subject reported to have in the ML model in the exit survey.
We note that measures we adopted here were among the most

common ones that have been used in previous literature to quantify
trust in ML models. For example, subject’s belief in model accuracy
was used in [31, 50], agreement or switch fraction was used in [35,
58, 61], and subject’s self-reported level of trust in the model was
used in [10, 58]. However, subtle di�erences also exist between these
trust measures. While subject’s belief in model accuracy and self-
reported trust level tend to characterize how much subjects “think”
they trust the ML model, the other two metrics—agreement fraction
and switch fraction—focus more on measuring trust by examining
how subjects behave (e.g., how often did a subject “follow” amodel’s
prediction?). Intuitively, for all 4 trust measures, larger values imply
higher levels of trust.

Our data suggests that human subjects are, in general, not very
good at making accurate predictions for speed dating outcomes
by themselves. Speci�cally, the average accuracy of a subject’s ini-
tial predictions before seeing the model’s predictions was 53.6% in
Phase 1 and 62.8% in Phase 2, and it was not signi�cantly di�er-
ent across treatments (in contrast, depending on the experimental
treatment the subject was in, the model’s accuracy was 55% or 95%
in Phase 1, and 80% in Phase 2).

5 RESULTS
In this section, we report our �ndings on how laypeople are a�ected
by multiple performance indicators of an ML model when this
model is provided to assist them in low-stakes decision making.

5.1 Analyzing Trust in Phase 1
We start by analyzing the experimental data that we obtained in
Phase 1 to understand overall how laypeople’s trust in an MLmodel
is a�ected by both the model’s stated accuracy and its con�dence
before they observe the model’s performance in practice (i.e., view
the model’s actual accuracy in Phase 1). Before people have had the
chance to observe the MLmodel’s performance in practice, research
questions we are interested in examining include:
• RQ1: Does a higher level of con�dence that the ML model asso-
ciates with a prediction make people trust the prediction more?

• RQ2: Is people’s trust in a model prediction still a�ected by the
model’s stated accuracy, even though the model’s con�dence on
that prediction is provided?

• RQ3: How does the e�ect of model con�dence on trust vary
between models with di�erent levels of stated accuracy?
To answer these questions, we used the model’s stated accuracy

and con�dence level as our independent variables, and the four
trust measures as described above (i.e., belief, agreement, switch,

and self-report) were used as the dependent variables. Recall that
in Phase 1, models in T1–T4 (i.e., the 4 treatments with a 55% model
accuracy in Phase 1) made di�erent predictions on the tasks than
models in T5–T8 (i.e., the 4 treatments with a 95% model accuracy
in Phase 1). As a result, to separate only the e�ects of model’s stated
accuracy and con�dence on trust for RQ1–RQ3, we analyzed the
Phase 1 data by comparing trust within each set of 4 treatments
with the same Phase 1 model predictions.

To emphasize the exploratory nature of this study, in addition to
controlling for false discovery and avoiding the issues with multiple
comparisons, we conducted our analysis using the interval estimate
method [14, 20]. To analyze the e�ects of our independent variables
on the four trust measures, we plotted e�ect sizes for a given trust
measure between subjects assigned to di�erent levels of a given
independent variable (e.g., levels 60% and 90% for stated accuracy).
E�ect sizes were measured using Cohen’s d5, and we also plotted
their 95% bootstrap con�dence intervals (R = 5000). To indicate the
size of an e�ect, we also followed Cumming (2013) in considering a
con�dence interval’s range in relation to zero [13]. We conducted
this analysis separately for both con�dence and stated accuracy
(answering RQ1 and RQ2, respectively), and this was repeated for
both T1–T4 and T5–T86.

Meaningful interaction e�ects were identi�ed by conducting a
two-way ANOVA (stated accuracy ⇥ con�dence) for each of the 4
dependent variables within T1–T4 (and within T5–T8), and we fol-
lowed the same interval estimate method approach for interactions
worth noting (answering RQ3)7. Unlike in previous analysis using
the interval analysis method to illustrate the main e�ect of a single
independent variable, we calculate it for interaction e�ects using
a di�erence in di�erence: Consider the interaction e�ect between
two independent variables A (with two levels A1 and A2) and B
(with two levels B1 and B2) on a measure of trust Y . The di�erence
in di�erence is then de�ned as the di�erence in Y between two
treatments that both belong to the higher level of A (i.e., A2) and
di�er on the level of B, minus the di�erence in Y between two
treatments that both belong to the lower level of A (i.e., A1) and
di�er on the level of B.

5.1.1 RQ1: The Main E�ect of Confidence in Phase 1. We �rst an-
alyzed the data obtained in the 4 treatments with a 55% model’s
observed accuracy (i.e., T1–T4). As shown in Figure 4a, when the
ML model associates a higher con�dence score to its prediction,
people believe that the prediction (belief ) is more likely to be cor-
rect (Cohen’s d=0.72 [0.55, 0.89]). On average, subjects in the high
con�dence treatments considered the model predictions to be 7.2%
more accurate compared to the same model predictions that are
shown in the low con�dence treatments (i.e., M=0.072). Beyond
that, it also appears that higher model con�dence on a prediction
may nudge people into following the prediction more often, both
in terms of how often people agree with the model’s predictions
(agreement) and in how often they will switch to agree with the
model’s predictions (switch). However, we �nd that the evidence

5In computing Cohen’s d, we always treat the level with the lowest value(s) as the
baseline group.
6For �gures of raw data distributions and a summary of all estimated e�ect sizes as
well as their 95% bootstrap con�dence intervals, see the supplementary materials.
7For the ANOVA test results, see the supplementary materials.
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(a) T1–T4 (observed-55%) (b) T5–T8 (observed-95%)

Figure 4: The di�erence in trust between subjects with a high con�dence treatment and a low con�dence treatment in Phase
1. Cohen’s d values are plotted and listed above each point, and error bars represent 95% bootstrap con�dence intervals. An
interval to the right (or left) of 0 represents a higher (or lower) mean for the subjects in a high con�dence treatment. Measures
of trust that see a di�erence between treatments are also shown with a red and bolded Cohen’s d value.

of this impact on trust is not as compelling for agreement frac-
tion (Cohen’s d=0.12 [−0.04, 0.28]) or for switch fraction (Cohen’s
d=0.15 [−0.01, 0.31]) as it was for belief in the model’s predictions.
In terms of self-reported trust in the model (self-report) in Phase 1,
we found no evidence that model con�dence has an impact.

We next looked at the other 4 treatments in Phase 1 with a 95%
model’s observed accuracy (i.e., T5–T8). Similar to T1–T4, we found
that subjects given high con�dence predictions believe that the
prediction is more likely to be correct (Cohen’s d=0.47 [0.31, 0.64]),
as seen in Figure 4b. We also continue to see that a higher model
con�dence may in�uence people to agree with the model more
frequently (Cohen’s d=0.16 [−0.01, 0.32]), but we �nd no impact
of model con�dence on how often people will switch to a model’s
predictions. Again, model con�dence is not found to have an e�ect
on people’s self-reported trust in Phase 1.

Putting it all together, to answer RQ1, our results suggest that
before observing anMLmodel’s accuracy in practice, people believe
a model with high con�dence scores to be more accurate, but do
not self-report to trust it more. In terms of following the model’s
predictions, we �nd some evidence that a higher model con�dence
can have greater in�uence, but the evidence is not reliable.

5.1.2 RQ2: The Main E�ect of Stated Accuracy in Phase 1. We now
look into whether the stated accuracy of an ML model can still
in�uence people’s trust in the model in the presence of model
con�dence, before the model’s accuracy is observed in practice.

A visual inspection of Figures 5a and 5b indicates a positive an-
swer. For example, when focusing on T1–T4, we found that overall,
claiming the model’s stated accuracy to be 90% rather than 60%
led to an increase of 2.7% in the subject’s belief in model accuracy
(Cohen’s d=0.26 [0.09, 0.42]), an increase of 2.9% in agreement
fraction (Cohen’s d=0.17 [0.02, 0.34]), an increase of 5.5% in switch
fraction (Cohen’s d=0.17 [0.01, 0.34]), and an increase of 7.7% in self-
reported trust (Cohen’s d=0.37 [0.20, 0.53]). These results highlight
the e�ect of stated accuracy alone on people’s trust given that the

model’s prediction between the two treatments (including both bi-
nary predicted labels and con�dence scores) on each task were kept
unchanged. This indicates that despite the fact that �ne-grained
information of model con�dence is provided at the level of individ-
ual predictions, an ML model’s stated accuracy still casts consistent
and signi�cant impact on people’s trust in the model—the higher
the stated accuracy, the more people trust the model.

To put the e�ect sizes (as measured by Cohen’s d) of stated accu-
racy on trust in Phase 1 into context, we can compare them against
the e�ect sizes of model con�dence on trust. We �nd that while
the model con�dence has a larger e�ect in in�uencing subjects’
belief in model accuracy, the model’s stated accuracy tends to have
a larger and more reliable impact on subjects’ willingness to follow
the model’s prediction as well as their self-reported trust levels.

5.1.3 RQ3: The Interaction between Confidence and Stated Accuracy
in Phase 1. Lastly, we examine the interaction e�ect between model
con�dence and the model’s stated accuracy on in�uencing people’s
trust in the model in Phase 1. The only meaningful interaction
e�ect we found is with respect to subject’s belief in model accuracy.
In particular, when an ML model has a high stated accuracy, the
increase in subject’s belief in model accuracy brought up by the
increase in model con�dence is larger than that for an ML model
with a low stated accuracy (T1–T4: Cohen’s d=0.32 [−0.01, 0.64],
T5–T8: Cohen’s d=0.38 [0.07, 0.70]). In other words, the magnitude
of the e�ect of model con�dence on how much people believe
the predictions to be correct varies depending on the levels of the
model’s stated accuracy. Alternatively, we can also interpret this as
that model con�dence moderates the e�ect of the model’s stated
accuracy on subject’s belief in model accuracy—when the model is
more con�dent, an increase in the model’s stated accuracy will lead
to a more signi�cant increase in subject’s belief of how accurate
the model is.
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(a) T1–T4 (observed-55%) (b) T5–T8 (observed-95%)

Figure 5: The di�erence in trust between subjects with a high stated accuracy treatment and a low stated accuracy treatment in
Phase 1. Cohen’s d values are plotted and listed above each point, and error bars represent 95% bootstrap con�dence intervals.
An interval to the right (or left) of 0 represents a higher (or lower) mean for the subjects in a high stated accuracy treatment.
Measures of trust that see a di�erence between treatments are also shown with a red and bolded Cohen’s d value.

5.2 Analyzing Trust in Phase 2
We now turn our attention to the data that we obtained in Phase 2
to examine overall how laypeople’s trust in an ML model is a�ected
by the model’s stated accuracy, observed accuracy, and model con-
�dence after they learn about the model’s overall accuracy in Phase
1. Since subjects in all treatments worked on the same prediction
tasks and saw the same binary prediction on each of the tasks in
Phase 2, we can directly compare the trust measurements across all
8 treatments. In this set of analyses, we are interested in exploring
the following research questions after people have observed an ML
model’s performance in practice:
• RQ4: Does a model’s con�dence score still in�uence people’s
trust in the model?

• RQ5: Do the stated accuracy and observed accuracy of the model
still a�ect people’s trust in the model, despite model con�dence
still being provided for each individual prediction?

• RQ6: How do model con�dence, the model’s stated accuracy,
and the model’s observed accuracy interact with each other to
in�uence trust?
To answer these questions, for each of the four trust measure-

ments, we repeated our Phase 1 analysis method. This time, how-
ever, we included all 8 treatments in the analysis, and we included
observed accuracy along with con�dence and stated accuracy as
independent variables to consider. Employing the interval estimate
method, we answer RQ4 by examining the e�ect of con�dence in
Phase 2, and we answer RQ5 by looking into the e�ects of stated
accuracy and observed accuracy in Phase 2. Meaningful interac-
tion e�ects were identi�ed by conducting a three-way ANOVA
(stated accuracy ⇥ observed accuracy ⇥ con�dence) for each of
the four trust treatments, and again we followed the interval es-
timate method by calculating a di�erence in di�erence for these
interactions to answer RQ6.

5.2.1 RQ4: The Main E�ect of Confidence in Phase 2. Figure 6a
shows the e�ect of model con�dence on each of the four trust

measures for Phase 2. Consistent with our Phase 1 results, we
found that subjects still tended to believe that models producing
higher levels of con�dence scores are more likely to be correct in
Phase 2 (Cohen’s d=0.56 [0.44, 0.67]). This suggests that even after
observing the model’s accuracy in practice, subjects still believe a
prediction with a high con�dence score as more likely to be correct.
However, it does not appear that the model con�dence has any
impact on agreement fraction, switch fraction, or self-reported
level of trust. That is to say, in Phase 2, subjects did not seem
to follow a model prediction more often when a high con�dence
was associated with it as compared to when a low con�dence was
associated with it, nor did they feel that they trust a model more
when the con�dence scores it produced were higher.

5.2.2 RQ5: The Main E�ect of Stated and Observed Accuracy in
Phase 2. Figures 6b and 6c show that even thoughmodel con�dence—
the model’s own accuracy estimate for individual predictions—is
provided on each prediction, both the stated accuracy and the ob-
served accuracy of an ML model still have a signi�cant impact on
people’s trust in the model in Phase 2. After observing the model’s
performance in practice, subjects not only believed predictions
made by a model with higher stated or observed accuracy to be
more accurate (stated: Cohen’s d=0.27 [0.16, 0.38], observed: Co-
hen’s d=0.45 [0.33, 0.57]), but also agreed with such predictions
more often (stated: Cohen’s d=0.15 [0.04, 0.26], observed: Cohen’s
d=0.35 [0.23, 0.46]), and switched their answer to match such pre-
dictions more often (stated: Cohen’s d=0.19 [0.08, 0.31], observed:
Cohen’s d=0.75 [0.63, 0.88]). A higher observed accuracy also led
subjects to self-report that they trusted the model more (Cohen’s
d=0.77 [0.64, 0.90]), and it also appears that a higher stated accuracy
may have a similar e�ect (Cohen’s d=0.10 [−0.01, 0.21]), though
this result is less compelling.

When comparing the e�ect sizes of stated accuracy and observed
accuracy on trust in Phase 2 against those of the model con�dence,
we found the model’s stated accuracy and observed accuracy have
a larger impact on all trust measures except for subject’s belief in
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(a) Con�dence (b) Stated Accuracy (c) Observed Accuracy

Figure 6: The di�erence in trust between subjects with di�erent levels of the given independent variable. Cohen’s d values
are plotted and listed above each point, and error bars represent 95% bootstrap con�dence intervals. An interval to the right
(or left) of 0 represents a higher (or lower) mean for the subjects in the higher valued treatment. Measures of trust that see a
di�erence between treatments are also shown with a red and bolded Cohen’s d value.

model accuracy. In particular, a model’s observed accuracy domi-
nates the model’s stated accuracy and con�dence on in�uencing the
subject’s willingness to follow the model predictions or their self-
reported level of trust in the model in Phase 2. These observations
imply that after an ML model’s performance has been observed
in practice, its stated accuracy and observed accuracy still signi�-
cantly in�uence people’s trust in the model, and the impact of the
observed accuracy is especially substantial.

5.2.3 RQ6: The Interaction between Confidence, Stated Accuracy,
and Observed Accuracy in Phase 2. Finally, we investigate whether
di�erent factors interact with each other in in�uencing people’s
trust in the model in Phase 2. We �rst note that the three-way
interaction between the model’s con�dence, stated accuracy, and
observed accuracy is not meaningful for any of the four trust mea-
sures, implying that the strength of the interaction between any of
the two factors (e.g., stated and observed accuracy) on trust is not
dependent on the level of the third factor (e.g., con�dence).

We then move on to examine the two-way interactions between
any pair of in�uencing factors. Similar to that in Phase 1, we again
detected an interaction between model con�dence and stated accu-
racy on subject’s belief in model accuracy, suggesting that after a
model’s performance is observed in practice, increasing the model’s
con�dence on a prediction still leads to a larger increase in sub-
ject’s belief in the correctness of the prediction when the model’s
stated accuracy is higher (Cohen’s d=0.23 [0.003, 0.46]). Additional
meaningful interactions that we found are between a model’s stated
accuracy and observed accuracy in in�uencing people’s trust in the
model with respect to switch fraction (Cohen’s d=0.41 [0.18, 0.64])
and self-reported trust (Cohen’s d=0.43 [0.19, 0.65]), which are
similar to results previously reported in [58]. That is, after subjects
have had the opportunity to observe a model’s accuracy in practice,
higher levels of stated accuracy only push people to follow a model
more often and report a higher level of trust in the model if its
observed accuracy is high.

In sum, to answer RQ6, we indeed found evidence suggesting that
after people observe an ML model’s performance in practice, there
are some interactions between model con�dence, stated accuracy,

and observed accuracy that in�uence people’s trust in the model,
as quanti�ed by di�erent measures.

6 DISCUSSIONS
In this paper, we conduct an exploratory study to investigate how
laypeople’s trust in anMLmodel is a�ected by both the model’s con-
�dence and its accuracy. Our results suggest that model con�dence
and model accuracy play di�erent roles in in�uencing people’s trust
in an ML model. Model con�dence mostly in�uences people’s belief
in model accuracy, but the model’s stated accuracy and observed
accuracy consistently impact how much people think they trust a
model and how frequently they actually follow the model. In this
section, we begin by discussing potential explanations for the lim-
ited impact that model con�dence had in our study, as well as why
we see an inconsistency in our results across di�erent measures of
trust. Next, we provide implications for future design and caution
readers on the generalizability of our results. Finally, we end with
possible directions for future work.

6.1 Understanding the Limited Impact of
Model Con�dence

Compared to our observations that an ML model’s stated accuracy
and observed accuracy have signi�cant impact on people’s trust in
the model, as consistently shown in all four measures of trust that
we adopt, the impact of model con�dence on trust seems to be more
limited. The only consistent e�ect of model con�dence on trust
is with respect to people’s belief of model accuracy; regardless of
whether the model’s performance is observed in practice, the more
con�dent a model, the more accurate people believe the model is. In
contrast, model con�dence doesn’t in�uence the self-reported level
of trust in the ML model, and it doesn’t reliably in�uence people’s
willingness to follow a model.

As to why we see this result, it is possible that when both model
accuracy and model con�dence are presented, people consider accu-
racy as a fact, but deem con�dence as an estimate, and thus model
con�dence is treated as a less trustworthy type of performance
information. Such perception may become particularly strong after
people have a chance to observe a model’s accuracy on real-world
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trials themselves. This is consistent with what we have observed
in our data, which suggests that people substantially rely upon the
model’s observed accuracy to decide their trust in an ML model in
Phase 2, e�ectively leaving the model con�dence almost ignored.
This may also explain the di�erence between our �ndings and the
�ndings in prior literature indicating that model con�dence is di-
rectly related to users’ levels of trust in the system [3, 36, 54, 61]:
when a con�dence score is the only performance indicator of a
model shown, the score’s value may have greater in�uence on
people’s trust in its predictions.

6.2 On the (Seemingly) Con�icting Results
Across Di�erent Trust Measures

In our experiment, we also �nd that the e�ects of model con�dence
on di�erent trust measures are not always consistent. This raises
an important question on how to appropriately operationalize peo-
ple’s “trust” in ML models in experimental studies. To this end,
we �rst note that di�erent trust measures can capture di�erent
“types” of trust. For example, one can consider subject’s belief in
model accuracy and self-reported trust as the “stated trust” or trust
perceptions, while agreement and switch fractions represent the
“revealed trust,” or trusting behaviors.

Our results, for example, show that the e�ect of model con�dence
on people’s tendency to follow a model (i.e., revealed trust) can
be di�erent than that on people’s belief in model accuracy or self-
reported trust (i.e., stated trust). While this is consistent with vari-
ous previous literature suggesting that subjective self-reported trust
may not be a reliable quanti�cation of trusting behavior [34, 49]
(i.e., “saying and doing are two di�erent things”), we conjecture that
there may also exist some inherent relationships between di�erent
trust measures that could explain the inconsistency. For instance,
one possible relationship between the belief in model accuracy and
the decision to follow a prediction of an ML model could be that
the subject would only be willing to adjust her own prediction to
match with that of the model’s if her belief in the accuracy of the
prediction is above a threshold. If this was true, then it’s possible to
see model con�dence has a meaningful impact on subject’s belief
in model accuracy but not on agreement or switch fractions, just
as what we have seen in Phase 2 of our experiment, and to some
extent, Phase 1 as well. Exploring how various trust measures relate
to one another, perhaps by understanding the reasoning process
behind people’s trust decisions, can be another important direction
which may signi�cantly advance our understanding of trust in ML.

Interestingly, in our experiments, we also found the e�ects of
model con�dence on the two stated trust measures (i.e., belief in
model accuracy and self-reported trust) can be di�erent, which
seems puzzling at �rst glance. One explanation for this is that
subjects experienced the anchoring e�ect when providing belief in
model accuracy. In particular, model con�dence was described to
subjects as the chance that the model believes for its prediction to
be correct, and we solicited subject’s belief in model accuracy by
asking how likely she thought themodel’s individual predictionwas
correct. In addition, both con�dence and belief in model accuracy
were represented as a value between 0 and 1, perhaps making them
analogous to one another. This may have made it easy for subjects
to use model con�dence as a reference point for their belief in the

model’s accuracy, causing them to subconsciously weigh model
con�dence higher than other factors such as stated and observed
accuracy in their �nal decision.

On the other hand, the self-reported trust measure was asked
upon completing the prediction tasks, and it was asked in the form
of a Likert scale. As such, the belief in model accuracy can af-
fect, but does not necessarily determine, one’s self-reported trust.
Self-reported trust is a more holistic judgement of ML model’s per-
formance, integrity and intention, re�ecting the subject’s feeling
about the model as a whole, and can also be in�uenced by one’s
emotional state like surprise or confusion.

Finally, we acknowledge that trust is a complex concept and a
multidimensional construct. Though we attempted to measure trust
using a diverse set of metrics including both behavioral and self-
reported methods, further studies are needed to understand how to,
for example, design reliable scales to probe into various aspects of
trust in ML models. In particular, there has been extensive literature
in various �elds that discusses how to de�ne, model, and quantify
trust in computational environments [7, 12], which can provide
useful guidance in the future on how to appropriately de�ne trust
in the context of interactions between humans and ML models.

6.3 Design Implications
In our �ndings we saw that after the model’s performance is ob-
served in practice, people’s trust in the model is a�ected dominantly
by model’s observed accuracy, yet it is hardly a�ected by model’s
con�dence. This indicates the potential needs of helping laypeople
to better understand the uncertainty inherent in performance calcu-
lation and calibration estimation based on a small set of predictions.
As we have discussed earlier, if people indeed simply ignore model
con�dence in deciding their trust in a model, especially after ob-
serving its accuracy in practice, then it is crucial to help people
recognize that doing so can be sub-optimal, since any accuracy
measurements computed based on a small number of trials may not
re�ect the model’s overall performance accurately. Even if the accu-
racy measurement is reliable, there is still great value in utilizing a
calibrated con�dence score to calibrate trust in anMLmodel. On the
other hand, people might have actually adjusted their interpreta-
tion of con�dence scores after they have seen the model’s accuracy
in practice and thus obtained an estimation of how calibrated the
model’s con�dence is. If this is the case, the key message that needs
to be conveyed to people becomes that the degree of con�dence
calibration estimated based on a limited number of predictions can
also be inaccurate, especially when con�dence scores for these
predictions all lie in a small range (e.g., 0.95–1).

In other words, it is critical for people to see the value of contin-
ued use of a calibrated con�dence score to adjust their trust in an
ML model, even after observing a very high or a very low accuracy
of the model in practice (instead of simply always trusting or not
trusting the model, regardless of the model con�dence). Meanwhile,
the estimated degree of calibration for a model’s con�dence based
on a small set of predictions may not be very accurate. To this
end, a tool that assists people in updating their estimation of how
calibrated a model’s con�dence is as they interact with the model,
and perhaps even quantifying and visualizing the uncertainty of
such estimation [21, 29], can potentially be very helpful.
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6.4 On the Generalizability of Our Results
Despite our �ndings, proper caution should be used when general-
izing our results to di�erent experimental settings, task domains,
and subject populations. In terms of settings, to keep the size of the
experiment manageable, we included only two levels for each of our
in�uencing factors. The levels we chose for each in�uencing factor
are relatively extreme, with the hope of identifying clear e�ects by
dichotomizing the levels. It is thus unclear what our experimental
results would be if an in�uencing factor takes a value that is sub-
stantially di�erent from our chosen levels (e.g., after people observe
an intermediate level of model accuracy, say 80%, whether and how
the model con�dence will a�ect people’s trust in the ML model?).
Our task interface may have further constrained our results. Had
we communicated multiple performance-related information of the
ML model to people in a di�erent way (e.g., communicate model
con�dence to people verbally, using terms like “virtually certain
to be correct”, “likely correct”, etc., or using visualizations), we
may have obtained di�erent results. Limiting or expanding the
amount of information that we showed to subjects for each speed
dating task pro�le itself may have also had an impact on how much
attention was given to the model’s performance information.

Additionally, we recognize the potential for “con�rmation bias”
from our subjects in determining whether to trust the ML model,
given that they were always asked to make an independent predic-
tion �rst before seeing the ML model’s prediction. In this way, sub-
jects whose independent predictions often agreed with the model
may have speculated that the model’s accuracy was higher than it
was in practice, leading to over-trust in its predictions, and vice-
versa. Indeed, prior research has shown that trust in peer assessment
is lowered when prior expectations are not met [30], and within
the context of trust in ML and its predictions, in the absence of
information about an ML model’s performance, people’s reliance
on the model is dependent on how often the model’s predictions
agree with their own [39]. We note that the possible existence of
this con�rmation bias mainly in�uences the absolute magnitude of
the four trust measures we used in this study, but is unlikely to be
a confounding variable for our main results regarding whether and
how model accuracy and model con�dence together a�ect trust.
This is because all our analyses were conducted only within the
set of treatments where the corresponding ML model shared the
same binary predictions on tasks (i.e., within T1–T4 and within
T 5–T 8 separately for Phase 1 analysis, and withinT 1–T 8 for Phase
2 analysis), so the average degree that subjects su�ered from their
biases should be similar across treatments in such a set due to the
random assignment. However, we acknowledge that had our ex-
perimental tasks been designed in a di�erent way (e.g., showing
the model’s prediction before eliciting the subject’s), our �ndings
might change.

Finally, while the type of task (i.e., predicting speed dating out-
comes) and the kind of human subjects (i.e., MTurk workers) we
chose suit the purpose of our study—that is, to understand how
laypeople’s trust in an ML model is a�ected by multiple perfor-
mance indicators of the model in their low-stakes decision making—
we caution readers to generalize our results to other populations

or other tasks. For example, it is unclear whether our results will
still hold when users of the ML model have better knowledge on
uncertainty quanti�cation (e.g., data scientists) or on the domain
itself (e.g., experts of human behavior). Our goal of understanding
how laypeople trust ML models in low-stakes decision making im-
plies that the decision of how much to trust the ML model does not
have particularly impactful or long-term consequences. Whether
similar results on the e�ects of various performance indicators can
be obtained for tasks with higher stakes, such as making predictions
of prognosis or recidivism, is unknown. We also note that though
the task of predicting speed dating outcomes is easy enough for
laypeople to understand and make meaningful predictions, it turns
out that our subjects are not good at making correct predictions on
this task by themselves. Had the prediction task been signi�cantly
easier or more di�cult for people, di�erent conclusions may have
been drawn.

6.5 Future Work
With the exploratory evidence obtained in this study, we would
like to conduct more con�rmatory studies in the future to validate
these results and examine their generalizability under di�erent set-
tings, for di�erent populations, and on di�erent tasks. There are
also many other types of performance indicators of an ML model
beyond accuracy and con�dence, such as precision, recall, and F-1
score. Exploring how di�erent combinations of performance indi-
cators of a model a�ect people’s trust in the model di�erently is
another future direction. Ultimately, we seek to gain understanding
as to why various indicators of model performance a�ect people’s
trust in the way that they do, so as to build a theoretical frame-
work on humans’ perception, processing, and comprehension of
performance information of machine learning.

7 CONCLUSIONS
As machine learning becomes more ubiquitous in everyday life,
understanding how laypeople trust the predictions of MLmodels be-
comes increasingly important. In this work, we explore the impact
of multiple performance indicators of an ML model on laypeople’s
trust in the model. Our results suggest that, in general, the con�-
dence an ML model ties to its predictions signi�cantly in�uences
how much laypeople claim to believe in the model’s individual pre-
dictions, but performance measurements like the model’s accuracy
on a held-out set of data and observed accuracy in practice have
greater in�uence on how often laypeople will actually follow the
model as well as their self-reported overall trust in the model. We
aim for this work to be a step towards further study into the process
that people’s perception and con�dence in the predictions of ma-
chine learning models are shaped by diverse information about the
model that they receive and how this process eventually impacts
trust. We hope exploratory evidence we report in this work will
inspire more discussions in this direction.
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