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ABSTRACT 
AI explanations have been increasingly used to help people better 
utilize AI recommendations in AI-assisted decision making. While 
AI explanations may change over time due to updates of the AI 
model, little is known about how these changes may a�ect people’s 
perceptions and usage of the model. In this paper, we study how 
varying levels of similarity between the AI explanations before and 
after a model update a�ects people’s trust in and satisfaction with 
the AI model. We conduct randomized human-subject experiments 
on two decision making contexts where people have di�erent levels 
of domain knowledge. Our results show that changes in AI expla-
nation during the model update do not a�ect people’s tendency to 
adopt AI recommendations. However, they may change people’s 
subjective trust in and satisfaction with the AI model via changing 
both their perceived model accuracy and perceived consistency of 
AI explanations with their prior knowledge. 
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1 INTRODUCTION 
AI-driven decision aids have been increasingly deployed to support 
human decision making in many activities ranging from making 
investment choices, to detecting harmful online content, to annotat-
ing biomedical images. To help people evaluate the trustworthiness 
of these decision aids and determine the best strategies to rely on 
their recommendations, it is critical to provide people with some 
insights into why the AI model underlying the decision aid makes a 
particular decision recommendation on a decision making task. To 
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this end, many explainable AI (XAI) methods have been designed to 
explain the reasoning processes underneath the black-box algorith-
mic decisions. For example, post-hoc techniques such as LIME [70] 
and SHAP [58] have been developed to illustrate the importance of 
di�erent features to an AI model’s �nal prediction. 

In the real life, however, the AI model underlying the decision 
aid is not always static—it may get updated over time. The update 
of a model can come as a result of di�erent reasons, such as the 
availability of additional or higher-quality training data, the in-
corporation of user feedback, the development of more advanced 
learning algorithms, and the needs to ensure fairness in the model. 
An increasing number of recent research has started to explore 
how end-users of an AI model perceive and react to the model as 
it changes over time. For example, it was found that a good �rst 
impression of the AI model is crucial for people to develop trust in 
the model [64, 84], while those with su�cient domain expertise are 
capable of dynamically adjusting their trust based on their obser-
vations of model performance over time [64]. On the other hand, 
novice users who have limited knowledge about AI or machine 
learning may expect the AI model to correct its errors and improve 
on its own, which re�ects their misconceptions of AI models [79]. 
It was also shown that when the updated AI model has an error 
boundary that is “incompatiable” with the old AI model (i.e., the 
updated model makes mistakes on cases where the old model used 
to be correct), users who make decisions with the help of this AI 
model can su�er from a signi�cant decrease in decision making 
performance [6]. 

Beyond the changes in the model’s decision recommendations 
and performance, updates in the AI model can also result in changes 
in the model’s explanations for why it makes certain recommenda-
tions. For instance, recent studies have reported that when di�erent 
learning algorithms are used to train a model, their explanations for 
the model’s prediction can be quite di�erent [49, 51]. This means 
that after an update, it is possible for the AI model’s explanations to 
have a very low level of similarity with the explanations that would 
have been provided by the old model. While many empirical studies 
have been carried out to understand the e�ects of AI explanations 
on end-users’ interactions with a static AI model in AI-assisted 
decision making [7, 19, 52, 56, 63, 87, 91, 95], a natural but currently 
under-explored question to ask is, how will changes in the AI expla-
nations caused by a model update impact end-users’ perceptions 
and usage of the AI model? Obtaining a solid understanding to 
this question can not only advance our empirical knowledge of 
people’s interactions with an evolving AI model, but also inform 
the appropriate designs of AI explanations during model updates 
to ensure a smooth transition of people’s mental models of AI and 
minimize the negative unintended consequences, if any. 
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Therefore, in this paper, we conduct an experimental study to 
empirically examine that in AI-assisted decision making, how end-
users of the AI-driven decision aid react to changes in AI explana-
tions as the AI model gets updated. Speci�cally, we ask the following 
research questions: 

• RQ1: Can end-users perceive changes in model explanations 
after a model update? 

• RQ2: Will the level of similarity between the updated model’s 
explanations and the old model’s explanations change end-users’ 
trust in and satisfaction with the AI model? 

• RQ3: What are the potential mechanisms through which changes 
in model explanations a�ect end-users’ trust in and satisfaction 
with an AI model? 

Conjecturing the answer to any of these questions turns out to 
be quite challenging, and an important moderating factor here can 
be the level of prior knowledge the users have in the decision making 
domain. For example, one may rightfully conjecture that users will 
be able to perceive the AI explanation changes if the explanations 
of the updated model is su�ciently dissimilar from the explana-
tions of the old model. However, when users have limited domain 
knowledge in the decision making tasks, they may have di�culty 
in making sense of the AI explanations [87] and thus can be less 
responsive to changes in them. Even if users successfully detect 
changes in model explanations, how they will impact users’ trust 
in and satisfaction with the AI model is still unclear—competing 
hypotheses exist and many factors may play a role in mediating 
this impact. One plausible hypothesis is that human users may 
not desire a new model explanation that is signi�cantly di�erent 
from the old one, since that implies a substantial violation to their 
established mental model of the AI model, potentially leading to a 
degree of cognitive dissonance [30]. Following this line of thought, 
one may expect users to decrease their trust in and satisfaction with 
the AI model as its updated explanations become more dissimilar 
from the old ones. In contrast, if users generally expect an AI model 
to improve its performance after the update [79], it is also possible 
for them to use the similarity between the AI explanations before 
and after the update as a heuristic to gauge the magnitude of the 
improvement. In this case, it is reasonable to hypothesize that users 
may consider an updated AI model with more dissimilar explana-
tions as a “better” model with more improvement, and therefore 
perceive it as more trustworthy and satisfactory. 

To complicate things further, when users have some prior knowl-
edge in the decision making domain, their perceived di�erences 
between the AI explanations before and after the model update may 
not only concern the similarity between the two explanations (i.e., 
the “size” of the change), but also whether the updated explanations 
become more or less consistent with their domain knowledge com-
pared to the old ones (i.e., the “direction” of the change). Previous 
research has shown that for a static AI model, the more its expla-
nations align with the human rationale, the more accurate users 
perceive the model to be [63]. However, whether similar observa-
tions can be made when the AI model gets updated is unknown. For 
instance, when the AI model’s explanations become less aligned 
with users’ domain knowledge after the update, users may consider 
the updated model as less “reasonable” and indeed decrease their 
trust in and satisfaction with the updated AI model. Yet, users may 

also justify this misalignment simply as that due to the update, 
the already-trustworthy AI model (because its explanations largely 
align with human rationale before the update) further uncovers 
new hidden patterns in the data that they are not previously aware 
of [76], which may even lead to an increase in their trust in and 
satisfaction with the updated model. 

To answer these questions, we designed and conducted a set 
of human-subject experiments where participants were recruited 
from Amazon Mechanical Turk (MTurk) and asked to complete a 
same sequence of decision making tasks with the help of an AI 
model. The tasks were divided into two phases and the model was 
updated between the two phases. All participants used the same AI 
model and saw the same AI explanations in Phase 1. However, in 
Phase 2, the AI model was updated in di�erent ways for participants 
of di�erent treatments, which led to varying levels of similarity 
between the updated model’s explanations and the old model’s 
explanations. To isolate the impacts of AI explanation changes 
before and after the model update on participants’ trust in and 
satisfaction with the AI model, for participants across all treatments, 
the decision recommendations they received from the AI model 
were kept the same for both Phase 1 and Phase 2. 

Furthermore, to account for various decision making domains 
where users may have di�erent levels of prior knowledge in, we con-
ducted two experiments on two di�erent decision making contexts. 
Our Experiment 1 focuses on a decision making context where 
laypeople have little domain knowledge in, that is, determining 
if a mushroom is poisonous. In our Experiment 2, we look into a 
di�erent decision making context in which laypeople have more 
domain knowledge—predicting the default risk of loans. In addition, 
to cover both the cases where the model update results in the expla-
nations to be more or less consistent with users’ prior knowledge 
in the domain1, we conducted two sub-experiments in Experiment 
2—in the �rst sub-experiment (Experiment 2.1), explanations of 
the old model presented in Phase 1 were largely inconsistent with 
users’ prior knowledge, thus in Phase 2, explanations for updated 
models with lower similarity to those of the old model were more 
consistent with users’ prior knowledge. In contrast, the second 
sub-experiment (Experiment 2.2) was the opposite—explanations 
of the old model presented in Phase 1 were largely consistent with 
users’ prior knowledge, while in Phase 2, explanations for updated 
models with lower similarity to those of the old model were less 
consistent with users’ prior knowledge. 

Our experimental results show that in both experiments, par-
ticipants can perceive the changes in model explanations after the 
AI model gets updated. This means that in general, users have 
some capability to detect explanation changes during the model 
update regardless of their level of prior knowledge in the deci-
sion making domain. In addition, in both experiments, we �nd no 
reliable evidence suggesting that the changes in AI explanations 
during the model update can a�ect users’ objective trust in the AI 
model in terms of how frequently users are willing to adopt the AI 
model’s decision recommendations. However, we �nd that when 
users have a degree of prior knowledge in the decision making 

1Here, by “users’ prior knowledge”, we mean users’ general common knowledge about 
the decision making domain rather than each individual user’s own knowledge. We 
obtained users’ general common knowledge about the decision making domain through 
a separate pilot study. 
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domain, as the AI model gets updated, their subjective trust in and 
satisfaction with the AI model will change with the increased or 
decreased level of consistency between the new AI explanations 
and their prior knowledge. This highlights the importance of taking 
the “compatibility” of human rationale and AI explanations into 
account when updating AI models to make the model update more 
“understandable” to end-users, or to help them understand why 
a “counter-intuitive” model update occurs. Finally, through path 
analyses, we con�rm that the impacts of AI explanation changes on 
users’ trust in and satisfaction with the AI model during the model 
update are partially mediated by users’ perceived changes in the AI 
model’s accuracy, and their perceived changes in the consistency 
between the AI model’s explanations and their domain knowledge. 

Taken together, our �ndings provide important implications on 
constructing and communicating AI explanations to human users 
after upgrading the AI model. Techniques for integrating humans’ 
domain knowledge into the explanation generation and updating 
processes, and for supporting people to make sense of the changes 
in explanations after a model update are both promising directions 
recommended to explore. We conclude with the discussions of our 
study implications and limitations (e.g., simpli�ed AI explanations 
and simpli�ed AI model updates resulting in explicit explanation 
changes). Despite these limitations, we hope this study can inspire 
more future work in empirically understanding the impacts of AI 
explanation updates, and in developing explainable AI methods that 
better support human-AI joint decision making in a fast-evolving 
AI development and deployment lifecycle. 

2 RELATED WORK 
2.1 Overview of AI explanation methods 
While the widespread applicability of arti�cial intelligence (AI) tech-
nologies has opened up endless possibilities for real-world impacts, 
it also poses new challenges—for example, when AI models are used 
to support human decision making, the lack of explanations on the 
reasoning processes underlying the AI models can lead to biased 
and ill-informed decisions. Researchers, government bodies, and 
the media have advocated that data users should have the “right to 
explanation” of all decisions made or supported by AI and machine 
learning algorithms, as stated by the General Data Protection Reg-
ulation (GDPR) requirements [69]. To increase the interpretability 
of AI models, great progresses have been made on the develop-
ment of a variety of techniques for explaining AI. For example, 
global explanations aim at explaining the behavior of the entire 
AI model, while local explanations provide rationales for speci�c 
model predictions [1, 25, 27]. Explanations can also be divided into 
model-speci�c methods and model-agnostic methods depending on 
whether it is designed for a speci�c type of model. Model-speci�c 
methods often include learning inherently interpretable models 
such as rule-based models, generalized additive models, decision 
trees and sets [17, 43, 53, 86], as well as visualizing pixels in images 
that are most relevant for the predictions given by a deep neural net-
work (e.g., through saliency map) [46, 78, 81, 90]. On the other hand, 
examples of model-agnostic methods, which are often referred to as 
post-hoc explanations, include global-level feature importance [31], 
local feature contribution [59, 71], example-based explanation like 

prototypes, in�uential training instances, and counterfactual exam-
ples [45, 48, 85], and model distillation [13, 38]. 

2.2 Changes in AI predictions and explanations 
after model update 

AI models get updated quite often in the real life. This inspires 
a growing line of recent research investigating into properties of 
the AI model during updates. Earlier work on AI model update 
focuses on changes in the model’s predictions. For example, some 
researchers have looked into the problem of analyzing changing 
trends in continuously learned models [10, 47]. In addition, Bansal 
et al. [6] explored the changes in a model’s error boundary after the 
AI model’s update. On the other hand, changes in AI explanations 
after the model update can also be quite common. A few studies 
have been carried out on analyzing the level of disagreement among 
AI explanations. For example, Lai et al. [51] compared the agree-
ment level between the feature importance explanations of di�erent 
machine leaning models and di�erent explanation methods in text 
classi�cation. They found that important features do not always 
resemble each other better when two models agree on their predic-
tion labels. Another recent work [62] observed that most of the time 
none of their tested explanation methods agrees with each other by 
computing rank correlation. Research by Krishna et al. [49] further 
formalized and quanti�ed how often explanations disagree with 
each other, and they also studied how such disagreements are being 
resolved by practitioners in machine learning. While all of these 
studies provide important insights into the magnitude of di�erence 
one may expect to see in AI explanations after a model update, how 
the changes in model explanations will a�ect the end-users of the 
model, that is, those people who are actually assisted by the AI 
model in their decision making, remains largely unclear. 

2.3 Empirical studies on AI explanations and 
the dynamics of users’ interactions with AI 

Empirical studies on AI explanations. A growing number of 
empirical studies have been conducted to evaluate how various AI 
explanations in�uence people’s perceptions and usage of AI models 
[7, 14, 16, 19, 52, 56, 67, 87, 88, 91, 95]. These studies look into di�er-
ent aspects of e�ects of AI explanations, including how they a�ect 
people’s understandings of the AI model [19, 67, 87, 88], awareness 
of AI uncertainty [87, 88, 95], trust in the AI model [14, 65, 95], de-
gree of trust calibration in the AI model [87, 88, 91], and the decision 
making performance of the human-AI team [7, 16, 52, 56, 67]. Re-
sults reported in these studies suggest that e�ects of AI explanations 
on people may largely be moderated by factors like the explanation 
formats [91], the interactivity of the explanations [19, 56], and the 
meaningfulness of the explanations to human users [63]. Another 
common moderating factor of the e�ects of AI explanations is users’ 
domain knowledge in the decision making task [24, 55, 64, 82, 87, 88]. 
For example, while domain experts were found to be capable of 
dynamically adjusting their perceived trustworthiness of an AI 
model given its explanations [64], the provision of explanations 
may cause lay users who have little domain knowledge to over-rely 
the AI model [64, 77]. Wang and Yin [87] found that AI explana-
tions are more e�ective in improving users’ understanding of the 
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AI model and increasing users’ awareness of the uncertainty under-
lying the AI model’s recommendations when people have a higher 
level of prior knowledge in the decision making domain. It was also 
suggested that the best explanation modality may di�er between 
domain experts and lay users [82]. 
Empirical studies on the dynamics of users’ interactions with 
AI models. Many recent empirical works have started to study 
the dynamics of people’s interactions with the AI model over time 
in AI-assisted decision making. For example, Tolmeijer et al. [84] 
and Nourani et al. [64] explored how users’ trust in an intelligent 
system evolves as they observe the changing trend of the system’s 
performance over time, and they both highlighted the importance 
of a good �rst impression of the intelligent system for user trust 
to be developed. Other researchers studied how people’s trust in 
an AI model changes as the distributions of the decision making 
cases shift and the model gets applied to the out-of-distribution 
data [20, 56]. Bansal et al. [6] explicitly considered the update of 
AI models over time, and examined how changes in an AI model’s 
error boundary after the model’s update a�ect the joint human-AI 
team performance in decision making. They showed that when the 
updates violate people’s mental models in terms of their expecta-
tions of where the AI recommendations will be right and where 
they can go wrong, the team performance is signi�cantly decreased. 

Another line of empirical research on the updates of AI model 
over time falls under the umbrella of “human-in-the-loop machine 
learning” or “interactive machine learning,” where users can pro-
vide feedback to the AI model to potentially improve its perfor-
mance [29]—in other words, the update of the AI model is driven by 
the human users’ inputs. These studies often focus on examining 
how the possibility to provide feedback to an AI model changes 
users’ perceptions of the model. For example, Honeycutt et al. [40] 
found that the act of providing interactive feedback to improve an 
AI model may negatively impact user’s trust in the model. More 
recently, researchers have started to study how AI explanations 
can be used to augment humans’ capability in improving the AI 
model and in�uence user experience in interactive machine learn-
ing [34, 50, 54]. For instance, some explanatory frameworks were 
proposed to facilitate users’ diagnose of model limitations using 
XAI methods [80, 83]. Smith-Renner et al. [79] further demonstrated 
that the granularity of user feedback solicited and the provision 
of AI explanations should be combined appropriately to create a 
positive user experience and maintain user trust in the AI model. 
The remaining research gap. We note that most empirical studies 
on the e�ects of AI explanation take a static point of view—the 
AI explanations tested in these studies are produced for a single 
version of the AI model. However, in real world scenarios, the 
development and deployment of AI model is often an iterative 
process, resulting in frequent AI model updates. It is therefore 
imperative to take a more realistic, dynamic point of view to re-
examine the e�ects of AI explanations on users’ perceptions and 
usage of the AI model during model updates. Meanwhile, while 
there have been some recent research on empirically understanding 
users’ interaction dynamics with the AI model over time, the focus 
of this research is usually on how users get a�ected by changes in 
the AI model’s performance as the model keeps evolving, or how 
the provision of explanations may a�ect users’ impression of the 

AI model and ability to improve it. In contrast, knowledge on how 
changes in AI explanations itself during the model update may a�ect 
end-users’ perceptions and usage of the AI model in AI-assisted 
decision making is largely lacking. Our study thus aims to �ll this 
gap. As existing studies clearly suggest that users’ prior knowledge 
in the decision making domain will in�uence the ways that users 
process the AI explanations, we conduct our study on two di�erent 
decision making domains with di�erent levels of domain expertise 
requirements, hoping to provide a more nuanced understanding. 

3 EXPERIMENT 1: POISONOUS MUSHROOM 
PREDICTION 

The goal of our study is to empirically understand whether, how, and 
why changes in AI model explanations due to an update a�ect end-
users’ perceptions and usage of the AI model in AI-assisted decision 
making. We begin our study with a �rst randomized human-subject 
experiment on a decision making domain in which people may 
have limited domain knowledge. 

3.1 Experimental Task 
In this experiment, we asked participants to complete a sequence 
of decision making tasks to predict whether a mushroom is poi-
sonous or not, with the help of a decision aid powered by an AI 
model. Speci�cally, in each task, participants were asked to review 
the pro�le of a mushroom, which consisted of 5 categorical fea-
tures that describe the mushroom’s physical characteristics—the 
surface texture of the cap of the mushroom, the spacing between 
the mushroom gills, the shape of the mushroom stalk, the habi-
tat that this mushroom species usually grows on, and the growth 
habit of a population of this mushroom species. In addition to the 
mushroom’s pro�le, participants were also presented with a bi-
nary prediction given by our AI model in terms of whether the 
mushroom was predicted to be poisonous, along with the model’s 
explanations for its prediction (in the form of the top two features in 
the mushroom’s pro�le that contribute the most to the AI model’s 
prediction; see more details in Section 3.2). After reviewing all this 
information, participants were asked to make a decision on whether 
they believed this mushroom was poisonous or not. The mushroom 
pro�les that we presented to participants were selected from the 
UCI mushroom dataset [28], which includes 8,124 North American 
mushroom species described in terms of physical characteristics, 
with each species identi�ed as either edible or poisonous. In the 
original dataset, each mushroom species contains 22 categorical 
features. To simplify the decision making task, we reduced the 
number of categorical features presented to participants in a pro�le 
to �ve. Figure 1 shows an example of the task interface. 

We chose the poisonous mushroom prediction tasks in our Ex-
periment 1 because we speculated that most participants may not 
have much domain knowledge in this task. As a result, when the 
AI model as well as its explanations gets updated, participants may 
only be able to tell whether the updated model explanations are 
consistent with the old ones (i.e., how similar the model explana-
tions are before and after the update), without having strong feel-
ings about whether the updated explanations become more or less 
aligned with their prior knowledge, or making further judgements 
on whether the explanation updates are sensible or not. Conducting 
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Figure 1: An example of the task interface for the poisonous 
mushroom prediction task in Experiment 1. 

our experiment on this task, thus, allows us to isolate the e�ects 
of model explanation updates on people in AI-assisted decision 
making that are caused directly by the similarity levels between 
the explanations before and after the model update. 

3.2 Experimental Design 
3.2.1 Overview of Experimental Treatments. We created three ex-
perimental treatments for Experiment 1. Speci�cally, all partici-
pants of Experiment 1 went through a sequence of 30 decision 
making tasks in the experiment. These 30 tasks were divided into 
two phases, each containing 15 tasks. In the �rst 15 tasks (i.e., Phase 
1), participants in all treatments saw the same set of 15 mushroom 
pro�les, and they were aided by the same AI model M0. Since all 
subjects were given the predictions produced by the same model 
M0 in Phase 1, the model explanations they saw in Phase 1 (i.e., 
the top two most “important” features for the AI prediction in each 
task) were also the same. Details on how we developed M0 and its 
explanations in Phase 1 are described in Section 3.2.2. 

After Phase 1, we explicitly told the participants that the AI 
model was updated. In the next 15 tasks (i.e., Phase 2), participants 
in all treatments still saw the same set of mushroom pro�les, but 
participants in di�erent treatments used a di�erent version of the 
updated AI model (i.e., M1, M2, or M3). The tasks in Phase 2 were 
carefully selected such that di�erent updated AI models still made 
the same binary predictions on each task. However, the explanations 
of the updated models were di�erent on Phase 2 tasks across the 
three treatments, and they exhibited varying levels of similarity 
when compared to the model explanations that would have been 
provided by the AI model before the update (i.e., M0). In particular, 
we had the following three experimental treatments: 
• High similarity (HS): Participants in this treatment received 
an updated model M1 in Phase 2, whose explanations on Phase 
2 tasks had a high similarity with the explanations that would 
have been provided by M0 (i.e., the AI model before the update). 

• Medium similarity (MS): Participants in this treatment re-
ceived an updated model M2 in Phase 2, whose explanations on 
Phase 2 tasks had a medium similarity with the explanations that 

would have been provided by M0 (i.e., the AI model before the 
update). 

• Low similarity (LS): Participants in this treatment received an 
updated model M3 in Phase 2, whose explanations on Phase 2 
tasks had a low similarity with the explanations that would have 
been provided by M0 (i.e., the AI model before the update). 

Details on how we operationalized these three treatments in Phase 
2 are described in Section 3.2.3. 

3.2.2 Operationalization of Phase 1. We randomly selected 50% of 
data samples in the original UCI mushroom dataset as the held-out 
test dataset, and the rest 50% as the training dataset. Using a random 
subset of the training dataset, we �rst trained a logistic regression 
model, which was used as the AI model M0 in Phase 1. We further 
adopted the SHAP algorithm [58], which is a model-agnostic ex-
planation method that can be applied to any supervised learning 
model, to compute the contribution that each of the �ve features in 
the mushroom’s pro�le made to the AI model’s prediction on that 
task. We then explained the model’s prediction to participants by 
highlighting on the mushroom’s pro�le the feature-value pairs for 
the top two features which had the highest contribution scores in 
the same direction as the AI model’s prediction2. 

Moreover, the goal of Phase 1 was to help participants establish 
a mental model of how the AI model makes prediction. Since we 
used the top two most important features identi�ed by the SHAP 
algorithm as the model’s explanation on each task, it is natural 
to expect that participants’ mental model of the AI model’s logic 
comes as patterns described by if-then rules, e.g., “if -1 = 0 and 
-2 = 1, then the model will predict . = ~.” Thus, the 15 task 
instances in Phase 1 were selected so that participants repeatedly 
observe three explanation patterns as follows: 
• Pattern 1.a: When “cap surface=�brous” and “gill spacing=crowded”, 
the AI model M0 predicts “edible.” 

• Pattern 1.b: When “cap surface=smooth” and “gill spacing=close”, 
the AI model M0 predicts “poisonous.” 

• Pattern 1.c: When “stalk shape=enlarging” and “gill spacing=close”, 
the AI model M0 predicts “poisonous.” 
In other words, we hope that after participants completed the 

15 tasks in Phase 1, they could form their mental models of the AI 
model by memorizing these three explanation patterns. We note 
that a complete description of the AI model M0’s global behavior 
on all kinds of task instances requires much more explanation 
patterns. Here, we selected the task instances to restrict participants’ 
attention to the above three patterns only and enable them to 
develop some mental models of the AI model’s local—instead of 
global—behavior. 

3.2.3 Operationalization of Phase 2. The goal of Phase 2 was to 
have participants in the medium or low similarity treatments realize 
that their mental models were “broken down.” This means that 
given a task instance in Phase 2, participants in medium or low 
similarity treatments might �nd it to directly relate to their mental 
model. Thus, they retrieved an if-then rule from their memory and 
2In practice, any explainable methods that can identify the most important features to 
the AI model’s predictions can be used. We decided to choose SHAP as our explanation 
method because by design, SHAP guarantees local �delity with the AI model being 
explained (i.e., the explanation model’s prediction is always the same as the prediction 
of the AI model being explained) and has high level of internal consistency. 
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expected that the AI model would predict . = ~ on this instance 
because -1 = 0 and -2 = 1, but only to �nd out that while the 
updated AI model still predicted . = ~, the top two feature-value 
pairs it highlighted as its explanations (which was again computed 
by the SHAP algorithm) were changed. 

To obtain di�erent updated AI models M1, M2 and M3, whose 
explanations on Phase 2 task instances would show di�erent levels 
of similarity with those of M0, we re-sampled the training dataset 
and re-trained the logistic regression model. For instance, to train 
M2—whose explanations on Phase 2 tasks have a medium similarity 
with that of M0—we re-sampled the training dataset mostly within 
the set of data samples with the feature-value pair “cap surface 
= smooth” and then re-trained the logistic regression model. By 
doing so, the updated model M2 would seldom highlight the feature 
“cap surface” in its explanations (because most data samples in its 
training dataset had the same value on this feature, making it not 
informative for the prediction). Thus, given a task instance for 
which the old model M0 would use one of the either Pattern 1.a or 
Pattern 1.b to explain its predictions, the explanation of the updated 
model M2 would likely di�er on at least one highlighted feature-
value pair. Note that this kind of model updates can be realistic in 
the real world, as the training dataset may constantly get updated 
[39], yet the additional training data obtained may be biased (e.g., 
due to sampling biases). 

With the updated models prepared, we then move on to select 
task instances for Phase 2. Given a task instance, we can compute 
the similarity between two AI models’ explanations on this instance 
using the feature agreement metric introduced in [49] (i.e., the size 
of the intersection of the two sets of top-: features divided by : ; 
: = 2 in our study). We carefully selected the 15 tasks in Phase 2 
such that on each task: 
(1) all the four AI models’ (i.e., the original model M0, and the three 

updated models M1, M2, M3) binary prediction was the same; 
(2) the explanation that would have been provided by the model 

M0 is one of the three patterns as shown above; 
(3) compared to the two most important feature-value pairs high-

lighted by M0 as its explanations, the explanation given by M1 in 
the high similarity treatment was the same (the average feature 
agreement score between M0 and M1’s explanations across the 
15 tasks in Phase 2 was 1.0), the explanation given by M2 in the 
medium similarity treatment usually had one feature-value pair 
in common (the average feature agreement score between M0 
and M2’s explanations across the 15 tasks in Phase 2 was 0.6), 
while the explanation given by M3 in the low similarity treat-
ment usually had no feature-value pair in common (the average 
feature agreement score between M0 and M3’s explanations 
across the 15 tasks in Phase 2 was 0.1)3. 

3.3 Experimental Procedure 
We posted our experiment as a human intelligence task (HIT) on 
Amazon Mechanical Turk (MTurk). Upon arrival, participants were 
randomly assigned to one of the 3 experimental treatments as de-
scribed in Section 3.2. They �rst completed a questionnaire on their 
background, including their demographics, technical literacy, and 

3See Table A1 in Appendix A for di�erent models’ explanations on the selected 15 
Phase 2 task instances in Experiment 1. 

expertise in AI and machine learning. Then, we presented partici-
pants with an interactive tutorial to explain the task to them and 
walk them through the interface. Since participants might have little 
prior knowledge on how to determine if a mushroom is poisonous, 
we added a training component in the tutorial to help participants 
get familiar with the mushroom prediction task. In particular, we 
provided participants with a list of assistive information extracted 
from the UCI mushroom dataset about how values on the �ve 
features of a mushroom’s pro�le may relate to the mushroom’s poi-
sonous status (e.g., “in a large database, 10% of mushrooms whose 
gill spacing is crowded are poisonous”). This assistive information 
was also made available to participants during the actual 30 deci-
sion making tasks. Upon completion of the tutorial, participants 
were asked to answer a few quali�cation questions to show they 
understood all the information presented in the tutorial, and they 
could not proceed to the next part of the experiment unless they 
answered all the quali�cation questions correctly. 

After passing the quali�cation, participants started to work on 
the same set of mushroom prediction tasks that were divided into 
two phases with 15 tasks each (the order of tasks was randomized 
within each phase). As discussed earlier, in Phase 1, participants 
in all three treatments saw exactly the same model prediction and 
explanations for each task. In contrast, in Phase 2, participants 
still saw the same model prediction for each task, but the model 
explanations were associated with di�erent levels of similarity com-
pared with the explanations provided by the old model used in 
Phase 1. In each task, participants followed a three-step procedure 
to complete the task. They were �rst asked to review the pro�le 
of the mushroom to make their own prediction. Then, we would 
present to them the AI model’s prediction along with its explana-
tions. Lastly, the participants needed to make a �nal prediction. 
The AI models made correct predictions on 10 tasks in Phase 1 and 
on 12 tasks in Phase 2, although the participants were not given 
any accuracy feedback on either their prediction or the model’s 
prediction throughout the experiment. 

Note that between Phase 1 and Phase 2, we explicitly told partic-
ipants that the AI model was updating and asked them to complete 
a mid-point questionnaire while waiting for the model update to be 
completed. To see if the participant successfully formed a mental 
model of the AI model in Phase 1, we included in the questionnaire 
three multiple-choice understanding questions, each corresponding 
to one of the three explanation patterns appeared in Phase 1 (e.g., 
“If a mushroom’s cap surface is smooth and its gill spacing is close, 
what is our machine learning model’s prediction?”). In addition, 
the participant was also asked to self-report their subjective trust 
in and satisfaction with the AI model in Phase 1 on a 7-point Likert 
scale (1 is the lowest and 7 is the highest), and they also indicated 
their agreement with the following statement from 1 (“strongly 
disagree”) to 7 (“strongly agree”): 

• Perceived explanation consistency with prior knowledge: 
“The machine learning model’s explanations in Phase 1 agrees 
with my own knowledge about how to predict poisonous mush-
room.” 

To make participants feel the update of the AI model was real, after 
participants completed the mid-point questionnaire, we had them 
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wait for 10 more seconds before telling them that the model update 
was completed and allowing them to proceed to Phase 2. 

Finally, after the participant completed Phase 2, they needed to 
complete an exit questionnaire to again self-report their subjective 
trust in and satisfaction with the AI model in Phase 2, as well as 
their perceived consistency of the AI model’s explanations in Phase 
2 with their own prior knowledge on a 7-point Likert scale. They 
were also asked to express their agreement with two statements 
regarding their perceived changes of the AI model after the update, 
using a scale of 1 (“strongly disagree”) to 7 (“strongly agree”): 
• Perceived explanation change: “After the model update, the 
updated model in the last 15 tasks utilizes very di�erent features 
to make predictions compared to the old model shown in the 
�rst 15 tasks.” 

• Perceived accuracy change: “The updated machine learning 
model in the last 15 tasks seems to be more accurate than the 
old machine learning model in the �rst 15 tasks.” 
We included three attention check questions at di�erent places 

throughout the HIT (one each in Phase 2 prediction tasks, the mid-
point questionnaire, and the exit questionnaire). In these questions, 
participants were instructed to select a pre-speci�ed option as their 
prediction in the task or as their response to a 7-point Likert ques-
tion in the questionnaire. These attention check questions later 
helped us to �lter out the data from inattentive participants. Our 
experiment was open to U.S. workers only, and each worker was al-
lowed to participate only once. The base payment of the experiment 
was $1.80. To incentivize participants to carefully read about the 
model’s explanation in each task and adjust their trust accordingly, 
we further provided them with additional performance-contingent 
bonuses—if the overall accuracy of a participant’s �nal predictions 
on the 30 tasks was at least 55%, they could earn a bonus of $0.04 for 
each of their correct �nal predictions. Thus, the maximum amount 
of bonus a participant could earn in this experiment was $1.20. 

3.4 Analysis Methods 
3.4.1 Independent Variables. The main independent variable we 
used in our analysis is the experimental treatment that a participant 
was assigned to, i.e., the level of similarity between the explanations 
of the updated AI model that the participant received in Phase 2 
and the explanations of the AI model M0 used in Phase 1. 

3.4.2 Dependent Variables. To quantify participants’ perceived 
changes in the model explanations due to the model update, we use 
their self-reported scores in the exit questionnaire as our dependent 
variable; the higher the score, the more the participant �nds the 
updated model explanations in Phase 2 to be di�erent from what 
would have been provided by the old model in Phase 1. 

Moreover, to measure the changes in participants’ trust in the 
model due to the model update, we compute their trust gain from 
Phase 1 to Phase 2, for both objective trust and subjective trust. 
Participants’ objective trust in the model in a phase is computed 
as the fraction of tasks of that phase in which the participant’s 
�nal prediction was the same as the model’s prediction. Meanwhile, 
participants’ subjective trust in the model in a phase is obtained 
from their self-reports at the end of that phase. Given a participant’s 
objective trust or subjective trust scores in both phases, their trust 
gain is then computed as the Phase 2 trust score minus the Phase 

1 trust score; the larger the di�erence, the more the participant 
increased their trust in the model after the model update. 

Finally, to measure the changes in participants’ satisfaction of the 
model due to the model update, we compute their satisfaction gain 
from Phase 1 to Phase 2 as their self-reported satisfaction with the 
model in Phase 2 in the exit questionnaire minus that reported for 
Phase 1 in the mid-point questionnaire. Again, the higher the value, 
the more the participant increased their satisfaction with the model 
after the model update. 

3.4.3 Statistical Methods. We start by examining that after a model 
update, whether participants can perceive the changes in model 
explanations (RQ1) and whether the perceived model explanation 
similarity before and after the update changes participants’ trust in 
and satisfaction with the AI model (RQ2). To avoid multiple compar-
ison problems and control false discovery, we conduct our analyses 
using the interval estimate method [26]. That is, we �rst visualize 
our data by plotting the mean values of the dependent variables of 
interest for each treatment along with the 95% bootstrap con�dence 
intervals (' = 5000). Then, we construct OLS regression models 
to predict the dependent variables’ values while controlling for 
covariates (e.g., participants’ demographics), both for the entire set 
of participants and for the subset of participants who had di�erent 
levels of understandings of how the AI model worked after Phase 1 
(e.g., the subsets of participants who answered di�erent numbers of 
understanding questions correctly in the mid-point questionnaire). 
Results of these models are interpreted via the estimated coe�cient 
values for the independent variables as well as their 95% bootstrap 
con�dence intervals4. 

Next, to explore RQ3 (i.e., the mechanism underlying the e�ects 
of model explanation updates on end-users’ trust in and satisfaction 
with an AI model), we posit three hypotheses and illustrate our 
hypothesized model in Figure 2: 

• [H1.1] The similarity level of model explanations before and 
after the model update (i.e., between Phase 1 and 2) has a direct 
e�ect on participants’ perceived change in the model explana-
tions. 

• [H1.2] Participants’ perceived change in the model explanations 
has a direct e�ect on their perceived change in the AI model’s 
accuracy after the model update. 

• [H1.3] After the model update, participants’ perceived change 
in the AI model’s accuracy directly a�ects their objective and 
subjective trust in the AI model, and their satisfaction with the 
AI model. 
In other words, we hypothesize that the e�ects of model explana-

tion updates on end-users’ trust in and satisfaction with an AI model 
are mediated by their perceived similarity between the explanations 
of the updated model and the old model, and their perceived change 
in the model’s accuracy. Since participants are not likely to have 
much domain knowledge in the mushroom prediction task, in this 
experiment, we do not expect the model explanation updates will 
a�ect participants’ trust in and satisfaction of the AI model through 

4We applied standardization to the dependent variables and encoded independent 
variables (IV) using dummy coding, thus the estimated coe�cient of an IV could 
be directly interpreted as the change in dependent variable (in terms of standard 
deviations) resulted from the corresponding treatment. 
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Figure 2: Our hypothesized model of how explanation up-
dates of the AI model a�ect participants’ trust of and satis-
faction with the AI model in Experiment 1, which involves 
a task domain that participants do not have much domain 
knowledge in. 

in�uencing their perceived change in the consistency between the 
model explanations and their domain knowledge. 

We perform path analysis [22], a type of structural equation 
modeling (SEM) [41, 60, 72] without latent variables, to test these 
hypotheses and explore the potential causal mechanisms underly-
ing the e�ects of model explanation updates5. We use �ve indicators 
to evaluate the goodness of �t of the model: (1) the j2 test indi-
cating absolute/predictive �t; (2) the Comparative Fit Index (⇠𝐹𝐼 ), 
(3) the Tucker–Lewis Index () !𝐼 ) indicating comparative �t, (4) 
the Root Mean Square Error of Approximation ('"(⇢𝐴), and (5) 
the Standardized Root Mean Square Residual (('"'). A model �ts 
the data well when the ?-value associated with the j2 test is non-
signi�cant, the CFI and TLI values are over 0.90, and the RMSEA 
and SRMR values are below 0.08 [9, 11, 21]. 

Since this set of path analysis is mostly meaningful for those 
people who actually had formed an accurate mental model of how 
the AI model worked, for RQ3, we restrict our analysis only on the 
data obtained from those participants who correctly answered all 
three understanding questions in the mid-point questionnaire. 

3.5 Experimental Results 
In total, 475 participants completed our experiment HIT. The me-
dian time participants spent on the experiment was 12.5 minutes, 
leading to a median hourly wage of $11.00. After �ltering the data 
from participants who did not pass the attention check, we were left 
with valid data from 361 participants for Experiment 1 (49.9% male, 
the average age is 38). We analyze these valid data to answer our 
research questions. As a sanity check, we �rst construct an OLS re-
gression model to examine whether there are any di�erences across 
the three treatments regarding participants’ perceived changes in 
how consistent the model explanations are with their own prior 
knowledge, utilizing their self-reports at the end of Phase 1 and 
Phase 2. We do not �nd any reliable di�erences, which is consistent 
with our expectation. 

3.5.1 RQ1: E�ects on perceived explanation change. We start by ex-
amining participants’ perceived change of the model explanations 
between Phase 1 and Phase 2. Figure 3(a) compares across the three 

5The R package Lavaan [74] is used to estimate the paths in the hypothesized model, 
which allows simultaneous testing of magnitude as well as signi�cance of the com-
plex predictive relationships between a set of observed variables, and the maximum 
likelihood estimation (MLE) method is used. 

treatments participants’ perceptions of the model explanation’s 
change (see the “overall” group). To explore whether participants’ 
understanding of the AI model (or their capability to form an ac-
curate mental model of AI) has any moderating e�ect, we also 
present the same comparison separately for participants with rel-
atively low levels of understanding (i.e., who answered no more 
than 2 understanding questions correctly in the mid-point question-
naire; the “understanding  2” group), and those with high levels 
of understanding (i.e., who answered all 3 understanding questions 
correctly; the “understanding=3” group). We �nd that participants’ 
perceived change of explanations increased as the the explanations 
of the updated model in Phase 2 became more dissimilar from those 
of the old model used in Phase 1. In other words, participants in 
our experiment could perceive the change in model explanations 
brought up by a model update. Moreover, it appears that the better 
the participants could form an mental model of the AI model, the 
more they could perceive the change in model explanations. 

We then construct OLS regression models to predict a partici-
pant’s perceived change in the model explanations between the 
two phases while controlling the participant’s demographic back-
ground (e.g., age, gender, education). as covariates. Our regression 
results are consistent with what we have observed in Figure 3(a). 
In particular, participants in both the medium and low similarity 
treatments reported higher levels of changes in the model explana-
tions due to the model update (MS: estimated coe�cient V = 0.232, 
95% CI=[0.017, 0.461]; LS: V = 0.202, 95% CI=[-0.025, 0.432]). We 
further construct two separate regression models for participants 
who answered no more than 2 understanding questions correctly 
in the mid-point questionnaire and those who answered all 3 under-
standing questions correctly, respectively. For the former group of 
participants (the “understanding2” group), we do not obtain coe�-
cients that are reliably di�erent from zero, while for the latter group 
(the “understanding=3” group), we �nd that they reported a slightly 
higher level of perceived model explanation change if they were in 
the low similarity treatment (V = 0.429, 95% CI=[-0.022,0.869]). 

3.5.2 RQ2: E�ects on trust and satisfaction change. We next analyze 
our data to examine whether people’s trust in and satisfaction 
with the AI model is in�uenced by the model explanation updates. 
Figures 3(b) and 3(c) show participants’ objective trust gain and 
subjective trust gain in the AI model from Phase 1 to Phase 2, both 
across all participants and within subgroups of participants with 
di�erent levels of understanding of the AI model. However, we �nd 
that neither participants’ objective trust nor their subjective trust 
seems to be a�ected by the similarity level of model explanations 
between Phase 1 and Phase 2. Figure 3(d) further shows participants’ 
subjective satisfaction gain from Phase 1 to Phase 2, conditioned 
on their understanding score. Still, participants did not seem to 
signi�cantly change their satisfaction with the AI model as the 
similarity of model explanations before and after the update varied. 
Our regression models also don’t show any reliable treatment e�ects 
either for all participants or for any subsets of participants. 

3.5.3 RQ3: Mechanisms underlying the e�ects of model explana-
tion updates. As discussed earlier, we restrict our attention to the 
98 participants who correctly answered all three understanding 
questions in the mid-point questionnaire, and we test the hypoth-
esized path model on the data obtained from them. We start by 
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(a) Perceived explanation change (b) Objective trust gain 

(c) Subjective trust gain (d) Satisfaction gain 

Figure 3: Comparing how the similarity level between the model explanations before and after the update a�ects participants’ 
perceived change of model explanations, the objective and subjective trust gain in the AI model, as well as the satisfaction gain 
with the AI model in Experiment 1. Error bars represent 95% bootstrap con�dence intervals. 

Figure 4: Path analysis results of the proposed model in Ex-
periment 1. Standardized path coe�cients are reported, and 
* ** , , *** represent signi�cance level of ? < 0.05, ? < 0.01 and 
? < 0.001, respectively. 

adding all covariates (i.e., the participant’s age, gender, education, 
task familiarity, technical literacy and expertise in AI and machine 
learning) to the regression models for all paths, and we re�ne the 
regression models by pruning covariates with insigni�cant con-
tributions to achieve better model �t. As a result, the �t statistics 
for the �nal model we get are ? (j2) = 0.240,⇠𝐹𝐼 = 0.971,) !𝐼 = 
0.932, '"(⇢𝐴 = 0.047, ('"' = 0.051, which indicate a good �t. 
Estimates of the path coe�cients and the results of signi�cance 
testing of the path model are presented in Figure 4. 

Our path analysis results validate all of our hypotheses H1.1– 
H1.3. It’s shown that the �rst mediation step of the treatment e�ects 
is whether people can perceive the change in model explanations 
after a model update, and in Experiment 1, we detect that those 
participants for whom the updated model explanations in Phase 
2 had a low similarity with the old model in Phase 1 perceived a 
signi�cantly larger change in the model explanations. Interestingly, 
the more people perceive the model explanations have changed, 
the more likely they feel the updated model’s accuracy is increased. 
Finally, the change in people’s trust in and satisfaction with the AI 
model after the update are all positively a�ected by their perceived 
increase in the updated AI model’s accuracy. Notably, while all 

mediation paths in our path analysis are signi�cant, we do not 
observe a total e�ect of the treatment on participants’ trust gain or 
satisfaction gain in Section 3.5.2, which seems to be contradictory. 
We conjecture that one possible explanation for this observation is 
that there may exist other competing e�ects that suppress the path 
that we have tested in our path analysis, such that multiple direct 
and indirect e�ects of opposing direction can result in a near-zero 
total e�ect [3, 37, 75]. Identifying the additional mediation paths 
for the e�ects of model explanation updates on changes in people’s 
trust in and satisfaction with the AI model will be an interesting 
future work. 

4 EXPERIMENT 2: LOAN DEFAULT 
PREDICTION 

In the second experiment of our study, we move on to examine 
whether the e�ects of AI model explanations updates on end-users’ 
perceptions and usage of the AI model in AI-assisted decision mak-
ing will be di�erent if users have more prior knowledge in the 
decision making domain. Therefore, in this experiment, we repli-
cate Experiment 1 on a di�erent decision making domain in which 
people have some domain knowledge. 

4.1 Experimental Task 
In this experiment, we asked participants to complete a sequence of 
decision making tasks to predict loan default risks with the help of 
a decision aid powered by an AI model. We chose the loan default 
risk prediction task for our second experiment because we conjec-
tured that people might perceive themselves as having a degree of 
domain knowledge in solving this type of task, because they could 
apply their day-to-day, common sense knowledge to make their 
predictions. Speci�cally, in each task, the participant was presented 
with the pro�le of a loan application consisting of six features—the 
amount and the issued month of the loan, as well as the applicant’s 
annual income, state of living address, credit score, and the month 
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when the applicant’s earliest credit account was open (see Sec-
tion 4.2.1 for details on how we decided to include these features in 
the pro�le of each task). Moreover, we also showed to participants 
the binary prediction given by an AI model in terms of whether 
this loan applicant would default on their loan. After reviewing all 
this information, participants were asked to make a decision on 
whether they believed this loan applicant will default on the loan 
or not. Loan applicant pro�les that we showed to participants in 
the experiment were taken from a public dataset that records the 
loan information of a peer-to-peer lending platform, LendingClub 
[92]. To simplify the problem as a binary prediction, we restricted 
our attention only to those cases where the loan applicant either 
fully paid back the loan or defaulted on the loan. To simplify the 
task, we also discretized all features with continuous values (e.g., 
the applicant’s annual income) into categories. 

4.2 Experimental Design and Procedure 
4.2.1 A pilot study to collect people’s general knowledge about loan 
default prediction. In a task domain that people have some domain 
knowledge in, people’s perceptions of and reactions to an AI model’s 
explanation updates may be in�uenced by their judgements of how 
“sensible” the explanation updates are. One possible way for them 
to make these judgements is to compare the model’s explanations 
with their prior knowledge about the decision making task, before 
and after the model update. So, before we start the design of our 
Experiment 2, it is critical for us to �rst obtain an understanding of 
people’s general knowledge about making loan default risk predic-
tions (e.g., what features do people usually consider as informative 
for making loan default predictions?). 

Therefore, we conducted a pilot study to understand in loan 
default risk prediction tasks, how relevant people considered dif-
ferent pieces of information was for predicting the default risk of 
a loan applicant. In this pilot study, each participant was asked to 
complete a sequence of 10 loan default risk prediction tasks, and in 
each task they reviewed a loan application pro�le consisted of 13 
features selected from the original LendingClub dataset—the loan’s 
amount, issued month, monthly installment, interest rate, purpose, 
and the number of months to pay o� the loan, as well as the ap-
plicant’s state of living address, annual income, credit score, home 
ownership status, total number of credit accounts, the number of 
years employed, and the month when their earliest credit account 
was open. We then asked the participant to indicate how relevant 
they thought each feature was for determining a loan applicant’s 
likelihood of defaulting on a loan, in three di�erent ways: 
(1) Multiple-choice: Assign each feature into one of the three 

categories: 1 (irrelevant), 2 (not sure), or 3 (relevant) 
(2) Ranking: Rank the relevance of all features from most relevant 

to least relevant 
(3) Likert-scale: Rate each feature on a 10-point scale from 1 (not 

relevant at all) to 10 (extremely relevant) 
In total, we collected survey responses from 184 MTurk workers 
and then aggregated their responses. For Questions (1) and (3), 
we ranked all features based on the mean ratings participants re-
ported for them. For Question (2), we used the majority aggregator 
[73] and Kemeny-Young aggregator [8, 44, 94] to aggregate all the 
rankings. Based on the 4 aggregated rankings of features that we 

obtained from di�erent questions or di�erent aggregation methods, 
we identi�ed the sets of features that were consistently considered 
by our participants as most or least relevant for predicting the loan 
default risk (i.e., consistently appear at the top or bottom of the 
4 aggreagated rankings)—the issued month of the loan, the appli-
cant’s state of address, and the month of the applicant’s earliest 
credit account were consistently considered as least relevant for 
predicting loan default risk, while the loan amount, the applicant’s 
annual income and credit score were consistently deemed as most 
relevant for the prediction. We thus included these 6 features in 
the �nal loan application pro�le of each task in Experiment 2, and 
we leveraged the di�erences in people’s perceived relevance of 
di�erent features to design our experiment. 

4.2.2 Experimental Treatments. Similar as that in Experiment 1, 
we again created experimental treatments by varying the level of 
similarity between the AI model’s explanations before and after 
the model update. However, for decision making tasks that people 
have some domain knowledge in, depending on how much people 
consider the explanations of the AI model before the update align 
with their prior knowledge in the domain (i.e., how “sensible” the 
explanations before the update are), a more dissimilar model ex-
planation after the model update could imply either increased or 
decreased level of consistency between the AI explanations and 
people’s knowledge. 

Therefore, we conducted two sub-experiments in our Experi-
ment 2. In both sub-experiments, we again created three experi-
mental treatments—high similarity (HS), medium similarity (MS), 
and low similarity (LS). Across the three treatments in the same 
sub-experiment, participants completed the same set of 30 predic-
tion tasks divided into two phases of 15 tasks each—in Phase 1, 
participants in all three treatments used the same AI model M0 (i.e., 
a logistic regression model); in Phase 2, participants in di�erent 
treatments used di�erent updated versions of the model M0, which 
made the same binary predictions but provided di�erent explana-
tions. Importantly, in the �rst sub-experiment (i.e., Experiment 
2.1), explanations of the AI model shown in Phase 1 largely con-
tradicted with people’s general knowledge about loan default risk 
predictions such that in Phase 2, the lower explanation similarity im-
plied the updated explanations to be more consistent with people’s 
domain knowledge. The second sub-experiment (i.e., Experiment 
2.2) was exactly the opposite—the AI model’s explanations shown 
in Phase 1 were highly consistent with people’s domain knowledge, 
and in Phase 2, the less similar the updated model’s explanations 
compared to M0, the more inconsistent they were with people’s 
domain knowledge. 

More speci�cally, in Phase 1 of Experiment 2.1, the 15 task in-
stances in Phase 1 were carefully selected so that participants re-
peatedly observed the following three explanation patterns: 

• Pattern 2.1.a: When “state of address=California” and “month of 
earliest credit account=August”, the AI model M0 predicts “will 
not default.” 

• Pattern 2.1.b: When “state of address=California” and “issued 
month=March”, the AI model M0 predicts “will not default.” 

• Pattern 2.1.c: When “state of address=Alabama” and “issued 
month=June”, the AI model M0 predicts “will default.” 
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In all these patterns, the features being selected as contributing 
the most to the AI model M0’s predictions were all considered as 
irrelevant for the predictions by participants in our pilot study. So, 
we expected participants of Experiment 2.1 to perceive the explana-
tions of the AI model in Phase 1 to be highly inconsistent with their 
domain knowledge. Then, for the 15 task instances selected for 
Phase 2 of Experiment 2.1, the updated AI model’s explanations in 
the high similarity treatment were exactly the same as what would 
have been provided by M0. In contrast, the updated AI model’s 
explanations in the medium (low) similarity treatment often shared 
one (no) feature in common with what would have been provided 
by M0, while the removed features in the explanations were re-
placed by other features that people considered to be relevant for 
the predictions. As a result, the feature agreement scores of the 
updated explanations and the old explanations were 1.0, 0.5, and 
0.07, for high, medium, and low similarity treatments, respectively6. 

For Experiment 2.2, the explanation patterns participants kept 
observing in Phase 1 were: 
• Pattern 2.2.a: When “credit score=good” and “annual income 
=$40,000–$60,000”, the AI model M0 predicts “will not default.” 

• Pattern 2.2.b: When “credit score=good” and “loan amount= 
<$5,000”, the AI model M0 predicts “will not default.” 

• Pattern 2.2.c: When “credit score=fair” and “annual income= 
<$40,000”, the AI model M0 predicts “will default.” 
Here, the features being selected in the explanations were all 

relevant for the predictions based on our pilot study, so we expected 
participants of Experiment 2.2 to consider the explanations of the AI 
model in Phase 1 to be highly consistent with their domain knowl-
edge. Again, on each of the Phase 2 tasks, the number of features 
in the updated AI model’s explanations that were in common with 
what would have been provided by M0 was two, roughly one, and 
roughly zero for the high, medium, and low similarity treatments, 
respectively—the di�erences were caused by some or all relevant 
features included in the old explanations being replaced by the irrel-
evant ones. Thus, for high, medium, and low similarity treatments, 
the feature agreement scores of the updated explanations and the 
old explanations were 1.0, 0.5, and 0.03, respectively7. 

4.2.3 Experimental Procedure. In Experiment 2, the procedure for 
both sub-experiments was the same as that for Experiment 1, except 
for that participants of Experiment 1 were not allowed to take part 
in Experiment 2 again. 

4.3 Analysis Methods 
We used the same independent variables and dependent variables 
as those used in Experiment 1, as well as the statistical methods 
for RQ1 and RQ2 (see Section 3.4). For RQ3, we posit a few new 
hypotheses on how model explanation updates may a�ect end-
users’ trust in and satisfaction with an AI model, when they have 
some prior knowledge in the decision making domain: 
• [H2.1] The similarity level of model explanations before and 
after the model update (i.e., between Phase 1 and Phase 2) has 

6See Table A2 in Appendix A for di�erent models’ explanations on the selected 15 
Phase 2 task instances in Experiment 2.1.
7See Table A3 in Appendix A for di�erent models’ explanations on the selected 15 
Phase 2 task instances in Experiment 2.2. 

Figure 5: Our hypothesized model of how explanation up-
dates of the AI model a�ect participants’ trust in and satis-
faction with the AI model in Experiment 2, which involves a 
task domain that participants have some domain knowledge 
in. 

a direct e�ect on participants’ perceived change in the model 
explanations. 

• [H2.2] Participants’ perceived change in the model explanations 
has a direct e�ect on their perceived change in how consistent the 
model explanations are compared to their domain knowledge. 

• [H2.3] Participants’ perceived change in the AI model’s accuracy 
after the model update is a�ected by both their perceived change 
in the model explanations, and their perceived change in the 
model explanation’s consistency with their domain knowledge. 

• [H2.4] After the model update, participants’ perceived changes 
in both the model explanation’s consistency with their domain 
knowledge and the AI model’s accuracy jointly a�ect their ob-
jective trust and subjective trust in the AI model, and their satis-
faction with the AI model. 
The hypothesized model is shown in Figure 5. Compared to the 

hypothesized model in Experiment 1, here, we conjecture that the 
e�ects of model explanation updates is also mediated by partici-
pants’ perceived change of the model explanation’s consistency 
with their domain knowledge. This mediator is computed as par-
ticipants’ self-reported explanation consistency with their prior 
knowledge in Phase 2 minus their self-reported rating in Phase 1. 

Since we have two sub-experiments in Experiment 2 (i.e., two 
“groups” of experimental data), we use multigroup path analysis 
[5, 35] to compare the results of them and to test how di�erent 
types of explanation updates in the two sub-experiments moder-
ate the associations between explanation updates and users’ trust 
in and satisfaction with an AI model8. In particular, multigroup 
path analysis begins with the estimation of two models: A fully 
unconstrained model in which all parameters are allowed to di�er 
between groups, and a fully constrained model in which the value of 
each parameter is held the same across groups. If the two estimated 
models are not signi�cantly di�erent, and the latter �ts the data 
well, it implies that there is no variation in the path coe�cients 
by group. In this case, we will report the output from the fully 
constrained model. However, if these two estimated models are sig-
ni�cantly di�erent, we will go through a series of steps to test which 
parameters need to be unconstrained across groups by relaxing 

8By specifying the group argument in the R package Lavaan [74], we are able to 
control whether the estimated path coe�cients can vary across multiple groups (i.e., 
data collected from the two sub-experiments). 
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(a) Perceived explanation change (Experiment 2.1: Phase 1 irrelevant) (b) Perceived explanation change (Experiment 2.2: Phase 1 relevant) 

Figure 6: Participants’ perceived change of model explanations between Phases 1 and 2 in the two sub-experiments of Experiment 
2. Error bars represent 95% bootstrap con�dence intervals. 

the constraint on one parameter at a time and testing the di�er-
ence in �t between the fully constrained model and the partially 
constrained model (where a single parameter is unconstrained). 
Generally, the more constrained model will �t the data worse than 
a partially constrained model. Thus, for each parameter, we use a 
Chi-squared test to examine if the model �t improves signi�cantly 
as a result of relaxing the constraint on that parameter—If yes, we 
assume that parameter is non-invariant (i.e., unequal) across groups; 
otherwise, we assume that parameter is invariant (i.e., equal) across 
groups. After identifying non-invariant parameters, we can test a 
�nal model where invariant parameters are constrained to be equal 
across groups while non-invariant parameters are freely estimated. 

4.4 Experimental Results 
494 participants completed Experiment 2.1, and 507 completed 
Experiment 2.29. After �ltering out inattentive participants, in total, 
we obtained valid data from 394 (58.4% male, the average age is 
37) and 412 participants (55.1% male, the average age is 36) for 
Experiment 2.1 and 2.2, respectively. We analyze these data to 
answer our research questions. 

To �rst con�rm the validity of our experimental design, we con-
duct OLS regressions to understand how participants’ perceived 
changes in the model explanation’s consistency with their prior 
knowledge vary across treatments within each sub-experiment. 
Results of these regressions indicate that in both sub-experiments, 
the direction of participants’ perceived change in the model ex-
planation’s consistency with their prior knowledge aligns with 
our expectations. For example, we �nd that in Experiment 2.1, 
participants with highest understanding score in the low similar-
ity treatment noticed that the updated model explanations were 
more consistent with their domain knowledge (V = 0.751, 95% 
CI=[0.006, 1.484]), while in Experiment 2.2, participants with high-
est understanding score in the low similarity treatment considered 
the updated model explanations as less consistent with their domain 
knowledge (V = −0.700, 95% CI=[-1.332, -0.043]). 

4.4.1 RQ1: E�ects on perceived explanation change. Figure 6(a) and 
Figure 6(b) show participants’ perceived change in the model expla-
nations between Phase 1 and Phase 2 for the two sub-experiments, 
respectively. Again, we �nd that in both sub-experiments, partici-
pants could sense the di�erences in the model explanations between 
Phase 1 and Phase 2, especially those who could develop an accurate 

9In Experiment 2.1, the median time participants spent on the experiment was 12.8 
minutes, and the median hourly wage participants earned was $10.3. In Experiment 
2.2, the median completion time and median hourly wage were 11.3 minutes and $11.9, 
respectively. 

mental model of the AI model’s logic. The regression models reveal 
similar results: In Experiment 2.1, participants in both medium 
and low similarity treatments reported signi�cantly higher levels 
of perceived changes in model explanations (MS: V = 0.285, 95% 
CI=[0.057,0.510]; LS: V = 0.422, 95% CI=[0.174,0.688]). Conducting 
separate regressions on the group of participants who answered 
no more than 2 understanding questions correctly and the group 
of participants who answered all 3 understanding questions cor-
rectly, we �nd that the higher levels of perceived changes in the 
model explanation were only reported by participants in the latter 
group (MS: V = 0.904, 95% CI=[0.475,1.344]; LS: V = 0.980, 95% 
CI=[0.613,1.383]). For participants in Experiment 2.2, we don’t �nd 
any reliable main e�ects of the treatments on people’s perceived 
change in model explanations across all participants. However, by 
restricting our attention only to participants who answered all 3 un-
derstanding questions correctly, we �nd those in the low similarity 
treatment clearly detected higher levels of changes in the model’s 
explanation after the update (V = 0.483, 95% CI=[0.048,0.929]). 

4.4.2 RQ2: E�ects on trust and satisfaction change. Next, we exam-
ine whether participants’ trust in the AI model, as well as their sat-
isfaction with the model, changes with the similarity level between 
the model explanations before and after the update. Figure 7 shows 
the comparison results on participants’ objective and subjective 
trust gain, while Figure 8 compares participants’ satisfaction gain 
across treatments. Visually, it appears that in both sub-experiments, 
participants did not change their objective trust in the AI model, 
regardless of how similar or di�erent the updated model explana-
tions were compared to the old model (Figure 7(a), 7(c)). In contrast, 
people’s subjective trust in the AI model or subjective satisfaction 
with the AI model is largely a�ected by the explanation similarity 
between the two phases—in Experiment 2.1, when the more dissim-
ilar explanations involve more relevant features and become more 
consistent with participants’ domain knowledge after the update, 
both participants’ subjective trust and satisfaction increased as the 
similarity level of model explanations between Phase 1 and Phase 
2 decreased (Figure 7(b), 8(a)); while in Experiment 2.2, when the 
more dissimilar explanations involve more irrelevant features and 
become less consistent with participants’ domain knowledge after 
the update, participants’ subjective trust and satisfaction decreased 
as the similarity level of model explanations between Phase 1 and 
Phase 2 decreased (Figure 7(d), 8(b)). Furthermore, it appears that 
the treatment e�ects on participants’ subjective trust and satisfac-
tion changes between the two phases mainly come from partici-
pants who answered all 3 understanding questions correctly in the 
mid-point questionnaire. 
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(a) Objective trust gain (Experiment 2.1: Phase 1 irrelevant) (b) Subjective trust gain (Experiment 2.1: Phase 1 irrelevant) 

(c) Objective trust gain (Experiment 2.2: Phase 1 relevant) (d) Subjective trust gain (Experiment 2.2: Phase 1 relevant) 

Figure 7: Comparing how the similarity level between the model explanations before and after the update a�ects participants’ 
objective and subjective trust gain in the AI model, for the two sub-experiments of Experiment 2. Error bars represent 95% 
bootstrap con�dence intervals. 

(a) Satisfaction gain (Experiment 2.1: Phase 1 irrelevant) (b) Satisfaction gain (Experiment 2.2: Phase 1 relevant) 

Figure 8: Comparing how the similarity level between the model explanations before and after the update a�ects participants’ 
subjective satisfaction gain with the AI model, for the two-experiments of Experiment 2. Error bars represent 95% bootstrap 
con�dence intervals. 

The OLS regression models reveal consistent results. We �nd no 
reliable e�ects of the explanation similarity on participants’ objec-
tive trust gain after the model update, even for participants with the 
highest understanding scores. On the other hand, in Experiment 2.1, 
participants’ subjective trust in the model signi�cantly increased in 
the LS treatment (V = 0.266, 95% CI=[-0.004,0.530]), and this e�ect 
mainly comes from participants who answered all understanding 
questions correctly (LS: V = 0.523, 95% CI=[0.066,0.965]). Similarly, 
participants’ satisfaction with the AI model signi�cantly increased 
in the LS treatment (V = 0.378, 95% CI=[0.124,0.631]), and for par-
ticipants with the highest understanding scores the e�ect size is 
even larger (V = 0.685, 95% CI=[0.215,1.140]). For Experiment 2.2, 
the signs for all the estimated coe�cients of the treatment’s e�ects 
are reversed. For example, participants’ subjective trust and satis-
faction in the model both decreased in lower similarity treatments 
(subjective trust—LS: V = −0.203, 95% CI=[-0.412,0.015]; subjective 
satisfaction—MS: V = −0.248, 95% CI=[-0.474,-0.022]; subjective 
satisfaction—LS: V = −0.385, 95% CI=[-0.598,-0.169]). Again, similar 
but larger e�ects are found from the subset of participants with 
the highest understanding scores (subjective trust—LS: V = −0.521, 
95% CI=[-0.901,-0.103]; subjective satisfaction—MS: V = −0.474, 
95% CI=[-0.818,-0.125]; subjective satisfaction—LS: V = −0.608, 95% 
CI=[-0.978,-0.200]). 

4.4.3 RQ3: Mechanisms underlying the e�ects of model explanation 
updates. Lastly, we explore the mechanisms underlying the e�ects 
of model explanation updates on end-users’ trust in and satisfaction 
with the AI model when they have some prior knowledge in the 
decision making domain. Based on our hypothesized path model, 
we conduct multigroup path analyses on the data obtained from 
those participants who correctly answered all three understanding 
questions in the mid-point questionnaire (112 participants and 120 
participants in Experiment 2.1 and Experiment 2.2, respectively). 

Our multigroup path analyses �rst suggest that across the two 
sub-experiments, four e�ects are detected to be the same, that is, the 
coe�cients on 4 paths are invariant across the two sub-experiments. 
This includes (1) the e�ect of the treatment on participants’ per-
ceived change in model explanations, (2) the e�ect of participants’ 
perceived change in the explanation’s consistency with their do-
main knowledge on their objective trust gain, (3) the e�ect of partic-
ipants’ perceived change in the explanation’s consistency with their 
domain knowledge on their subjective satisfaction gain, and (4) the 
e�ect of participants’ perceived change in model accuracy on their 
objective trust gain. As a result, cross-group equality constraints 
are only imposed across groups for the parameter of each of these 
4 paths. The �t statistics we have obtained for the �nal model are 
? (j2) = 0.017,⇠𝐹𝐼 = 0.960,) !𝐼 = 0.930, '"(⇢𝐴 = 0.057, ('"' = 
0.055. Although the j2 value is statistically signi�cant, which may 
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(a) Path analysis result in Experiment 2.1 (Phase 1 irrelevant) 

(b) Path analysis result in Experiment 2.2 (Phase 1 relevant) 

Figure 9: Path analysis results of the proposed model in Ex-
periment 2. Standardized path coe�cients are reported, and 
⇤, ⇤⇤, ⇤ ⇤ ⇤ represent signi�cance level of ? < 0.05, ? < 0.01 and 
? < 0.001, respectively. Dashed lines represent insigni�cant 
paths. Bold lines highlight paths with cross-group equality 
constraints on the coe�cients before standardization. 

indicate an inadequate model �t, many existing literature on struc-
tural equation modeling has argued that the Chi-squared test of 
model �t is strongly in�uenced by sample size, and the null hypoth-
esis of perfect �t in this test may be unrealistic and implausible in 
most practical work [12, 42]. Thus, our model can still be consid-
ered as �tting the data reasonably well as all other tests satisfy the 
empirical standards. Figure 9 presents the path coe�cient estimates 
and the results of signi�cance testing of the �nal path model10. 

As shown in Figure 9, our hypothesis that the �rst mediation step 
of the treatment e�ects is whether people can perceive the change in 
model explanations after an update (i.e., H2.1) has been con�rmed 
in both sub-experiments. Then, aligning with our hypotheses H2.2, 
we indeed �nd that participants’ perceived change in model expla-
nations signi�cantly a�ects their perceived change in the model 
explanation’s consistency with their domain knowledge, and the 
direction of this impact depends on which sub-experiment they 
took part in. For our hypothesis H2.3, it is partially supported—On 
the one hand, we �nd people’s perceived change in the model ex-
planations signi�cantly increases their perceived accuracy of the AI 
model after the model update; this is consistent with what we have 
observed in Experiment 1. On the other hand, for the hypothesized 

10Since variances are likely unequal among groups, even if the raw value of a path 
coe�cient is constrained to be a same value across the two sub-experiments, the 
standardized coe�cients are computed on a per group basis and can be unequal. 

direct e�ect of people’s perceived change in the model explanation’s 
consistency with their domain knowledge on their perceptions of 
the AI model’s accuracy, we only �nd it to be signi�cant in Experi-
ment 2.2. Finally, for H2.4, we �nd that people’s objective trust in 
the AI model is only impacted by people’s perceived change in the 
model explanation’s consistency with their own knowledge after 
the model update. However, changes in their subjective trust in 
and satisfaction with the AI model are positively a�ected by both 
people’s perceived change in the model explanation’s consistency 
with their domain knowledge and their perceived change in the 
model’s accuracy after the model update, although the magnitude of 
e�ects for the former is consistently larger. Putting all intermediate 
e�ects together, the opposite directions of the subjective trust and 
satisfaction change that we observe in the two sub-experiments 
are mainly caused by the opposite sign of the coe�cient of the 
causal path from people’s perceived change in explanation to their 
perceived change in how consistent the explanations are compared 
to their prior knowledge. 

5 DISCUSSIONS 
In this section, we provide further discussions of our results as well 
as their implications, and discuss the limitations and future work. 

5.1 The role of domain knowledge 
Comparing the results we have obtained from the two experiments, 
we indeed �nd that the e�ects of model explanation updates on end-
users’ trust in and satisfaction with the AI model are moderated by 
the level of domain knowledge people have in the decision making 
domain. While how much users are willing to accept the AI model’s 
recommendations (i.e., people’s objective trust in the AI model) is 
not signi�cantly a�ected by the AI explanation updates regardless 
of their prior knowledge level, their subjective feelings of the AI 
model (e.g., subjective trust and satisfaction) are a�ected by the AI 
explanation updates when they have some prior knowledge in the 
task domain. In fact, as shown in Figure 9, people’s perceived change 
in the explanation’s consistency with their domain knowledge 
largely dominates their perceived change in the model accuracy 
in in�uencing their trust in and satisfaction with the AI model 
after the update. Similarly, if we compare the standardized path 
coe�cients estimated for the e�ects of people’s perceived change 
in the model accuracy on the changes in their trust and satisfaction 
between Figure 4 and Figure 9, we can also see those in Figure 9 
are consistently smaller, indicating decreased impacts for people’s 
perceived change in the model accuracy when people have domain 
knowledge in the tasks. All of these highlight the key role that users’ 
prior knowledge in a domain plays when they observe explanation 
updates in an AI model. 

One possible explanation for the di�erent results that we see in 
the two experiments is that without additional information, people 
may only be able to make sense of the feature contribution expla-
nations if they have some domain knowledge about the task. For 
example, for participants working on the poisonous mushroom 
prediction task, while they might notice the change in model ex-
planations after a model update, they might not be able to judge 
whether the new patterns utilized by the model were more or less 
meaningful; so, they simply reacted to di�erent AI explanations 
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similarly. On the contrary, participants performing the loan default 
prediction task might �nd it rather straightforward to apply their 
prior knowledge (i.e., a proxy/heuristic of what is meaningful) and 
focus more on analyzing how consistent the AI explanation was 
with their knowledge, when evaluating the quality of the updated 
explanations [63]. This highlights the importance of helping end-
users to make sense of explanations when they have limited prior 
knowledge in the task domain. To this end, one promising direction 
is to supplement explanations of AI models with explanations of the 
underlying data [4], which in e�ect may help people establish some 
“knowledge” or data-driven insights about the domain. Moreover, 
our �ndings on how users adjust their subjective trust in and satis-
faction with the updated AI model when they have some knowledge 
in the task domain is largely consistent with what we would expect 
from users’ reactions to explanations of a static AI model. This 
implies that without additional information, users are unlikely to 
interpret “human-meaningless” explanations as revealing novel 
insights even in the context of AI models getting updated. 

5.2 On people’s perceived change in model 
accuracy after a model update 

An interesting �nding we consistently see from both experiments 
is that the dissimilarity level between the model explanation before 
and after the update positively a�ect people’s perceived accuracy 
increase of the model. As discussed earlier, we conjecture that this 
may be resulted from a combination of two factors. First, people 
may use the similarity level between the model explanations as 
a heuristic to gauge how di�erent the two models’ accuracy is, 
and they associate less similar model explanations with larger dif-
ferences in model accuracy. Second, people may have a biased 
belief/misconception that a model update will always result in a 
“better” model, due to their day-to-day experience (e.g., the newer 
generation of a product is always advertised as having improved 
performance). Thus, people may consider updated models with less 
similar explanations as having a larger accuracy improvement. 

Another interesting observation is that in those cases where 
people have some domain knowledge (i.e., Experiment 2), while 
we hypothesize that the similarity level between the model expla-
nations before and after the update will indirectly a�ect people’s 
perceptions of the model accuracy through their perceptions of the 
explanation’s consistency with their prior knowledge, our results 
show that this is not always the case—we only observe this indirect 
e�ect in Experiment 2.2 when the update results in a decrease of 
consistency between the model’s explanations and people’s prior 
knowledge. In fact, in Experiment 2.1, the correlation between 
people’s perceived change in model accuracy and their perceived 
change in the model explanation’s consistency with their domain 
knowledge is quite weak (Pearson’s A = 0.135). We speculate that 
this asymmetric e�ect is observed because the model explanation 
update in Experiment 2.1 naturally aligned with people’s expecta-
tions, while the explanation update in Experiment 2.2 did not. In 
other words, most people might believe that the updated model 
should utilize more information that they (i.e., humans) consider 
as “predictive” to make decisions. Therefore, participants might get 
“shocked” by the insensible updates that they saw in Experiment 
2.2, so that such violation of expectation became a key driver of 

the decrease in their perceived model accuracy. On the other hand, 
participants in Experiment 2.1 might perceive the updated model 
explanation as simply meeting their expectation without giving 
extra credit to the updated model’s performance. 

5.3 Implications for designing AI explanations 
during updates 

Our �ndings imply a few important implications for designing e�ec-
tive AI explanations during the model update. First, as we �nd that 
people’s subjective trust in and satisfaction with the AI model dur-
ing the model update can largely be in�uenced by the consistency 
of the AI explanations with their domain knowledge, novel methods 
should be developed for incorporating human expertise into the 
model development/updating process or the explanation genera-
tion process. This is closely connected to the line of research on 
human-in-the-loop machine learning [29], in which feedback is so-
licited from humans to improve and update the AI model. Indeed, as 
shown by many previous studies [18, 32, 33, 66], integrating expert 
knowledge into AI models may not only enhance the robustness 
and trustworthiness of the models, but also satisfy the expectations 
of users for expert-informed and user-centric explanations. 

However, it is also possible that people may inappropriately de-
crease their trust in and satisfaction with an AI model because the 
updated AI explanations contain some novel and truly meaningful 
patterns which people are not aware of themselves. Indeed, one of 
the greatest promises of AI technologies is their strong capabilities 
in processing huge amounts of data to automatically identify hid-
den patterns and to generate data-driven insights. To avoid these 
undesirable scenarios, after a model update, instead of simply pre-
senting the updated model explanations, it may be helpful to put 
more emphasis on the components of the explanations that have 
been changed, and provide more insights into why these changes 
occur. Compared to plainly explaining the updated model’s pre-
diction, highlighting the changes in the explanation may attract 
user’s attention to the updated part of the explanation. Additional 
information on why explanation changes occur may enable peo-
ple to go beyond their potentially limited domain knowledge in 
evaluating the “utility” of the changes, supporting them to better 
calibrate their perceptions of the updated model’s trustworthiness. 

5.4 Limitations and future work 
Our study have a few limitations. First, we adopted a relatively 
simpli�ed setting in our experiment to study how changes in AI 
explanations during the model update a�ect users’ perceptions 
and usage of the AI model—the explanation used is simple (i.e., 
the top-2 important features), the task instances are selected to 
have participants repeatedly observe the AI model’s behavior in the 
same local area, and the experimental treatments are designed with 
rather salient changes in model explanations after the AI model gets 
updated. We acknowledge that in the real world, the explanations 
of an AI model can be much more complex—especially when trying 
to explain an AI model’s global behavior—and the model updates 
may have low chance of resulting in fundamentally di�erent expla-
nation patterns. However, we believe the study we conducted on 
the simpli�ed setting had two important advantages and provided 
a starting point for more future research along this line. First, by 
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using simple explanations and restricting participants’ attention 
to the AI model’s local behavior, we maximized the possibility for 
participants to successfully form a mental model of the AI model 
before the update. This is critical because it allowed us to rule out 
the possibility that any null result of our study is simply caused by 
participants’ inability to understand how the AI model works before 
the update. Second, by having participants in some treatment (e.g., 
the low similarity treatment) observe very distinct explanations 
after the model update, we pushed our experimental manipulations 
to the extreme to maximize their possible e�ects, if any. In this 
sense, one can argue that the empirical e�ects of model explanation 
changes that we found in this study are likely the upper-bound 
estimates. These upper-bound estimate results can still be quite 
informative. For example, even in our setting where the changes of 
model explanations are very salient, we did not �nd users’ objective 
trust in the AI model is reliably a�ected by explanation changes 
during the model update. This may imply that in a more practical 
setting where the explanation changes during the model update 
are much more subtle, users’ objective trust in the AI model is also 
unlikely to be in�uenced. 

Another limitation of our study is the choice of some measure-
ments. For example, we used “agreement fraction” (i.e., the chance 
for participants’ �nal prediction in a task to agree with AI) to quan-
tify participants’ objective trust in the AI model. Although widely 
used in the literature [7, 15, 23, 52, 55, 57, 68, 95], we acknowledge 
that this metric may re�ect the natural agreement between people’s 
independent decisions and the AI recommendations to some extent. 
In practice, agreement fraction is often the only metric that can be 
adopted to objectively quantify people’s trusting behavior when no 
information about people’s own independent decision is available. 
In our study, however, we collected participants’ initial prediction 
in each task, which allowed us to quantify participants’ objective 
trust in the AI model using “switch fraction” (i.e., the fraction of 
tasks for which the participant’s �nal prediction agreed with the 
model’s prediction, among all tasks where the participant’s initial 
prediction disagreed with the model’s prediction), another metric 
commonly used in previous studies [36, 93, 95]11. We found that 
when using agreement fraction or switch fraction as the objective 
trust metric, the corresponding values for participants’ objective 
trust gain are highly correlated (e.g., Pearson correlations are 0.69, 
0.63, and 0.66 for Experiment 1, 2.1, 2.2, respectively), suggesting 
agreement fraction still re�ects participants’ true willingness to 
adopt the AI recommendation to a large extent. As another limi-
tation, the dependent variables we measured in this study are not 
comprehensive. Future studies should be carried out to better un-
derstand how changes in AI explanations during the model update 
may a�ect other aspects of user experience and performance (e.g., 
in�uence user’s trust calibration and understanding). 

In general, we caution the readers to not over-generalize our 
results to other settings. Our study was conducted on two selected 
types of decision making domains, and how model explanation up-
dates a�ect people’s perceptions and usage of the AI model in other 
domains may be impacted by nuances in those domains. For exam-
ple, explanation formats in domains like image classi�cation [2] 

11We chose to use agreement fraction to quantify objective trust in our main study 
because switch fraction is not well-de�ned for each participant. 

and text classi�cation [54] can be very complicated, task domains 
such as autonomous driving can be highly situation-dependent 
as to the need of explanations [89], and it’s hard to even provide 
scalable explanations for unsupervised learning models [61] used 
in human-AI co-writing, chatbot, or AI art generator. To simplify 
the experimental design, in our study, we also only investigate into 
the e�ects of model explanation updates when the AI model’s pre-
diction does not change, while in reality changes in AI predictions 
and explanations often go hand in hand. Our study results may not 
hold for settings where decision makers have signi�cant domain ex-
pertise in the decision making domain or where the decision stakes 
are especially high (e.g., doctors making life-or-death decisions), 
and the e�ects of AI explanation updates may also be moderated 
or mediated by other factors such as the accuracy level of the AI 
model. Overall, future studies should be conducted to explore the 
e�ects of AI explanation updates in more realistic settings and di-
verse domains, for di�erent types of end-users, and explore in more 
details how these e�ects may be moderated by various factors. 

6 CONCLUSION 
In this work, we study how the level of similarity between model 
explanations before and after the update of an AI model will af-
fect end-users’ perception and usage of the model in AI-assisted 
decision making. Via two randomized human-subject experiments, 
we show that people are able to perceive the changes in AI model 
explanations that are caused by a model update. Moreover, while 
the perceived model explanation changes have little impact on peo-
ple’s trust in and satisfaction with the AI model when people have 
limited domain knowledge in the decision making task, we �nd 
that when people have some prior knowledge in the task domain, 
their subjective trust in and satisfaction with the AI model can be 
signi�cantly a�ected by the updates in AI explanations. Results 
of our path analyses further illustrate that the updates in AI ex-
planation may change people’s trust in and satisfaction with the 
AI model both via changing their perceived model accuracy, and 
via changing their perceived consistency of AI explanations with 
their domain knowledge. Our work highlights a pressing need for 
more experimental studies on understanding the e�ects of AI ex-
planations during an AI model update, and we hope this study can 
inspire more work in this direction. 
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A TASK INSTANCES IN PHASE 2 

Table A1: Top-2 important features shown in Phase 2 task instances, in Experiment 1 

Idx M0(M1 )-1 M0(M1)-2 M2 -1 M2-2 M3-1 M3 -2 

1 cap-surface=smooth gill-spacing=close habitat=leaves gill-spacing=close habitat=leaves population=several 
2 cap-surface=smooth gill-spacing=close habitat=grasses gill-spacing=close population=several habitat=grasses 
3 cap-surface=smooth gill-spacing=close habitat=paths gill-spacing=close population=several habitat=paths 
4 cap-surface=smooth gill-spacing=close habitat=urban gill-spacing=close habitat=urban population=several 
5 cap-surface=smooth gill-spacing=close habitat=urban gill-spacing=close habitat=urban population=several 
6 stalk-shape=enlarging gill-spacing=close habitat=urban stalk-shape=enlarging habitat=urban population=several 
7 stalk-shape=enlarging gill-spacing=close habitat=urban stalk-shape=enlarging habitat=urban population=several 
8 cap-surface=�brous gill-spacing=crowded gill-spacing=crowded stalk-shape=tapering population=scattered stalk-shape=tapering 
9 cap-surface=�brous gill-spacing=crowded gill-spacing=crowded habitat=woods stalk-shape=tapering habitat=woods 
10 cap-surface=�brous gill-spacing=crowded gill-spacing=crowded stalk-shape=tapering population=abundant stalk-shape=tapering 
11 cap-surface=�brous gill-spacing=crowded gill-spacing=crowded stalk-shape=tapering population=abundant stalk-shape=tapering 
12 gill-spacing=crowded cap-surface=�brous gill-spacing=crowded habitat=woods population=scattered habitat=woods 
13 stalk-shape=enlarging gill-spacing=close stalk-shape=enlarging gill-spacing=close population=several stalk-shape=enlarging 
14 stalk-shape=enlarging gill-spacing=close stalk-shape=enlarging gill-spacing=close stalk-shape=enlarging population=clustered 
15 stalk-shape=enlarging gill-spacing=close stalk-shape=enlarging gill-spacing=close population=several stalk-shape=enlarging 

Table A2: Top-2 important features shown in Phase 2 task instances, in Experiment 2.1 (Phase 1 irrelevant) 

Idx M0(M1 )-1 M0(M1 )-2 M2-1 M2-2 M3-1 M3-2 

1 addr_state=AL issue_d=Jun loan_amnt=>$20,000 �co_score=Fair loan_amnt=>$20,000 �co_score=Fair 
2 addr_state=AL issue_d=Jun �co_score=Fair issue_d=Jun �co_score=Fair annual_inc=<$40,000 
3 addr_state=AL issue_d=Jun loan_amnt=>$20,000 issue_d=Jun loan_amnt=>$20,000 annual_inc=$80,000 $100,000 
4 addr_state=CA earliest_cr_line=Aug �co_score=Good addr_state=CA �co_score=Good annual_inc=>$100,000 
5 addr_state=CA earliest_cr_line=Aug �co_score=Good addr_state=CA �co_score=Good loan_amnt=<$5,000 
6 addr_state=CA earliest_cr_line=Aug �co_score=Good addr_state=CA �co_score=Good annual_inc=$40,000 - $60,000 
7 addr_state=CA earliest_cr_line=Aug �co_score=Good addr_state=CA �co_score=Good loan_amnt=$10,000 $20,000 
8 addr_state=CA earliest_cr_line=Aug �co_score=Good addr_state=CA �co_score=Good loan_amnt=<$5,000 
9 addr_state=CA issue_d=Mar loan_amnt=$5,000 - $10,000 addr_state=CA loan_amnt=$5,000 - $10,000 annual_inc=>$100,000 
10 addr_state=CA issue_d=Mar �co_score=Good addr_state=CA �co_score=Good annual_inc=$40,000 - $60,000 
11 addr_state=CA issue_d=Mar loan_amnt=$5,000 - $10,000 addr_state=CA loan_amnt=$5,000 - $10,000 annual_inc=>$100,000 
12 addr_state=CA issue_d=Mar �co_score=Good addr_state=CA �co_score=Good loan_amnt=<$5,000 
13 addr_state=CA issue_d=Mar �co_score=Good addr_state=CA �co_score=Good loan_amnt=$10,000 $20,000 
14 addr_state=AL issue_d=Jun �co_score=Fair issue_d=Jun �co_score=Fair addr_state=AL 
15 addr_state=AL issue_d=Jun issue_d=Jun addr_state=AL annual_inc=<$40,000 addr_state=AL 

Table A3: Top-2 important features shown in Phase 2 task instances, in Experiment 2.2 (Phase 1 relevant) 

Idx M0(M1 )-1 M0(M1)-2 M2-1 M2-2 M3 -1 M3-2 

1 �co_score=Fair annual_inc=<$40,000 �co_score=Fair addr_state=AL addr_state=AL earliest_cr_line=Sep 
2 �co_score=Fair annual_inc=<$40,000 �co_score=Fair issue_d=Jun addr_state=AL issue_d=Jun 
3 �co_score=Fair annual_inc=<$40,000 �co_score=Fair issue_d=Jun earliest_cr_line=Sep issue_d=Jun 
4 �co_score=Fair annual_inc=<$40,000 �co_score=Fair issue_d=Sep addr_state=AL earliest_cr_line=Sep 
5 �co_score=Good annual_inc=$40,000 - $60,000 �co_score=Good addr_state=CA addr_state=CA issue_d=Mar 
6 �co_score=Good annual_inc=$40,000 - $60,000 �co_score=Good addr_state=CA addr_state=CA issue_d=Oct 
7 �co_score=Good annual_inc=$40,000 - $60,000 �co_score=Good addr_state=CA addr_state=CA issue_d=Oct 
8 �co_score=Good annual_inc=$40,000 - $60,000 �co_score=Good addr_state=CA addr_state=CA earliest_cr_line=Aug 
9 �co_score=Good annual_inc=$40,000 - $60,000 �co_score=Good addr_state=CA addr_state=CA issue_d=Oct 
10 �co_score=Good loan_amnt=<$5,000 �co_score=Good addr_state=CA addr_state=CA issue_d=Mar 
11 �co_score=Good loan_amnt=<$5,000 �co_score=Good addr_state=CA addr_state=CA earliest_cr_line=Aug 
12 �co_score=Good loan_amnt=<$5,000 �co_score=Good addr_state=CA addr_state=CA earliest_cr_line=Aug 
13 �co_score=Good loan_amnt=<$5,000 �co_score=Good addr_state=CA addr_state=CA issue_d=Sep 
14 �co_score=Good loan_amnt=<$5,000 �co_score=Good addr_state=CA addr_state=CA issue_d=Mar 
15 �co_score=Fair annual_inc=<$40,000 �co_score=Fair issue_d=Mar earliest_cr_line=Sep annual_inc=<$40,000 


