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ABSTRACT 
With the prevalence of AI assistance in decision making, a more rel-
evant question to ask than the classical question of “are two heads 
better than one?” is how groups’ behavior and performance in AI-
assisted decision making compare with those of individuals’. In this 
paper, we conduct a case study to compare groups and individuals 
in human-AI collaborative recidivism risk assessment along six as-
pects, including decision accuracy and con�dence, appropriateness 
of reliance on AI, understanding of AI, decision-making fairness, 
and willingness to take accountability. Our results highlight that 
compared to individuals, groups rely on AI models more regard-
less of their correctness, but they are more con�dent when they 
overturn incorrect AI recommendations. We also �nd that groups 
make fairer decisions than individuals according to the accuracy 
equality criterion, and groups are willing to give AI more credit 
when they make correct decisions. We conclude by discussing the 
implications of our work. 
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1 INTRODUCTION 
AI-driven decision aids have been widely used to assist people in 
making decisions in diverse domains, including criminal justice [74], 
�nancial investment [113], medical diagnosis [22, 42], and more. 
In these AI-assisted decision making settings, AI plays the role of 
an assistant to provide decision recommendations, while humans 
can choose to accept or reject these recommendations and make 
the �nal decisions. With the increasing prevalence of AI-assisted 
decision making, a growing line of empirical research has been 
carried out in the HCI community to understand how the end-users 
interact with and utilize AI assistance in decision making. These 
studies have looked into many di�erent aspects of the decision 
making processes and outcomes, such as whether and when people 
rely on AI recommendations [26, 56, 125], how accurate people’s 
�nal decisions are [7, 8, 46, 62], and whether people’s �nal decisions 
are in line with key societal values [2, 23, 49, 74]. 

Interestingly, much of the current empirical research on AI-
assisted decision making focuses on examining how an individual 
decision maker behaves and performs when assisted by an AI-
driven decision aid. However, real-world decision making often 
involves a group of decision makers—decisions on whether a de-
fendant is guilty or not are made by juries, college admissions are 
decided by committees, and campaign strategies are �nalized by 
a team of strategists. In fact, the folk knowledge that “two heads 
are better than one” re�ects the common belief in collective intelli-
gence and may explain why many decisions are made by groups. 
Meanwhile, it also inspires decades of research in social science to 
rigorously compare how individuals and groups behave and per-
form di�erently in decision making [1, 5, 16, 63, 69, 78, 89]. In this 
sense, in a world where AI-assisted decision making may become a 
primary paradigm of decision making in a foreseeable future, one 
critical question that needs to be answered is how groups’ behavior 
and performance in AI-assisted decision making are di�erent from 
those of the individuals’. Compared to the case where an individual 
interacts with an AI-driven decision aid, when there is a group of 
people, they can not only interact with the AI model but also with 
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each other, which may result in much more sophisticated interac-
tions. Obtaining a systematic knowledge of the di�erences between 
individuals and groups in AI-assisted decision making, thus, can 
not only advance the scienti�c understandings in both human-AI 
interaction and decision making, but also provide insights into the 
potentially di�erent requirements for designing AI to best support 
individuals or groups. 

Therefore, in this paper, we contribute to the human-AI inter-
action research by providing an initial comparative case study on 
how humans utilize AI assistance and make decisions di�erently 
in AI-assisted decision making when they make decisions individ-
ually or in groups. We start by reviewing the existing empirical 
research on human-AI interaction to identify the key aspects of 
people’s behavior and performance in AI-assisted decision making 
that have attracted the most attention within the research com-
munity in the past. We summarize from our literature review six 
aspects of the AI-assisted decision making processes and outcomes 
that have been commonly studied—decision accuracy, reliance on 
AI, decision con�dence, understanding of AI, fairness in decision 
making, and willingness to take accountability. Although these 
aspects are certainly not exhaustive, they provide an initial set of 
concrete perspectives to compare how groups and individuals di�er 
in AI-assisted decision making. 

We then choose recidivism risk assessment as the domain of our 
case study, because it represents a family of real-world decision 
making domains where decisions can be made by either individuals 
or groups (e.g., juries), decision makers may have their own biases 
when making decisions, and AI-assisted decision making has be-
come increasingly prevalent. Given this domain, we carry out a 
pre-registered, randomized human-subject experiment (# = 326) 
on Amazon Mechanical Turk, aiming to compare the di�erences 
between individuals and groups in AI-assisted recidivism risk as-
sessment along the six aspects we have identi�ed. In our experi-
ment, subjects were asked to complete a series of recidivism risk 
prediction tasks with the assistance of an AI model (i.e., the orig-
inal COMPAS algorithm). We created two treatments by varying 
whether subjects made their AI-assisted decisions on their own 
or in a group. In particular, when subjects needed to make their 
decisions in a group, they were asked to use a chatroom embedded 
in the task interface to discuss the decision making task with other 
members in their group in order to reach a consensus decision. 

Our results suggest that in AI-assisted recidivism risk assess-
ment, people who make decisions individually and those who make 
decisions in groups do not exhibit signi�cant di�erences in their 
decision accuracy or their understandings of the AI model. How-
ever, we also �nd a few important distinctions between groups and 
individuals in AI-assisted decision making through our experiment— 
compared to individuals, groups are more likely to rely on the AI 
model’s recommendations regardless of their correctness, but they 
also have higher con�dence when they overturn the AI model’s 
incorrect recommendations, appear to make fairer decisions accord-
ing to the accuracy equality criterion, and are willing to give more 
credits to the AI model when they make correct decisions with 
the assistance of the model’s correct recommendations. As many 
previous studies in group research have highlighted the importance 
of group dynamics and compositions on in�uencing collective be-
havior and performance [11, 35, 44, 67, 77, 79, 123], we further 

conduct a few exploratory analyses to gain more insights into the 
interactions between groups and AI in human-AI collaborative re-
cidivism risk assessment. First, by analyzing the chat logs of groups 
in our experiment, we identify a few representative ways for the 
AI model to in�uence group dynamics, including serving as the 
reference point for people’s initial decisions and the tiebreaker for 
people to reach a consensus when they hold con�icting opinions. 
In addition, by categorizing groups into homogeneous groups (i.e., 
low diversity) and heterogeneous groups (i.e., high diversity) based 
on the composition of group members’ cognitive styles, we �nd 
that groups with a higher level of cognitive diversity signi�cantly 
decrease their reliance on AI than groups with low diversity, which, 
however, does not appear to result in an improved level of decision 
making accuracy or fairness. 

Together, our study provides important experimental evidence 
that both the process and the outcome of people’s interactions with 
AI-driven decision aids can be a�ected by whether the decisions 
are made individually or collectively. We conclude by providing 
the design implications and limitations of our study, as well as 
discussing the future directions in group-AI interaction research. 

2 LITERATURE REVIEW 
2.1 Decision Making in Groups 
Group decision making refers to the scenarios where a group of deci-
sion makers make a decision collectively. Group decision making is 
often not a simple aggregation of individual’s decisions. It involves 
many other important aspects such as collaborations within the 
group [75], communication between group members [52, 108], lead-
ership [76, 116, 122], and more. For example, collaborations within a 
group of people during the decision making may bring about many 
bene�ts, such as reducing the impacts of individuals’ biases and 
blind spots on the decision making outcome [10, 110] and generat-
ing synergy between group members so that the group can produce 
better collective decision making performance than individuals act-
ing on their own [75]. However, it is found that groups sometimes 
can also perform poorly in decision making due to phenomena like 
groupthink [60] and polarization inside the group [95]. Previous 
empirical studies in management and psychology have shown that 
the performance of a group in decision making may depend on 
many di�erent factors, such as the intra-group trust [32, 41, 86] 
and the levels of understanding between group members [57, 59]. 
Another critical aspect that will in�uence the decision making per-
formance of a group is its composition. A wide range of predictors 
of collective intelligence have been identi�ed, including the group’s 
average level of skill [35], social perceptiveness [123], demographic 
diversity [55], and cognitive diversity [54, 55, 61, 85, 97, 97, 107]. 

In addition, the question of whether groups outperform indi-
viduals in decision making has attracted great interests within 
the research community, although the results are largely mixed— 
Some studies �nd dramatic advantages of groups over even the 
best-performing individuals in the groups [92, 110], suggesting a 
“process gain” from group interactions, while other studies report 
an opposite phenomenon of “process loss” [65]. The comparisons 
between the decision making performance of the individuals and 
groups are also found to be moderated by many factors, includ-
ing task complexity [1], the performance gap between individuals 
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in the group [5], and the degree to which individual’s subjective 
con�dence can re�ect their accuracy [69]. 

2.2 Human-AI Interaction: A Brief Review of 
Commonly Studied Aspects 

Research in human-AI interaction is surging in recent years. The 
interaction structure between humans and AI can take many dif-
ferent formats, such as having humans and AI act as teammates 
(i.e., they each work on interdependent tasks but share a com-
mon goal) [30, 34, 90, 94, 130], or allow the AI to take leader-
ship in a human-AI team [122]. In this paper, we focus on the 
AI-assisted decision making paradigm as our human-AI interaction 
structure [20, 115]—In this paradigm, the AI agent plays the role 
of an assistant to provide decision recommendations to humans, 
while humans make the �nal decisions. Over the past few years, 
a growing line of experimental research have been carried out to 
empirically understand how humans (mostly individuals) interact 
and work with AI assistance to make decisions [70]. By reviewing 
this literature, we highlight a set of six commonly studied aspects 
of AI-assisted decision making processes and outcomes as follows. 
Aspect 1: Decision Accuracy. Early empirical studies in AI-assisted 
decision making often investigate into the accuracy of humans’ �-
nal decisions, and aim to leverage the complementary strength of 
humans and AI to improve the decision accuracy of the human-AI 
team [7, 46, 62]. While researchers �nd that the usage of AI assis-
tance often helps people increase their decision accuracy [50], it is 
also noted that enabling the human-AI team to achieve a decision 
making accuracy higher than either party alone is generally chal-
lenging [8]. In addition, researchers have also focused on studying 
people’s decision accuracy in AI-assisted decision making when 
the AI recommendations are wrong [99], and it is shown that peo-
ple may lack the capability to accurately evaluate the accuracy of 
AI recommendations; this often results in people’s poor decision 
accuracy when the AI recommendations are wrong [26, 50, 72]. It 
is also suggested that humans’ decision accuracy in AI-assisted 
decision making can largely depend on the complexity of the AI 
model’s error boundary [6], as well as whether changes in the AI 
model’s error boundary caused by model updates are compatible 
with humans’ mental models about the AI [7]. 
Aspect 2: Reliance on AI. How accurate humans’ decisions are 
in AI-assisted decision making is largely in�uenced by the ways 
that people decide to rely on the AI model [6, 8]. Researchers adopt 
di�erent methods to measure people’s willingness to rely on AI 
models, including asking people to report their con�dence in the AI 
[8, 13, 20, 36, 64, 66, 101, 112, 125, 132], and computing the actual 
frequency that people request assistance from the AI model or adopt 
the AI model’s recommendation [4, 6, 20, 26, 82, 84, 101, 104, 109, 
125–128]. For regression tasks, people’s reliance on AI can be cal-
culated as the weight they assign to the AI recommendation when 
determining their �nal decisions [27, 56, 83, 99]. Interestingly, pre-
vious research identi�es two opposite behavior patterns regarding 
how much humans are willing to rely on AI assistance in decision 
making—algorithm aversion [13, 36] and algorithm appreciation 
[83]. Recent research shows that humans’ reliance on AI models can 
be in�uenced by a wide range of factors, such as the AI model’s accu-
racy [101, 127, 128], the expert power of the AI model [56], the level 

of agreement between the AI model’s predictions or rationale and 
their owns [84, 132], the �rst impression of AI model [112], the tim-
ing and type of errors made by the AI model [36, 66, 104], and more. 
Most recently, researchers have started to separate di�erent types 
of reliance, and look into people’s over-reliance, under-reliance, 
and appropriate reliance on AI to understand whether people rely 
on AI models in an appropriate way, and how to promote more 
appropriate reliance [26, 36, 109, 120, 125, 126]. 
Aspect 3: Decision Con�dence. Three kinds of con�dence are 
often measured in AI-assisted decision making studies: people’s 
con�dence in the AI model, their self-con�dence [29], and their 
con�dence in their own �nal decisions [83]. As discussed earlier, 
people’s con�dence in the AI model is often used as a metric to 
approximate their trust in the AI model or their willingness to rely 
on it. Self-con�dence represents how much people believe in their 
own ability on the decision making task [29], and recent research 
shows that people’ self-con�dence impacts their intention to use 
the AI assistance as well as their ability to appropriately utilize the 
AI assistance [28, 29, 48, 83, 119]. From the perspective of evaluat-
ing the decision making outcome in AI-assisted decision making, 
people’s con�dence in their �nal decisions is the most relevant 
measure. However, we note that when people decide to reject the 
AI model’s decision recommendation and make the �nal decision 
themselves, their con�dence in their �nal decision largely re�ect 
their self-con�dence. Since it is challenging to observe one’s con-
�dence externally, the main method adopted to measure people’s 
con�dence is asking people to directly report their con�dence on a 
numeric scale [29, 83, 119, 125]. 
Aspect 4: Understanding of AI. Researchers have advocated for 
the needs of increasing people’s understanding of AI models to 
promote their appropriate reliance on the models, and eventually 
improve people’s decision accuracy in AI-assisted decision making 
[3, 71, 72, 102]. To evaluate the e�ectiveness of various explainable 
AI methods, especially on improving people’s understandings of 
an AI model, a large number of experimental studies have been 
carried out [8, 19, 24, 25, 71, 82, 99, 120, 121, 125, 131]. In these 
studies, people’s understanding of the AI model can be evaluated 
in both subjective and objective ways. Subjective understanding 
can be measured by asking people to report their perceived under-
standing of the AI model [14, 25, 27, 84]. Objective understanding 
can be evaluated by asking people to simulate the AI model’s pre-
diction [81, 99, 120], examining people’s capability in recognizing 
the error of the AI [99, 120], having people describe the cause of an 
AI model’s prediction [14, 80, 100], or having people analyze the 
importance and contributions of di�erent features to an AI model’s 
prediction [25, 53, 120]. 
Aspect 5: Fairness in decision making. Recent research in fair-
ness in AI has highlighted that many AI models underlying decision 
aids may have a tendency to amplify the existing societal biases 
and discrimination, and make unfair decisions on the underrep-
resented population [2, 23, 31, 74, 93]. In light of this, researchers 
have started to look into the implications of humans’ collabora-
tion with an AI model on the fairness in their decision making. 
While early studies look into people’s perceptions of AI model’s 
fairness [37, 47, 118], most recently, studies have carried out to ex-
amine the fairness of the decisions that humans make in AI-assisted 
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decision making [39], as well as whether humans interact with the 
AI model in a biased way [49, 50]. 
Aspect 6: Accountability. With the occurrence of catastrophic 
failure of AI systems [114, 117], researchers have emphasized on the 
urging needs to rethink the relationship and accountability between 
humans and AIs in human-AI collaborations [73, 111]. It is argued 
that increasing people’s responsibility to their �nal decision have 
the potential to reduce the decision bias [98, 114] and increase the 
social justice [21]. Despite its clear importance, empirical research 
on understanding how accountability is assigned among di�erent 
parties in decision making is relatively few, and self-reports are 
again used to solicit people’s accountability perceptions [105]. 

3 STUDY DESIGN 
As a case study, we conduct a pre-registered1, randomized human-
subject experiment on Amazon Mechanical Turk (MTurk) to com-
pare the behavior and performance of groups and individuals in 
AI-assisted decision making along the six aspects that we have 
identi�ed in Section 2, in the domain of recidivism risk assessment. 

3.1 Experimental Task 
We used the recidivism risk assessment task in our experiment. 
Speci�cally, in each task, subjects were presented with the pro�le 
of a criminal defendant containing 8 features, including their basic 
demographics (e.g., gender, age, race), criminal history (e.g., the 
count of prior non-juvenile crimes, juvenile misdemeanor crimes, 
juvenile felony crimes committed), and information related to their 
current charge (e.g., charge issue, charge degree). Subjects were also 
given an AI model’s prediction on whether this defendant would 
reo�end in the next two years. After reviewing all this information, 
subjects needed to make their decisions regarding whether they 
believed the defendant would reo�end. The defendant pro�les we 
presented to subjects were selected from the COMPAS dataset, a 
public dataset containing the pro�les of defendants from Broward 
County, Florida, between 2013 and 2014, and we used the version 
shared by Dressel and Farid [38]. In addition to defendant pro�les, 
for each pro�le, the COMPAS dataset also contains a recidivism 
risk score on a scale from 1 to 10, which is given by the COM-
PAS (Correctional O�ender Management Pro�ling for Alternative 
Sanctions) algorithm, a commercial decision support tool to assess 
the likelihood of a defendant becoming a recidivist. In Dressel and 
Farid [38], defendants with a recidivism risk score of 5 or above are 
considered to have a high risk of reo�ending. Correspondingly, in 
our experiment, the AI model’s binary prediction that subjects saw 
on each task was directly taken from the COMPAS algorithm, and 
defendants with a risk score of 5 or above would be predicted as 
“will reo�end” in the next two years (i.e., the AI model we used in 
our experiment was the COMPAS algorithm). 

We chose to use the recidivism risk assessment task in our case 
study for several reasons. First, utilizing collective intelligence in 
criminal justice is not uncommon (e.g., whether a defendant is guilty 
is often decided by juries), which makes recidivism risk assessment 
a realistic domain where decision making can be carried out both 
by groups and by individuals. Second, AI-assisted decision making 
has become increasingly prevalent in criminal justice. In fact, the 
1The pre-registration document can be found at https://aspredicted.org/bd2jj.pdf. 

COMPAS algorithm—the precise AI model for recidivism risk as-
sessment that we used in our experiment—has been previously used 
by many states in the U.S., including Florida, New York, and Cali-
fornia [17, 43, 68]. Another critical reason is that in the recidivism 
risk assessment task, by comparing people’s behavior and perfor-
mance when making decisions for defendants of di�erent races, we 
can investigate decision makers’ “fairness” in AI-assisted decision 
making both in terms of biases in their decisions and biases in the 
ways that they interact with the AI model. In particular, previous 
research has reported that despite its relatively high accuracy [18], 
the COMPAS algorithm is unfair itself as it tends to incorrectly 
assign higher recidivism risk scores to black defendants [74]. Con-
ducting our experiment on the recidivism risk assessment task with 
the COMPAS algorithm, thus, allows us to compare whether and 
how groups and individuals utilize an unfair AI model di�erently. 

3.2 Experimental Treatment 
Depending on whether subjects were asked to complete the AI-
assisted recidivism risk assessment tasks on their own or in a group, 
we created two treatments in our experiment: 
• Individual-AI collaboration treatment (Individual-AI): Sub-
jects completed the recidivism risk assessment task without any 
interactions with other people. In particular, on each task, the 
subject reviewed the defendant pro�le and the risk prediction 
produced by the COMPAS algorithm. Then, the subject predicted 
whether the defendant would reo�end within the next two years. 

• Group-AI collaboration treatment (Group-AI): Subjects com-
pleted the recidivism risk assessment task within a group of 3 
people. Figure 1 shows an example of the task interface for 
subjects in this treatment. In particular, on each task, all mem-
bers in the group saw the same defendant pro�le and the same 
risk prediction produced by the COMPAS algorithm (Figure 1A). 
Subjects were asked to predict whether the defendant would 
reo�end within the next two years, and they needed to utilize 
the chatroom function embedded in the task interface to discuss 
the case with other group members in order to reach a consensus 
prediction (Figure 1B). Once all subjects in the group selected 
the same prediction, they were prompted to con�rm it as their 
�nal decision. 

3.3 Experimental Procedure 
Our experiment consisted of two phases conducted on di�erent 
days: Phase 1 was the recruiting phase, and Phase 2 was the real 
experiment phase. Figure 2 shows the �ow of our experiment. 
Phase 1. To implement the “G�����AI” treatment in our experi-
ment, we need to coordinate the experiment participation time for 
a large number of subjects. Thus, following the best practice for 
conducting synchronous experiments on MTurk [1, 87, 88, 103, 133], 
we used Phase 1 of our experiment to recruit a large panel of po-
tential human subjects for our experiment. Speci�cally, in Phase 
1, we posted a recruitment HIT on MTurk for subjects to sign up 
for our experiment. In this HIT, subjects �rst needed to �ll out a 
demographic survey. Then, subjects were asked to complete the 
same set of 9 recidivism risk assessment tasks (in a randomized 
order) without the assistance of the AI model (i.e., the COMPAS 



CHI ’23, April 23–28, 2023, Hamburg, Germany 

A B

C

Figure 1: An example of the formal task interface for the 
Group-AI treatment. Subjects in the Individual-AI treatment 
could only see Part A. A: Subjects were presented with a de-
fendant pro�le as well as the COMPAS algorithm’s recidivism 
prediction. Based on this information, subjects were asked to 
make a binary prediction on whether the defendant would 
reo�end. B: Subjects of the Group-AI treatment could discuss 
the task with other members in their group via the chatroom. 
C: Subjects of the Group-AI treatment were required to reach 
a consensus prediction within the group on a task before 
moving on to the next task. 

algorithm). On each task, we presented to subjects a criminal de-
fendant’s pro�le, and subjects were required to predict whether 
the defendant would reo�end within the next two years on their 
own. No feedback was provided to subjects on the correctness of 
their predictions. At the end of the HIT, subjects were asked to 
indicate in an exit survey if they would like to be noti�ed of future 
experiment sessions of similar tasks (i.e., our Phase 2 HIT). 

The purpose of including the recidivism risk assessment tasks in 
our Phase 1 HIT is three-fold. Firstly, these tasks enabled subjects 
to establish an expectation of what they would work on should 
they decide to participate in our future experiment sessions, so they 
could make an informed choice in the exit survey. Secondly, one of 
the 9 recidivism risk assessment tasks was an attention check task 
in which subjects were instructed to select a pre-speci�ed option. 
To ensure the quality of our experimental data, we did not invite 
subjects who failed to pass the attention check in Phase 1 to par-
ticipate in Phase 2 of our experiment. Finally, the set of recidivism 
risk assessment tasks we chose for Phase 1 HIT also allowed us to 
quantify each subject’s own “cognitive style” in making recidivism 
risk predictions. In particular, in this study, a subject’s cognitive 
style was characterized by the extent to which their recidivism pre-
dictions are in�uenced by the defendants’ race (i.e., does the subject 
believe that a White defendant has higher recidivism risk than a 

Black defendant?) and charge degree (i.e., does the subject believe 
that a felony defendant has higher recidivism risk than a misde-
meanor defendant?)2. Therefore, the 8 defendant pro�les shown in 
all but the attention check task were carefully selected so that they 
were balanced on the defendant’s race (Black or White), charge 
degree (felony or misdemeanor), and the true recidivism status (re-
o�end or not reo�end), while they had almost identical values on 
all other features in the pro�le. For more details on how a subject’s 
cognitive style is computed using their recidivism predictions in 
Phase 1, and how we use this information to explore the impact of 
a group’s cognitive diversity on the behavior and performance of 
the group, see our exploratory analysis in Section 4.7.2. 
Phase 2. To formally evaluate the behavior and performance of 
individuals and groups in human-AI collaborative recidivism risk 
assessment. we posted our Phase 2 HIT a few days after Phase 1 
was completed. For all Phase 1 subjects who passed the attention 
check and indicated that they’d like to receive noti�cations from 
us, we informed them about our Phase 2 HIT before it was posted 
online. In the Phase 2 HIT, subjects were asked to complete a total 
of 15 AI-assisted recidivism risk assessment tasks, which were 
composed of 9 practice tasks and 6 formal tasks. The purpose of the 
practice tasks was to enable subjects to obtain some understanding 
of how well the AI model performs on di�erent cases, so that they 
could decide their best strategies for utilizing the assistance of 
the AI model in the later formal tasks. On each of the 9 practice 
tasks, a defendant pro�le was displayed along with the COMPAS 
algorithm’s binary prediction on whether the defendant would 
reo�end within two years. Then, the subject was asked to make 
their predictions, before we revealed to them whether the defendant 
actually reo�ended in reality. Among the 9 practice tasks, one was 
an attention check task in which subjects were asked to choose a pre-
speci�ed option. The other 8 tasks contained 8 defendant pro�les 
that were balanced on the defendant’s race (i.e., 4 Black defendants 
and 4 White defendants). The COMPAS algorithm’s accuracy on 
these 8 pro�les was 62.5%, which was close to its accuracy on the 
entire COMPAS dataset. Moreover, while we kept the fraction of 
defendants who actually reo�ended to be the same within the 4 
Black defendants and 4 White defendants in the practice tasks, the 
COMPAS algorithm’s predictions on them showed a higher false 
positive rate on Black defendants, which is consistent with the 
COMPAS algorithm’s behavior on the entire COMPAS dataset as 
reported in previous studies [74]3. 

After the subject completed all 9 practice tasks, we presented a 
feedback page to them, which summarized the prediction accuracy 
of the COMPAS algorithm and themselves on each practice task. 
Then, the subject moved on to work on the 6 formal tasks, for which 
they would not receive immediate accuracy feedback after the task 
anymore. In particular, subjects would be randomly assigned to 
one of the two treatments, I����������AI or G�����AI. If the 

2We acknowledge that subjects’ cognitive style can be de�ned with respect to how 
their recidivism predictions are in�uenced by values of other features in the defen-
dant’s pro�le. We chose to focus on the impact of defendants’ race and charge degree 
because they are binary features, which makes it easier for us to enumerate all possible 
value combinations on these two features in our Phase 1 tasks and to see how sub-
jects’ predictions vary with values on these two features. Subject’s belief on how the 
defendant’s race impacts the recidivism risk also re�ect their biases in these decisions.
3Throughout this paper, we consider predicting a defendant as “will reo�end” to be 
the “positive” prediction. 
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Figure 2: The overall �ow of our experiment. Phase 1 was the recruiting phase, and Phase 2 was the real experiment phase. The 
HIT for Phase 2 was posted a few days after Phase 1. 

subject was assigned to the I����������AI treatment, they would 
complete each of the 6 formal tasks on their own as we’ve described 
in Section 3.2. On the other hand, if the subject was assigned to 
the G�����AI treatment, they would be sent to a lobby waiting 
for the other two members of their group to join, before starting 
working on the 6 formal tasks with them as a group. To protect 
subjects’ anonymity, we asked subjects to pick an animal avatar 
to represent themselves throughout the rest of the experiment. 
If the subject waited for more than 5 minutes in the lobby, we 
would automatically redirect them to the I����������AI treatment, 
so that they can complete the 6 formal tasks independently. For 
those subjects who successfully formed groups, as discussed in 
Section 3.2, on each formal task, they were asked to discuss the 
defendant of that task within their group to reach a consensus 
prediction4. Finally, for subjects in both treatments, after submitting 
their recidivism prediction on each formal task, they were asked 
to report their con�dence in their �nal prediction (or their group’s 
�nal prediction) on a 5-point Likert scale from 1 (not con�dent at 
all) to 5 (extremely con�dent); note that for subjects in the G�����
AI treatment, each group member reported their con�dence in the 
group’s �nal prediction separately. 

To facilitate our later comparisons on how fair the decisions of 
groups and individuals are in human-AI collaborative recidivism 
risk assessment, the defendant pro�les for the 6 formal tasks were 
carefully selected. In particular, we �rst prepared 4 subsets of defen-
dant pro�les for di�erent combinations of defendant race and true 
recidivism status (i.e., Black reo�ending, Black non-reo�ending, 
White reo�ending, White non-reo�ending) from the COMPAS 
dataset, with each subset containing 5 pro�les. In addition, we 
also prepared 5 pairs of “twin” defendant pro�les such that the 
two pro�les in each pair had exactly the same features and true 
recidivism status except for the race. To compose the 6 formal tasks 
for a subject or a group of subjects, we randomly selected one 
pro�le from each of the 4 subsets, and we also randomly picked 
one pair of twin defendant pro�les. In doing so, the 6 formal tasks 
that subjects worked on were balanced on defendant race, and the 
fraction of reo�ending defendants were kept the same among the 

4To ensure that subjects in the G�����AI treatment would actively engage in discus-
sions, we sent a prompt message to subjects if they were idle on the interface for 
more than 1 minute; if they did not take any actions (e.g., enter chat messages, make a 
prediction) for more than 2 minutes, they would be removed from the group. 

Black and White defendants. Note that across the entire pool of 30 
pro�les that we prepared (i.e., 20 from the 4 subsets and 10 from the 
5 twin pairs), the COMPAS algorithm’s accuracy was 56.7%, with 
a higher false positive rate on Black defendants (Black: 44.4% vs. 
White: 11.1%). Moreover, within the pool of 10 twin pro�les, the 
COMPAS algorithm’s accuracy was 60%, but it still had a higher 
false positive rate on Black defendants (Black: 50% vs. White: 25%)5. 

Finally, after completing all the formal tasks, the subject was 
asked to �ll out an exit survey individually. In the survey, we �rst 
tested subject’s understanding of the AI model by asking them to 
report their perceived importance of a feature in in�uencing the 
AI model’s recidivism prediction on a 5-point Likert scale from 1 
(“not in�uential at all”) to 5 (“extremely in�uential”), for each of the 
8 features. Then, for each of the 6 formal tasks that they (or their 
group) completed, we conducted a review with the subject—For 
each task, we �rst displayed the defendant’s pro�le, the COMPAS 
algorithm’s prediction, as well as the �nal prediction of the subject 
(or the subject’s group) to the subject again, before we revealed to 
them the true recidivism status of the defendant. Then, depending 
on the correctness of the subject’s �nal prediction, we asked the 
subject to determine how much credit each party should take for 
the correct prediction or how much responsibility each party should 
take for the incorrect prediction, for each party involved in the 
decision making—the subject themselves, the AI model, and the 
subject’s teammates (only applicable for subjects in the G�����
AI treatment). Subjects allocated the credit or responsibility via 
interacting with a piechart as shown in Figure 3. 

We opened our experiment only to U.S. workers, and each worker 
was allowed to participate at most once. The base payment was $0.3 
for Phase 1 and $1.0 for Phase 2. In addition, to motivate subjects to 
carefully deliberate (and discuss with other members in their group 
if applicable) about what predictions to make in the formal task, we 
further informed each subject at the beginning of the Phase 2 HIT 
that they could earn a $0.4 bonus for each correct �nal prediction 
made on the formal task. Thus, the maximum amount of bonuses a 
subject could receive in Phase 2 was $2.4. 

5To get a sense of subjects’ own decision making behavior and performance on the 
selected 30 defendant pro�les, we conducted a pilot study in which subjects were asked 
to make independent predictions on these defendant pro�les without the assistance of 
the AI model. The results of this pilot study are reported in the supplemental materials. 
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(a) Individual-AI treatments (b) Group-AI treatments 
Figure 3: Subjects allocated credit or responsibility for each party involved in the decision making on a pie chart after the 
correctness of the �nal prediction was revealed. 

3.4 Measurements 
To conduct a comprehensive comparison between groups and indi-
viduals in AI-assisted decision making, we de�ned the following 
measurements to quantify the six aspects of behavior or perfor-
mance commonly studied in AI-assisted decision making. 

3.4.1 Decision accuracy. We measured the decision accuracy of 
an individual (or a group) as the fraction of formal tasks in which 
the individual’s (or the group’s) prediction was correct. Naturally, 
the higher the decision accuracy, the better the individual (or the 
group) performs. 

3.4.2 Reliance on AI. As the primary metric of reliance, for each 
individual or group, we measured their overall reliance on the AI 
model using the fraction of formal tasks in which their �nal predic-
tion was the same as the AI model’s prediction, following similar 
methods used in previous studies on human reliance on AI [84, 132]. 
In addition, to determine if the individual or the group’s reliance on 
the AI model was appropriate, we also considered two secondary 
metrics of reliance—subjects’ over-reliance and under-reliance on 
the AI model [20, 120, 125]. Over-reliance was quanti�ed by the 
fraction of formal tasks where the individual or the group’s �nal 
prediction was the same as the AI model’s prediction, among all 
formal tasks where the AI model’s prediction was wrong. On the 
other hand, under-reliance was computed as the fraction of formal 
tasks where the individual or the group’s �nal prediction was di�er-
ent from the AI model’s prediction, among all formal tasks where 
the AI model’s prediction was correct. For individuals or groups 
to perform better, they should lower both their over-reliance and 
under-reliance on the AI model. 

3.4.3 Decision confidence. Subjects’ con�dence in their decision 
was measured by their self-reported con�dence provided at the end 
of each formal task. We looked into subjects’ decision con�dence 
for their correct �nal decisions and incorrect �nal decisions sepa-
rately. Since con�dence re�ects subjects’ subjective belief in how 
likely their predictions are correct, it is most desirable if subject’s 
con�dence is calibrated, i.e., accurately re�ects the correctness like-
lihood of the predictions. In other words, for correct decisions, the 
more con�dent subjects are, the better; for incorrect decisions, the 
less con�dent subjects are, the better. 

3.4.4 Understandings of AI. To quantify how much a subject un-
derstood the AI model, we measured how well the subject could rec-
ognize the strength of the relationships between di�erent features 

and the AI model’s predictions (i.e., the “importance” of di�erent 
features). Speci�cally, the true “importance score” of a feature (e.g., 
the defendant’s age) was calculated as the absolute value of the 
Pearson correlation coe�cient between the feature’s value and the 
AI model’s predictions—the larger the score for a feature, the more 
the feature relates to the AI model’s predictions6. Then, a subject’s 
understanding of the AI model was computed as the Pearson cor-
relation coe�cient between the true importance scores and the 
subject’s perceived importance of all features, where the latter was 
taken from the subject’s self-reports in the exit survey. Intuitively, 
the larger the correlation, the more the subject understood which 
features in the defendant’s pro�les had a stronger in�uence on the 
AI model’s predictions. 

3.4.5 Fairness in decision making. We considered two types of fair-
ness in AI-assisted decision making in this study. First, we examined 
that in the formal tasks, whether individuals’ or groups’ decisions 
themselves were fair based on the following metrics [9]: 
• Positive prediction di�erence (POS): The likelihood of mak-
ing positive predictions (i.e., predicting “will reo�end”) on all 
Black defendants minus that on all White defendants. 

• Twin case prediction di�erence (Twin): Within the pair 
of twin defendant pro�les, the individual or the group’s binary 
prediction made on the Black defendant in the pair minus that 
made on the White defendant in the pair. 

• Accuracy di�erence (ACC): The prediction accuracy on all 
Black defendants minus that on all White defendants. 

• False positive rate di�erence (FPR): The prediction’s false 
positive rate (FPR) on all Black defendants minus that on all 
White defendants. 

• False negative rate di�erence (FNR): The prediction’s false 
negative rate (FNR) on all Black defendants minus that on all 
White defendants. 
For all these metrics, the closer the values are to zero, the fairer 

the decisions are. We considered POS, Twin, and ACC as the 
three primary metrics for the fairness level of subjects’ decisions, 
since each one of them directly maps to a unique type of classical 
fairness de�nition used in the literature. For example, when an indi-
vidual or a group’s decisions have POS = 0, their decisions satisfy 
the fairness de�nition of demographic parity [40, 91]. Decisions with 

6By computing the absolute value of the correlation coe�cient between the feature 
and the AI model’s predictions, we quanti�ed the strength of each feature’s in�uence 
on the AI model’s predictions without di�erentiating the sign of the in�uence. 
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Twin = 0 satisfy the individual fairness de�nition [39, 40], that 
is, treating similar individuals similarly. Decisions with ACC = 0 
satisfy the fairness de�nition of accuracy equality [12]. In addition, 
FPR and FNR were considered as the secondary metrics of the 
decision fairness which examine the accuracy equality across defen-
dants of di�erent races, conditioned on the ground truth is negative 
or positive respectively; when both FPR = 0 and FNR = 0, the 
fairness de�nition of equalized odds [51, 129] is satis�ed. 

Beyond the fairness of the decisions, we were also interested in 
the fairness in how individuals or groups interacted with the AI 
model, i.e., whether subjects exhibited any tendency of “disparate 
interactions” [49, 50]. Accordingly, we de�ned the following metrics 
based on the individual or the group’s reliance on the AI model on 
the 6 formal tasks: 
• Positive prediction reliance di�erence (REL-POS): The 
individual or the group’s overall reliance on the AI model for all 
Black defendants where the AI model made a positive prediction 
minus that for all White defendants where the AI model made a 
positive prediction. 

• Negative prediction reliance di�erence (REL-NEG): The 
individual or the group’s overall reliance on the AI model for all 
Black defendants where the AI model made a negative prediction 
minus that for all White defendants where the AI model made a 
negative prediction. 
Again, the closer REL-POS and REL-NEG are to zero, the 

less the ways how an individual or a group interacts with the AI 
model is changed because of the defendant’s race, and the fairer 
the interactions. 

3.4.6 Accountability. The accountability of each party involved 
in the decision making was measured through the subject’s self-
reported accountability assignment for each task in the exit survey. 
We looked into subjects’ credit assignments for their correct �-
nal decisions and responsibility assignment for their incorrect �nal 
decisions separately. Recall that subjects in the I����������AI treat-
ment only assigned the accountability between the AI model and 
themselves, while subjects in the G�����AI treatment needed to 
assign the accountability among the AI model, their teammate, and 
themselves. Thus, to make the accountability comparable between 
the two treatments, we computed the normalized accountability of 
each party, which is the raw accountability percentage assigned 
to the party by the subject, divided by the amount of accountabil-
ity that would have been assigned to the party if it was equally 
shared among all parties in the decision making (i.e., 50% for each 
party in the I����������AI treatment, 33.3% for each party in the 
G�����AI treatment). In this way, for a speci�c party, a normalized 
accountability value larger than 1 (or smaller than 1) means that the 
subject believed that that party needed to take more than (or less 
than) an equal share of the accountability. While there is no right 
or wrong assignment of accountability, ideally, one would hope 
that when people’s �nal decision is wrong in AI-assisted decision 
making, they will not shift most of the blame to the AI model [106]. 

4 RESULTS 
1444 workers from Amazon Mechanical Turk (MTurk) took our 
Phase 1 recruitment HIT and passed the attention check. Among 
them, 326 subjects participated in Phase 2 of our experiment (45% 

self-identi�ed as female, and the majority age group was 25–34). 
By the end of our experiment, we collected valid experimental data 
from 93 individual subjects for the I����������AI treatment and 233 
subjects (92 groups) for the G�����AI treatment7. As a sanity check, 
we found no signi�cant di�erence in subjects’ decision accuracy 
or their reliance on the AI model in the 9 practice tasks between 
subjects of the two treatments, which suggests our randomization 
of subjects was successful. 

In the following, we report our comparisons on the behavior 
and performance of groups and individuals in human-AI collab-
orative recidivism risk assessment, with respect to their decision 
accuracy and con�dence, appropriateness of reliance on AI, un-
derstanding of AI, fairness in decision making, and willingness 
to take accountability. As an exploratory analysis, in the end, we 
also look into how the presence of the AI model impacts group 
dynamics, and how the behavior and performance of a group in 
AI-assisted decision making vary with the cognitive diversity of 
the group. Unless otherwise speci�ed, we use two-tailed Welch’s 
t-tests (an adaptation of the Student’s t-tests for samples with un-
equal variances) [33] to examine whether the di�erences observed 
between individuals and groups (or di�erent types of groups) are 
signi�cant. For some metrics, computing their values requires us to 
divide the entire dataset into several subsets (e.g., over-reliance and 
under-reliance, the two secondary metrics of reliance, are measured 
based on two disjoint subsets of the data after conditioning on the 
correctness of the AI model’s predictions). In this case, we consider 
the comparisons between the two treatments in di�erent subsets 
to belong to the same family, and we use Bonferroni corrections 
to correct the p-values for multiple comparisons. For clarity, we 
use adjusted-? in the following to indicate the corrected p-values 
whenever Bonferroni corrections are used. 

4.1 Comparison on Decision Accuracy 
The average decision accuracy for groups in the G�����AI treat-
ment and individuals in the I����������AI treatment was 57.8% 
and 55.3%, respectively. The Welch’s t-test result suggests that the 
di�erence in the decision accuracy between groups and individuals 
is not statistically signi�cant (C (184) = −0.75, ? = 0.452). 

4.2 Comparison on Reliance on AI 
We now move on to examine whether groups and individuals rely on 
the AI model di�erently in AI-assisted decision making. Figure 4a 
compares the overall reliance on the AI model between groups 
in the G�����AI treatment and individuals in the I����������AI 
treatment. Visually, it is clear that when subjects made decisions 
in groups, they were more likely to rely on the AI model than 
when they made decisions alone. The Welch’s t-test result con-
�rms that the di�erence is statistically signi�cant (I����������AI: 
" = 0.60, (⇡ = 0.26; G�����AI: " = 0.73, (⇡ = 0.24; C (184) = 
−3.47, ? < 0.001). 
7For subjects of the I����������AI treatment, 71 were initially assigned to this treat-
ment while 22 were transferred from the G�����AI treatment as they did not suc-
cessfully form a group. Moreover, among the 233 subjects of the G�����AI treatment, 
92 groups were formed, with 49 of them containing three subjects and 43 of them 
containing two subjects—For each subject assigned to the G�����AI treatment, we 
made the attempt to form a 3-person group. However, after the 3-person group was 
formed, some members might drop out of the experiment or be removed from the 
group due to their inactivity, resulting in a number of 2-person groups. 
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(a) Overall reliance (b) Under-reliance (c) Over-reliance 
Figure 4: Comparing individuals and groups’ overall reliance, under-reliance, and over-reliance on the AI model. Error bars 
represent the standard errors of the mean. *, ** and *** represent the statistical signi�cance level of 0.05, 0.01 and 0.001, 
respectively. 

Figure 5: Comparing individuals’ and groups’ con�dence in their correct �nal predictions and incorrect �nal predictions on (a) 
all cases, (b) only those cases when their �nal predictions agreed with the AI recommendation, (c) only those cases when their 
�nal predictions disagreed with the AI recommendation. Error bars represent the standard errors of the mean. * represents the 
statistical signi�cance level of 0.05. 

To examine whether individuals’ and groups’ reliance on the AI 
model was appropriate, we further plot the comparisons in subjects’ 
under-reliance and over-reliance on the AI model in Figures 4b 
and 4c, respectively. We found that when the AI model was correct, 
groups were more likely to rely on the AI model compared to 
individuals, resulting in a lower level of under-reliance. The result 
of our Welch’s t-test with Bonferroni correction con�rms that the 
di�erence is statistically signi�cant (I����������AI: " = 0.37, (⇡ = 
0.34; G�����AI: " = 0.24, (⇡ = 0.30; C (184) = 2.86, adjusted-? = 
0.009). Meanwhile, groups were also more likely to rely on the 
AI model than individuals when the AI model was wrong, that is, 
groups exhibited a signi�cantly higher level of over-reliance on 
the AI model (I����������AI: " = 0.53, (⇡ = 0.36; G�����AI: 
" = 0.68, (⇡ = 0.33; C (180) = −2.89, adjusted-? = 0.010). Together, 
these results suggest that in human-AI collaborative recidivism risk 
assessment, groups rely on the AI model more than individuals, 
regardless of the correctness of the AI model’s recommendation. 

4.3 Comparison on Decision Con�dence 
Next, we look into individuals’ and groups’ decision con�dence in 
AI-assisted decision making. Figure 5a compares the average deci-
sion con�dence for subjects in the I����������AI and G�����AI 
treatment, and the comparison is conducted for subjects’ correct and 
incorrect �nal decisions separately. Visually, regardless of whether 

the �nal decisions were correct, groups appeared to be slightly 
more con�dent in them than individuals. According to the results 
of the Welch’s t-test with Bonferroni correction, however, these 
di�erences in decision con�dence are not signi�cant at the level of 
? = 0.05, both for correct decisions and incorrect decisions. 

We note that since the AI model’s decision recommendations 
were presented to subjects in AI-assisted decision making, whether 
subjects’ �nal decisions agreed with the AI model may a�ect sub-
jects’ con�dence in them. Thus, to obtain a more in-depth under-
standing of how groups’ decision con�dence compares with that 
of individuals, we further compared groups’ and individuals’ de-
cision con�dence conditioned on both the correctness of the �nal 
decision, and the agreement between the �nal decision and the AI 
model’s recommendation (i.e., if subjects decided to rely on the 
AI model). The results are shown in Figures 5b and 5c. We found 
that individuals always had much lower con�dence in their �nal 
decisions if they decided not to rely on the AI model, but we did 
not observe a similar decrease in decision con�dence among group 
decision makers. Applying Welch’s t-tests with Bonferroni correc-
tions on each of the 4 scenarios (i.e., rely on AI and correct, rely 
on AI and wrong, not rely on AI and correct, not rely on AI and 
wrong), we found a signi�cant di�erence in decision con�dence be-
tween the two treatments when subjects’ �nal decisions disagreed 
with the AI model’s incorrect recommendation and made a correct 
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Individual-AI 
Group-AI 0.083 0.000 -0.018 0.120 -0.065 -0.053 -0.016 
(adjusted) p-value 0.903 0.890 0.028* 0.658 0.270 1.000 0.395 

0.089 0.011 -0.140 0.188 0.075 -0.103 -0.097 

Treatment POS Twin ACC FPR FNR REL-POS REL-NEG 

Table 1: Comparing the fairness of individuals and groups in AI-assisted decision making. * represents the statistical signi�cance 
level of 0.05. Since FPR, FNR, REL-POS, and REL-NEG are computed on subsets of the data, Bonferroni corrections are 
used and adjusted p-values are reported. 

�nal decision (I����������AI: " = 3.81, (⇡ = 0.88; G�����AI: 
" = 4.09, (⇡ = 0.85; adjusted-? = 0.047), but no signi�cant dif-
ferences in the other three scenarios. This means that compared 
to individuals, groups are more con�dent when they reject an AI 
model’s incorrect recommendation. This can be desirable because 
it implies that groups’ decision con�dence can be more calibrated 
than individuals’ when they decide not to rely on the AI model. 

4.4 Comparison on Understanding of AI 
For subjects in the I����������AI treatment, the average Pearson 
correlation coe�cient between the true feature importance and the 
subject’s perceived feature importance was 0.05. Meanwhile, for 
subjects in the G�����AI treatment, the average Pearson correlation 
coe�cient value was 0.10, and the result of a Welch’s t-test suggests 
that it is not statistically di�erent than that in the I����������AI 
treatment (? = 0.344). That is, in AI-assisted decision making, 
whether people make decisions on their own or in groups does not 
seem to signi�cantly a�ect their understanding of the AI model. 

4.5 Comparison on Decision Making Fairness 
Table 1 reports the comparisons between the fairness of individuals 
and groups in AI-assisted decision making, on both how fair their 
decisions were and how fair they interacted with the AI model. 

First, we focus on the �ve metrics that re�ect how fair the individ-
uals’ or groups’ decisions were—POS, Twin, ACC, FPR, and 
FNR. Recall that we selected the 6 formal tasks for each subject in 
a way such that the true reo�ending likelihood was the same within 
the set of Black defendants and the set of White defendants that the 
subject saw. Results in Table 1 suggest that in AI-assisted recidivism 
risk assessment, whether subjects made decisions individually or 
in a group did not seem to signi�cantly change their likelihood of 
predicting Black defendants to reo�end in relative to White defen-
dants (i.e., no signi�cant di�erence is observed on POS or Twin 
between the two treatments). However, compared to subjects who 
made decisions in groups, individual subjects’ predictions on Black 
defendants appear to have a lower accuracy, a higher false positive 
rate, and a higher false negative rate than White defendants. When 
using Welch’s t-tests to examine whether there exist any signi�cant 
di�erences between the fairness level in individuals’ and groups’ 
decisions, we found that the di�erence on ACC was signi�cant 
(? = 0.028). Indeed, for subjects in the I����������AI treatment, 
their average prediction accuracy on Black defendants was 48.4%, 
which was 14% lower than that on White defendants. For subjects in 
the G�����AI treatment, however, the groups’ average prediction 
accuracy on Black and White defendants were 56.9% and 58.7% 
respectively, with a much smaller gap of 1.8%; this indicates that 

groups’ decisions are fairer than individuals’ decisions with respect 
to the accuracy equality de�nition. 

Next, we proceed to the two metrics that re�ect how fair individ-
uals and groups were when interacting with the AI model—REL-
POS and REL-NEG. The results shown in Table 1 suggest that 
when the AI model predicted a defendant to reo�end (i.e., made a 
positive prediction), both individuals and groups seemed to rely on 
the AI model’s predictions less when the defendant was Black than 
the case when the defendant was White (i.e., REL-POS<0). Similar 
observations can also be made when the AI model predicted that a 
defendant will not reo�end (i.e., REL-NEG<0). Yet, our statistical 
test results suggest that the di�erences on these two metrics are 
not signi�cant across the two treatments, meaning that how fairly 
groups interacted with the AI model was not reliably di�erent than 
how fairly individuals interacted with the AI model. 

4.6 Comparison on Accountability 
Lastly, we look into how subjects attributed accountability to them-
selves and the AI model di�erently when they made decisions 
as individuals or as groups8. Figure 6a illustrates the comparison 
across the two treatments on the normalized accountability that 
subjects assigned to themselves, conditioned on the �nal decisions 
being correct or incorrect. Figure 6b shows a similar comparison 
for the normalized accountability subjects assigned to the AI model. 
According to the results of the Welch’s t-tests with Bonferroni cor-
rection, we found that if the �nal decision was correct, compared 
to individual decision-makers, the group decision-makers assigned 
a signi�cantly lower level of credit to themselves (I����������AI: 
" = 1.10, (⇡ = 0.29; G�����AI: " = 1.01, (⇡ = 0.19; C (1115) = 
5.31, adjusted-? < 0.001) and a signi�cantly higher level of credit 
to the AI model (I����������AI: " = 0.89, (⇡ = 0.30; G�����AI: 
" = 0.96, (⇡ = 0.30; C (1115) = −3.30, adjusted-? = 0.002). In 
contrast, when the �nal decision was wrong, the assigned account-
ability to themselves or the AI model were not signi�cantly a�ected 
by whether the decisions were made by individuals or groups. 

Intuitively, the accountability assignment between oneself and 
the AI model in an AI-assisted decision making task may depend 
on whether the AI recommendation on that task is correct. To 
obtain a more �ne-grained understanding, we further look into 
the comparisons in accountability assignment between individuals 
and groups for the cases where the AI recommendations were 
correct (Figure 7) and the cases where the AI recommendations were 
wrong (Figure 8) separately. Here, we found that the di�erences in 
the assigned accountability between the I����������AI treatment 
and the G�����AI treatment that we previously saw in Figure 6 

8Here, we did not compare the assigned accountability to the teammates, since subjects 
in the I����������AI treatment did not have any teammates. 
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Figure 6: Comparing how subjects who made decisions as an individual or in a group assigned accountability to (a) themselves 
and (b) the AI model, conditioned on whether their �nal decision was correct. Error bars represent the standard errors of the 
mean. ** and *** represent the statistical signi�cance level of 0.01 and 0.001, respectively. 

Figure 7: Comparing when the AI recommendation was correct, how subjects who made decisions as an individual or in a 
group assigned accountability to (a) themselves and (b) the AI model, conditioned on whether their �nal decision was correct. 
Error bars represent the standard errors of the mean. ** and *** represent the statistical signi�cance level of 0.01 and 0.001, 
respectively. 

Figure 8: Comparing when the AI recommendation was wrong, how subjects who made decisions as an individual or in a group 
assigned accountability to (a) themselves and (b) the AI model, conditioned on whether their �nal decision was correct. Error 
bars represent the standard errors of the mean. 

primarily came from those scenarios when the AI recommendations 
were correct. Speci�cally, we found that compared to individual 
decision makers, group decision makers signi�cantly decreased 
the credit to themselves (adjusted-? < 0.001) while increasing the 
credit to the AI model (adjusted-? = 0.001) when they made correct 
�nal decisions with the help of correct AI recommendations. In 
contrast, when the AI recommendations were wrong, regardless of 
the correctness of subjects’ �nal decisions, we found no signi�cant 
di�erences in their accountability assignment between themselves 
and the AI model across the two treatments. 

4.7 Exploratory Analyses 
Finally, we conduct a few exploratory analysis to gain deeper in-
sights into the group dynamics in AI-assisted decision making, and 
how the composition of groups a�ects their behavior and perfor-
mance in AI-assisted decision making. 

4.7.1 How does the presence of AI model impact group dynam-
ics? Compared to the typical group decision making settings, in 
AI-assisted group decision making, group members can not only 



CHI ’23, April 23–28, 2023, Hamburg, Germany Chiang, et al. 

Impacts on group dynamics Examples 

AI recommendation as a starter 

“I agree with the machine prediction.” (Subject 435, Group 42) 
“I checked “will not”, like the machine learning model.” (Subject 62, Group 8) 
“one prior, could go either way. machine says will.” (Subject 907, Group 80) 
(All of the above quotes are the �rst message in a group’s chat history) 

Justify/Refute AI recommendation 
“I agree with the machine model. No prior charges, female, and white.” (Subject 1374, Group 125) 
“I disagree with model. Too many past incidents and this was a serious crime.” (Subject 121, Group 12) 
“The model thinks yes and that’s a bit of history so I think they will reo�end.” (Subject 1320, Group 80) 

Back up one’s opinion using AI 
“I agree that the person will not reo�end because of no prior charges and the machine learning model prediction.” 
(Subject 142, Group 56) 
“I think she will not reo�end. She was squeaky clean for 42 years...Also the machine agrees.” (Subject 27, Group 59) 

AI recommendation as tiebreaker 
“Well I guess since we can’t agree, let’s just go with the machine.” (Subject 27, Group 59) 
“okay we can go with the machine model then if you would prefer.” (Subject 1541, Group 130) 
“should we go with the machine?” (Subject 1541, Group 130) 

Remind the group of AI decision “Our machine learning model predicts that this defendant will not reo�end in 2 years.” (Subject 158, Group 11) 

Analyze the trustworthiness of AI 
“I think he will reo�end - 4 crimes after 18. The machine was wrong on many cases in the learning part.” 
(Subject 718, Group 61, AI predicts “not reo�end”) 
“I trust the model bot a lot.” (Subject 1269, Group 124) 

Table 2: Example chat logs for the impacts of AI on group dynamics in AI-assisted group decision making. 

interact with each other but also get access to the AI model’s deci-
sion recommendations. Thus, we are interested in obtaining more 
understandings of how the presence of the AI model impacts the 
group dynamics in decision making. We analyzed the chat logs for 
all groups in our experiment, and identi�ed a few representative im-
pacts of AI on group dynamics. Some example chat logs illustrating 
these impacts are given in Table 2. 
AI recommendations can help initiate the group delibera-
tion. Due to the presence of the AI recommendations, we found 
that many groups started their deliberation process with some dis-
cussions related to the AI recommendations. For instance, some 
group members may explicitly express whether they agree with 
the AI model’s recommendation or not at the beginning of the chat. 
Another example is that for some groups, the deliberation within 
the group often starts with one member giving a “brie�ng” of the 
current decision making case, which includes both the key features 
on the defendant’s pro�les and the AI model’s recommendation. 
This observation implies that the AI recommendation may pro-
vide a reference point for some groups to initiate their deliberation 
process from some concrete decisions. 
AI recommendations play various roles in the formation of 
group decisions. As groups go through the deliberation process, 
we found that di�erent groups may incorporate the AI recommen-
dations into their �nal decisions in di�erent ways. For some groups, 
especially the ones that initiated the deliberation with some discus-
sions related to the AI recommendations, the entire deliberation 
process could be centered around analyzing whether the AI recom-
mendations were reasonable. As a result, group members attempted 
to justify why the AI model’s recommendation was sensible or ar-
gue for why the AI model’s recommendation could be wrong (see 
the “Justify/Refute AI recommendation” row in Table 2). In con-
trast, some other groups treated the AI recommendation more as a 
second opinion—group members expressed their opinions on the 
decision making case by analyzing the defendant’s pro�les on their 
own, while they cited the agreeing AI recommendations as the 
supporting evidence of their opinions to convince others (see the 
“Back up one’s opinion using AI” row in Table 2). Interestingly, we 

found that sometimes the AI recommendation could also serve as 
the tiebreaker—when group members held di�erent opinions and 
could not convince one another, they may eventually decide to go 
with the AI model’s recommendation to reach a consensus (see the 
“AI recommendation as tiebreaker” row in Table 2). 
Some groups made the e�orts to ensure that AI’s “voice” is 
heard and the trustworthiness of AI is discussed. On the group 
chatroom interface, by default, the �rst message displayed was 
always from a “risk analysis bot,” which stated the AI model’s de-
cision recommendation. Interestingly, we noticed that during the 
discussion, members in some groups would re-post the AI recom-
mendation, which e�ectively reminded group members of the AI 
recommendation and made sure that the AI model’s opinion would 
not be left out. In addition, some groups also explicitly discussed 
their perceptions of the reliability and trustworthiness of the AI 
model to decide how to best utilize the AI recommendations (see 
the “Analyze the trustworthiness of AI” row in Table 2). 
Not all groups discussed about AI recommendations. Finally, 
we note that not all groups discussed AI recommendations during 
their deliberation processes. Indeed, we found that some groups 
appeared to arrive at their �nal decisions solely based on their anal-
yses on the defendant’s pro�les. While AI recommendations may 
have in�uenced how each group member approached the task and 
formed their own opinion (even though they did not explicitly state 
that in their chat messages), it is possible that AI recommendations 
were simply ignored by some groups in their decision making. 

4.7.2 How does a group’s cognitive diversity influence their behavior 
and performance in AI-assisted decision making? While we have 
obtained some understandings on how individuals and groups di�er 
in their behavior and performance in AI-assisted decision making 
now, previous research on groups suggests that not all groups 
are the same. For example, many previous studies have suggested 
that the ways that a group behaves and how well it can perform 
depends on the group composition, such as the cognitive diversity 
of the group members [55]. Thus, in this section, we report the 
results of our second exploratory analysis on understanding how 
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the cognitive diversity of a group may impact its behavior and 
performance in AI-assisted decision making. 

For this analysis, we �rst need to determine each subject’s “cogni-
tive style” in solving the recidivism risk assessment tasks. Cognitive 
style is the way that individuals perceive, process, and remember in-
formation; it re�ects people’s thought patterns and mental perspec-
tives, and it is shown to impact how people make decisions [15, 58]. 
In this study, we operationalized the measurement of a subject’s 
cognitive style in the context of the recidivism risk assessment task, 
and we quanti�ed it as the subject’s belief on how some selected 
features of the defendant’s pro�le will a�ect the recidivism risk. 
Speci�cally, recall that in Phase 1, we asked each subject to work on 
a set of 8 tasks that were balanced on the defendant’s race, charge 
degree, and the true recidivism status, with other features kept 
almost identical. Using a subject 8’s independent predictions on 
these 8 tasks, we computed the subject’s belief in how the defen-
dant’s race a�ects recidivism risk (Belief A024 ) as the fraction of 8 
positive predictions that this subject made on all 4 Black defen-
dants in Phase 1 minus the fraction of positive predictions that 
this subject made on all 4 White defendants in Phase 1. So, When 
Belief A024 > 0 (or Belief A024 < 0), it means that subject 8 associ-8 8 
ated the Black (or White) race with a higher chance of reo�ending; 
the larger the value of |Belief A024 |, the more subject 8’s recidivism 8 
risk assessment is in�uenced by the defendant’s race. Similarly, 
we also computed subject 8’s belief in how the defendant’s charge 
degree a�ects recidivism risk (Belief 2⌘0A64 ) as the fraction of posi-8 
tive predictions subject 8 made on all 4 felony defendants in Phase 
1 minus the fraction of positive predictions subject 8 made on all 
4 misdemeanor defendants in Phase 1. Together, each subject 8’s 
cognitive style is then de�ned by their belief on both the defen-
dant’s race and charge degree and can be represented by the vector 

, Belief 2⌘0A64 si = [Belief A024 ].8 8
Given the cognitive style of each subject in a group ⌧ , we then 

computed the similarity between two members 8 and 9 in the group 
as the cosine similarity score between their corresponding cognitive 
style vectors, i.e., sim(8, 9) = 2>B (si, sj). Thus, the similarity between 
two group members will be a value in the range of [−1, 1]—the 
larger the value of sim(8, 9) is, the more similar the cognitive styles 
of subjects 8 and 9 are; and sim(8, 9) < 0 implies that the two 
subjects had opposite beliefs on the direction of either the impact of 
a defendant’s race on recidivism risk (e.g., subject 8 believed Black 
race was associated with higher recidivism risk while subject 9 
believed White race was associated with higher recidivism risk), or 
the impact of a defendant’s charge degree on recidivism risk, or both. 
Finally, the group ⌧ ’s cognitive diversity was de�ned by the largest 
similarity score between any two members in the group—when 
max8, 9 2⌧ sim(8, 9) < 0, the group is classi�ed as a �������������� 
group (since even the most similar pair of members in the group is 
quite di�erent from each other); otherwise, the group is classi�ed 
as a ������������� group. 

With this classi�cation, we got 13 �������������� groups and 
79 ������������� groups. We then compared how groups with dif-
ferent levels of cognitive diversity di�er on their decision accuracy 
and con�dence, reliance on AI, understanding of AI, fairness in 
decision making, and willingness to take accountability, following 
the same methodologies as we used for our earlier comparisons 

between individuals and groups. The complete set of results can be 
found in the supplemental materials. While for most of the metrics 
that we considered, we did not observe reliable di�erences between 
�������������� and ������������� groups, in the following, we 
highlight a few signi�cant di�erences that we detected. 

First, we found that compared to ������������� groups (" = 
0.75, (⇡ = 0.28), �������������� groups had a lower level of 
overall reliance on the AI model (" = 0.60, (⇡ = 0.27; C (91) = 
2.16, ? = 0.033). We also found that �������������� groups and 
������������� groups exhibited some di�erences in the fairness 
level of their decision making. For example, groups with di�erent 
levels of cognitive diversity appeared to di�er signi�cantly on how 
they make decisions for the twin cases (? = 0.042)—Given a pair of 
defendants who were identical on all features and their true recidi-
vism status except for their race, while the ������������� groups 
make roughly similar predictions for the Black defendant and the 
White defendant (Twin = 0.038), the �������������� groups 
tended to believe that the Black defendant in the pair has a much 
lower risk to reo�end (Twin = −0.231) and were therefore less fair. 
In addition, we also found that in general, when the AI model made 
a positive prediction, �������������� groups were more likely to 
follow it when the defendant was Black, which is signi�cantly dif-
ferent from ������������� groups who were more likely to follow 
it when the defendant was White (adjusted-? = 0.048). 

Due to the signi�cant unbalance in the number of �������������� 
and ������������� groups and the exploratory nature of this anal-
ysis, we caution the readers to not over-interpret the results in 
this set of exploratory analysis. Nevertheless, the di�erences we 
observed between di�erent groups in this analysis indicate that the 
cognitive diversity of groups may impact the behavior and perfor-
mance of groups in AI-assisted decision making, and we hope these 
�ndings can inform more con�rmatory studies in the future. 

5 DISCUSSION 
In this paper, using recidivism risk assessment as the decision do-
main, we present a comparative case study investigating the dif-
ferences in the behavior and performance in AI-assisted decision 
making between groups and individuals. Our results suggest that 
groups and individuals show di�erences in both their decision 
making processes and outcomes in AI-assisted decision making. 
Speci�cally, whether decisions are made in a group or individually 
a�ects decision-maker’s reliance on the AI model and con�dence 
in the decisions, the fairness level of the decisions according to 
some fairness de�nition, as well as decision-maker’s assignment of 
accountability in decision making, but does not signi�cantly a�ect 
the accuracy of the decision or decision-maker’s understanding of 
the AI model. In this section, we provide some potential explana-
tions for the observed di�erences between groups and individuals 
in AI-assisted decision making, and discuss the limitations and 
implications of our �ndings. 

5.1 On the (Seemingly) Con�icting Results 
between Reliance and Con�dence 

In our study, we �nd that groups rely on the AI recommendations 
signi�cantly more than individuals, regardless of the AI correctness. 
Given our exploratory analysis �ndings in Section 4.7.1 on how the 
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presence of AI model changes group dynamics, we provide several 
possible explanations for this observation. First, as many groups 
directly start their deliberation process with discussions about the 
AI recommendations, it is possible that decision makers in these 
groups treat the AI recommendations as a reference point of their 
decisions and experience the “anchoring e�ect” to some extent. We 
note, however, since the AI recommendations are provided upfront 
to both individuals and groups, the individual decision makers may 
have also experienced the anchoring e�ect in their decision mak-
ing. It is possible for the anchoring e�ect to either get ampli�ed in 
groups (if each member in the group is a�ected by the anchoring 
e�ect to some degree) or get mitigated in groups (if exposure to 
disagreeing opinions from other group members reduces the an-
choring e�ect). Rigorously comparing the magnitude of anchoring 
e�ect that individuals and groups experience in AI-assisted decision 
making is an interesting future work. Second, we observe that in 
some groups, certain member of the group will take the responsibil-
ity to remind group members of the AI recommendations. Thus, it 
is not surprising that AI’s “opinion” is re�ected in groups’ decisions 
more often than in individuals’ decisions. In fact, subjects who kept 
reminding others of the AI recommendation might even be per-
ceived as the “defenders” of AI authority by their groupmates, who 
may feel the pressure to agree in order to reach a consensus. Finally, 
groups’ higher level of reliance on the AI model could also relate to 
some group members’ preferences to use the AI recommendation 
as the tiebreaker to resolve disagreement. This tendency to rely on 
the AI recommendation when consensus can not be easily reached 
may be further facilitated by the “Bandwagon e�ect”, that is, people 
tend to adopt what others are doing especially when the cognitive 
load of making decisions is high [96]. This means that people may 
easily agree to follow the AI recommendation when others suggest 
to do so, as illustrated in the chat log of Group 61 below: 
“Felony 33 stole a car. I think he possibly will re-o�end. Not sure 

though. What do you think?” (Subject 718) 
“So you believe he will o�end?” (Subject 27) 

“I kind of do. It’s a felony and grand theft is a serious crime not 
petty.” (Subject 718) 

“will not reo�end within two years.” (Subject 795) 
“Okay, that’s true.” (Subject 27) 

“Well I guess since we can’t agree, let’s just go with the 
machine.” (Subject 27) 

“I’m not sure. I’ll go with what you guys think.” (Subject 718) 
On the other hand, despite the higher level of reliance on the AI 

model, we note that it is also inaccurate to claim that groups tend 
to blindly trust or rely on the AI recommendation, either. In fact, 
our results show that compared to individuals, groups can more 
con�dently overturn the AI model’s incorrect recommendation. 
Here, a plausible explanation is that whether groups will reject 
an AI recommendation depends on whether some member of the 
group con�dently disagrees with the AI recommendation, which 
usually means the member considers the task to be “obvious” or 
easy for them, as shown in the next chat log of Group 80: 
“one prior, could go either way. machine says will.” (Subject 907) 

“I’m disagreeing with the model, only second o�ense and �rst 
was juvie” (Subject 1320) 

“ok, I can go with will not reo�end” (Subject 907) 
“Yeah..true” (Subject 1602) 

In other words, we conjecture that groups are more likely to 
accept the AI recommendation when all members have weak but 
disagreeing opinions, but they are more likely to con�dently reject 
the AI recommendation if some member has a strong opinion that 
disagrees with AI. 

5.2 More on Fairness in Decision Making 
Our study demonstrates that AI-assisted decisions made by groups 
can be fairer than AI-assisted decisions made by individuals accord-
ing to some fairness de�nition (e.g., accuracy equality). Meanwhile, 
groups’ average decision accuracy is also not lower than that of 
individuals. In other words, groups have the potential to make fairer 
decisions according to some fairness criterion without sacri�cing 
the decision accuracy. These results are consistent with previous 
research in psychology, which suggests that given the opportunities 
for discussions within a group, compared to individuals, bias can be 
mitigated within groups [124]. We note that this improvement in 
decision fairness is particularly valuable given that the AI model we 
used in the experiment (i.e., the COMPAS algorithm) was known 
to be biased [74], while the groups’ overall increased reliance on 
the AI model does not result in a lower level of fairness in their 
decisions compared to the individuals. This again indicates that 
groups appear to rely on the AI recommendation in a selected man-
ner rather than blindly. Moreover, we also �nd some exploratory 
evidence suggesting that the cognitive diversity of a group may 
a�ect the fairness level of the group’s decisions. Interestingly, ac-
cording to our exploratory analysis results, groups with higher 
level of cognitive diversity appear to associate a much lower recidi-
vism risk to Black defendants than White defendants when holding 
everything else equal, which shows the opposite behavior to that 
of the AI model’s. It is an interesting future work to understand 
why �������������� groups exhibit this behavior. In addition, this 
may imply the opportunity to intentionally construct groups with 
high cognitive diversity, and then obtain fairer �nal decisions by 
aggregating the decisions of the groups and those of the AI models. 

5.3 On the Choice of Recidivism Risk 
Assessment as the Decision Domain 

In this case study, we choose recidivism risk assessment as the 
decision domain to study the comparisons between individuals 
and groups in AI-assisted decision making. The recidivism risk 
assessment task can be representative of many real-world deci-
sion making domains where people can make decisions—either 
individually or in groups—with AI assistance, while they may have 
their own “bias” towards certain demographic groups when making 
these decisions, and the decision stakes are relatively high. Some 
examples of other decision making tasks that share a similar �avor 
include determining loan application approvals [45] and judging if 
a job interviewee is quali�ed [31]. In this sense, we conjecture that 
the results of our study may better generalize to this type of tasks. 

However, we acknowledge that the generalizability of results 
in this study may be limited by a few key characteristics of the 
recidivism risk assessment task as well as the speci�c way that this 
task is operationalized in our study. For example, the recidivism risk 
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assessment task is relatively di�cult for human decision makers. 
According to our pilot study (see supplemental materials for de-
tails), when subjects did not have access to the AI recommendations, 
their decisions on the formal tasks in Phase 2 HIT was relatively 
inaccurate (i.e., the average accuracy was 47.5%) and not very con�-
dent (i.e., the average con�dence was 3.61 on a 5-point Likert scale, 
which was between “3: neither con�dent nor uncon�dent” and “4: 
con�dent”), and subjects’ decisions on a task may often disagree 
with each other (i.e., on 80% of the tasks, at least 20% of people 
disagree with the majority decision). All of these characteristics 
may make humans tend to rely on the AI model, and possibly even 
more so when they make decisions in groups. On the other hand, 
we note that the AI model’s performance on this task is also not 
very high, which is not uncommon for real-world decision making 
tasks that have a high level of inherent uncertainty. For instance, 
in the practice tasks of the Phase 2 HIT, an average subject’s accu-
racy was 63.1%, which was even slightly higher than the AI model 
(62.5%). The fact that the performance gap between humans and AI 
is small re�ects an opportunity to achieve human-AI complemen-
tarity [8], which may imply that decision makers can be relatively 
critical when determining whether to rely on AI recommendations 
in this task. More future studies need to be carried out to under-
stand how the behavior and performance of individuals and groups 
di�er when the task is substantially easier or even more di�cult 
for humans, when the performance gap between humans and AI 
becomes larger, and when decision stakes are signi�cantly di�erent. 
We also highlight a few operationalizations of the recidivism risk 
assessment task in this study which may limit the generalizability 
of the results, including the choice of revealing AI recommenda-
tions to humans without having them make independent decisions 
�rst, allowing humans to get a sense of the performance compari-
son between the AI model and themselves before working on the 
formal AI-assisted decision making tasks, and using the original 
COMPAS algorithm as the AI model which was biased itself. It is 
important for future work to better understand whether the results 
of this study generalize to those settings where humans do not see 
AI recommendations upfront in their decision making, have limited 
information on the performance comparison between the AI model 
and themselves, or if the AI model used is much fairer itself. 

5.4 Other Limitations 
We acknowledge a few additional limitations of our study. First, 
some metrics we adopted for comparing the behavior and perfor-
mance of individuals and groups in AI-assisted decision making 
may not be perfect despite being widely adopted in previous litera-
ture. For example, we used the fraction of tasks where the individual 
or group’s �nal decision agrees with the AI recommendation to 
quantify their reliance on the AI model. The value of this metric 
may partly re�ect the anchoring e�ect of the AI recommendation, 
rather than people’s true willingness to rely on AI. It is also possible 
that this metric, to some extent, re�ects the “natural agreement” 
between humans and AI. Fortunately, the results of our pilot study 
show that the fraction of natural agreement between humans’ inde-
pendent decisions and the AI recommendation (i.e., 42.3%) is much 
lower than the actual level of human-AI agreement we observed in 

our experiment (e.g., 60% for subjects in the �����������AI treat-
ment as shown in Figure 4a), which means that our reliance metrics 
are not merely re�ecting the natural agreement (see supplemental 
materials for more details). Our metric for measuring subjects’ un-
derstanding of the AI model was also limited to their capability to 
sort out the importance of di�erent features. Moreover, subjects’ ca-
pability to understand the AI model may also be constrained by the 
limited interactions they had with the model (e.g., they only inter-
acted with the model for 15 tasks in the Phase 2 HIT). Future studies 
should investigate into individuals’ and groups’ understanding of 
AI after a longer period of interactions and from more diverse angles 
(e.g., simulate model predictions, answer counterfactual questions). 

In addition, while group decision making via online collabo-
rations is prevalent nowadays, other interaction modes, such as 
in-person collaborations, also exist in the real-world group decision 
making settings. Therefore, �ndings in this study may not directly 
generalize to other modes of group collaborations. Even for group 
decision making via online collaborations, our study setup also has 
some unique characteristics—subjects in our study were anony-
mous to each other, the collaboration was one-shot, and subjects 
were all laypeople with limited domain expertise. Hence, we cau-
tion the readers not to over-generalize our results to other online 
AI-assisted group decision making settings where group members 
know each other, need to engage in long-term interactions, and 
some or all group members have substantial domain expertise. 

5.5 Future Directions 
There are many interesting future directions for further enhancing 
our understanding of how groups behave and perform in AI-assisted 
decision making, and how they compare with individuals. First, we 
note that the formation of a group is decided by many factors, such 
as the group hierarchy (e.g., whether a leader exists and how to 
decide the leader), group size, and decision aggregation methods 
(e.g., majority rule and consensus). These factors may all in�uence 
people’s attitudes and behavior in a group. Exploring how di�er-
ent formations of a group a�ect its behavior and performance in 
AI-assisted decision making is a critical direction to explore in the 
future. In addition, while we have conducted some exploratory 
analyses on how the cognitive diversity of groups a�ects their be-
havior and performance in AI-assisted decision making, there are 
many other types of diversity, such as background diversity, infor-
mation diversity, and value diversity. Cognitive diversity of a group 
could also be de�ned in di�erent ways. Investigating how di�erent 
types of diversity within a group a�ect how groups make use of 
AI assistance in decision making is also another future direction. 
Similarly, while we obtain some initial understandings of how the 
presence of the AI model may change the dynamics of a group 
in AI-assisted decision making, more studies are needed to rigor-
ously examine how the group dynamics impact the outcomes of 
AI-assisted group decision making, and how to promote more posi-
tive group dynamics in AI-assisted group decision making. Overall, 
given our �ndings in this study that individuals and groups behave 
and perform di�erently in AI-assisted decision making, it is also 
necessary to examine to what extent the �ndings we have obtained 
when studying individuals’ interactions with the AI model can be 
generalized to groups’ interactions with AI. Finally, a key limitation 
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of groups in AI-assisted decision making is that they have higher 
levels of over-reliance on the AI model. Thus, developing e�ective 
interventions to decrease groups’ over-reliance on the AI model 
can be essential. Compared to those interventions designed for 
individual decision makers, the interventions provided to groups 
should not only answer the question of “how to intervene,” but also 
“intervene to whom” to potentially utilize the social structure and 
in�uences within the group to maximize the e�ectiveness of the 
interventions. 

6 CONCLUSION 
In this paper, we present a comparative case study to obtain a sys-
tematic understanding of the di�erences in how individuals and 
groups behave and perform in AI-assisted decision-making. Our 
results suggest that compared to individuals, groups are more likely 
to rely on the AI recommendations regardless of their correctness, 
may generate fairer decisions according to some fairness de�nition, 
are more con�dent in their correct decisions when overturning 
incorrect AI recommendations, and are willing to assign less credit 
to themselves while assigning more credit to the AI model when 
they make correct decisions under the help of AI. In contrast, we do 
not �nd su�cient evidence that individuals and groups exhibit dif-
ferent levels of decision accuracy or understanding of the AI models 
in AI-assisted decision making. Overall, our results highlight that 
groups may outperform individuals in some aspects of AI-assisted 
decision making. Our work provides important implications for 
human-AI partnership, and we hope our �ndings in this paper can 
inspire more explorations in the area of group-AI interaction. 
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