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Abstract 
AI-assisted decision making becomes increasingly prevalent, yet 
individuals often fail to utilize AI-based decision aids appropri-
ately especially when the AI explanations are absent, potentially 
as they do not re!ect on AI’s decision recommendations critically. 
Large language models (LLMs), with their exceptional conversa-
tional and analytical capabilities, present great opportunities to 
enhance AI-assisted decision making in the absence of AI explana-
tions by providing natural-language-based analysis of AI’s decision 
recommendation, e.g., how each feature of a decision making task 
might contribute to the AI recommendation. In this paper, via a ran-
domized experiment, we "rst show that presenting LLM-powered 
analysis of each task feature, either sequentially or concurrently, 
does not signi"cantly improve people’s AI-assisted decision perfor-
mance. To enable decision makers to better leverage LLM-powered 
analysis, we then propose an algorithmic framework to charac-
terize the e#ects of LLM-powered analysis on human decisions 
and dynamically decide which analysis to present. Our evaluation 
with human subjects shows that this approach e#ectively improves 
decision makers’ appropriate reliance on AI in AI-assisted decision 
making. 

CCS Concepts 
• Human-centered computing → Empirical studies in HCI; • 
Computing methodologies → Arti!cial intelligence. 
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1 Introduction 
AI systems have been signi"cantly integrated into the human de-
cision making process in various domains, such as criminal jus-
tice [20, 93] and "nancial investment [3, 33], thereby creating a 
new paradigm of human-AI collaboration [94]. In this paradigm, 
AI models provide recommendations or analysis to assist humans 
in making decisions, while human decision makers are ultimately 
responsible for the "nal decisions [30, 71]. 

However, many empirical studies evaluating the e#ectiveness 
of current AI-assisted decision making systems [41] have demon-
strated that when people collaborate with AI in decision mak-
ing tasks, they rarely engage in analytical thinking to combine 
their own insights with the AI model’s recommendations intelli-
gently [6, 26, 68]. Instead, they often rely on AI inappropriately— 
accepting an AI model’s recommendations when they are incorrect 
or mistakenly ignoring AI’s correct recommendations—leading to 
either overreliance or underreliance on AI [55, 77]. To address 
this problem, previous research [2, 78, 79] proposed to display 
explanations generated by post-hoc explainable AI (XAI) meth-
ods [29, 56, 72] along with the AI model’s decision recommenda-
tions to assist people in evaluating AI’s reliability and identifying 
optimal strategies for relying on AI. However, the computation 
of AI explanation often requires access to the AI model’s internal 
parameters and structures, while many evaluation studies have 
revealed that it is challenging for humans to understand and utilize 
such explanation without substantial e#ort to teach them how to 
interpret the explanation [96]. Consequently, even with the pres-
ence of AI explanations, decision makers often still exhibit a low 
level of appropriate reliance on AI, let alone the case when the AI 
explanations are not available. 

As such, one would naturally wonder if it is still feasible to guide 
decision makers to critically and systematically re!ect on AI’s de-
cision recommendations and appropriately utilize them without 
easily accessible or available AI explanations. Interestingly, in real-
world decision making across various domains like healthcare and 
"nance, when decision makers "nd the initial recommendations 
lack transparency and clarity, they often seek additional insights or 
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Income Prediction 

Education Level Value: 10 years 
Concept: Higher education is commonly linked to higher earning potential. 
In this case: With 10 years of education, this might be slightly below the threshold for high-earning positions, which decreases the 
likelihood of making over $50000 per year. 

Recidivism Prediction 

Charge Degree Value: Felony 
Concept: The severity of the charge can predict recidivism, with felonies often leading to harsher predictions than misdemeanors. 
In this case: Facing a felony charge, which increases the likelihood of recidivating because felonies are associated with more severe 
criminal behavior. 

Table 1: Examples of analysis generated by the LLM for (top) how the education level of a person might have a!ected AI’s 
prediction on this person’s income level; and (bottom) how the charge degree of a defendant might have a!ected AI’s prediction 
on this defendant’s recidivism status. 

interpretations from secondary sources. To this end, the exceptional 
conversational and analytical capabilities exhibited by the latest 
state-of-the-art large language models (LLMs) could o!er strong 
promise [13, 31, 45, 59, 88, 102]. For example, LLMs can analyze a 
decision making task and AI’s decision recommendation on it, and 
then provide potential reasons for why the AI recommends such 
a decision in a natural language format, which is straightforward 
for humans to process. While the AI model serves as the primary 
advisor for human decision makers, when LLM-powered analyses 
are used to augment the AI model’s recommendations, the LLM 
e!ectively serves as a secondary advisor to provide additional per-
spectives and justi"cations through its analysis. These analyses 
may help the human decision maker better interpret the recommen-
dation of the primary advisor. They may also o!er a starting point 
for decision makers to organize their thoughts and re#ect on both 
the AI model’s decision recommendation and their own judgment, 
which may help them calibrate their trust in the AI model. 

Therefore, in this paper, we start by conducting a randomized 
human-subject experiment to examine whether incorporating LLM-
powered analyses in AI-assisted decision making can improve the 
performance of human-AI teams and promote more appropriate 
reliance on AI models in the absence of actual explanations of the 
AI models. Given a decision making task as well as an AI model’s 
decision recommendation on it, we "rst prompted OpenAI’s GPT-4 
model [67] to generate analyses for how each feature of the task 
might have led to the AI model’s decision recommendation on the 
task (see Table 1 for examples). Depending on whether and how 
to present these LLM-powered analyses, we created three treat-
ments in our experiment—Control (where participants would not 
receive any analysis from the LLM), Seq (where participants re-
ceive the analysis about each feature sequentially), and All (where 
participants receive analyses about all features at once). Our exper-
imental results show that presenting LLM-powered analysis either 
sequentially or concurrently to human decision makers does not 
signi"cantly improve their decision accuracy compared to those 
decision makers who did not receive any LLM-powered analysis. 
This suggests that more intelligent ways should be used to present 
LLM-powered analyses to people to facilitate their utilization of 
this information and promote their e!ective decision making. 

In light of this, we propose an algorithmic framework to adap-
tively present LLM-powered analyses to decision makers—based 

on the historical data on how human decision makers react to dif-
ferent LLM-powered analyses, our algorithmic framework learns 
to present LLM-powered analysis selectively and progressively 
to maximize the chance for the decision maker to rely on the AI 
model’s decision recommendations appropriately and make the 
correct decisions. To do so, we "rst learn a human behavior model 
that characterizes the e!ects of LLM-powered analysis on human 
decisions. We then dynamically decide which analysis to present 
(among the LLM-powered analyses for all features of the decision 
making task) by comparing the expected maximum utility of pre-
senting each analysis. To evaluate the e!ectiveness of this algorith-
mic approach in selecting the best set of LLM-powered analyses to 
help improve decision makers’ appropriate reliance and decision 
accuracy in AI-assisted decision making, we conducted another 
randomized human-subject experiment. We "nd that compared to 
other baseline approaches for presenting LLM-powered analysis, 
when the LLM-powered analyses are selected using our algorithmic 
approach, human decision makers can achieve signi"cantly higher 
accuracy in their "nal decisions and reduce overreliance on the 
AI model across di!erent types of decision making tasks. Addi-
tional analysis suggests that our algorithmic approach selects fewer 
but more informative LLM-powered analysis to show to decision 
makers compared to baseline approaches. 

Together, our study provides important experimental evidence 
regarding the e!ectiveness of incorporating LLMs in AI-assisted 
decision making, and how to design intelligent interactions between 
humans and LLMs to promote better human-AI collaboration in 
decision making. We conclude by discussing the implications and 
limitations of our study. 

2 Related Work 
2.1 AI-Assisted Decision Making 
The increasing prevalence of AI-assisted decision making has led 
to a growing line of research to investigate how people engage 
with, trust in, and rely on AI models in this new collaboration par-
adigm [11, 41, 54]. Early studies focus on empirically identifying 
factors that in#uence AI-assisted decision making, including the 
AI model’s performance [70], the explanation of the model recom-
mendation [74, 78, 79], the decision making work#ow [12, 69], and 
the in#uence of task complexity on human-AI interactions [75]. 

While it is expected that the complementarity between AI mod-
els and humans could enable the human-AI team to outperform 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan 

either party alone, in practice, the collaboration between humans 
and AI in decision making is widely observed to be suboptimal [77]. 
It is observed that people usually exhibit inappropriate reliance 
on AI models [85]. For instance, the design of conversational in-
terfaces can in!uence users’ trust, sometimes causing overreliance 
on AI recommendations [23]. In addition, people may also blindly 
rely on AI in time-pressured environments, where the presence 
of AI suggestions may speed up decision making at the cost of 
accuracy [89]. In contrast, people could also reject the AI model 
recommendation even when it is correct, noted as underreliance 
on AI [24, 61, 66]. Recent research has also discussed how mis-
aligned AI outputs can contribute to people’s underreliance on AI 
systems despite their accuracy [22]. To help decision makers in-
teract with and rely on the AI model more appropriately, a wide 
range of approaches was recently developed [7, 9, 25, 48, 49, 52, 53]. 
For instance, the cognitive forcing function encourages people to 
engage with AI more cognitively, thus potentially reducing people’s 
overreliance on the AI model [6, 16, 41, 76]. Ma et al. [58] explored 
the calibration of user trust in AI-assisted decision making by infer-
ring the correctness likelihood of both human and AI on a decision 
case, which informs the adaptive presentations of the AI model’s 
decision recommendations. 

In addition, providing AI explanations generated by various post-
hoc explainable AI (XAI) methods [57, 73] that reveal the decision 
rationale of AI models is another popular approach used, aiming to 
improve humans’ understanding of the AI model’s behavior and 
enable humans to calibrate their trust in AI. However, many em-
pirical studies have observed that people often struggle to process 
and comprehend these explanations [44, 50, 91, 96], letting alone 
utilize the insights revealed from these explanations to trust AI 
more appropriately. To realize the positive utility of explanations 
in AI-assisted decision making, recent research highlights the need 
to provide explanations selectively or progressively to aid human 
comprehension [17, 43, 50, 83, 84] . For instance, Lai et al. [43] 
demonstrated that selectively highlighting AI explanations, which 
align with the user’s own decision rationale, can increase agreement 
between human decisions and AI model predictions and reduce 
human overreliance on AI recommendations. Springer and Whit-
taker [83] showed that users may bene"t from initially simpli"ed 
feedback that hides potential AI system errors and assists users 
in building working heuristics about how the AI system operates 
progressively. In this work, we make an initial attempt to explore 
that in the absence of AI explanations, whether the incorporation 
of the natural-language-based, LLM-powered analysis of the AI 
recommendations on decision making tasks can promote more ap-
propriate reliance behavior of humans on AI models in decision 
making, and how to present such analysis in the most e#ective way. 

2.2 Human-LLM Interaction 
Recently, large language models (LLMs) have demonstrated their ex-
ceptional capabilities across various applications to assist humans, 
including creative writing [47, 95, 99], software engineering [64, 65], 
and generative design [28], which has sparked signi"cant interest 
within the HCI community to investigate the interaction between 
humans and LLMs [12, 18, 19, 35, 46]. On the one hand, LLMs are 
increasingly utilized to directly create content or solve problems, 

which is shown to match or even surpass humans’ performance. For 
example, Mirowski et al. [63] presented the framework leveraging 
LLMs to create coherent scripts and screenplays with humans in 
the loop. In other cases, LLM-based services provide foundational 
support for human creation, such as generating coding schemes for 
qualitative analysis [10]. In these human-LLM collaboration scenar-
ios, a key challenge is that laypeople often lack the skill to e#ectively 
prompt LLMs to generate the outputs that they desire [100]. To 
address this challenge, novel approaches like AI Chains [97], auto-
matic prompting methods [80], and interactive interfaces [51, 92] 
are developed to enhance the e#ectiveness of human-LLM inter-
action, either by improving LLMs’ usability [27, 98] or by guiding 
humans’ engagement with LLMs. 

Researchers have also explored the potential of LLMs in AI-
assisted decision making. For example, LLMs could directly provide 
decision recommendations. However, it was found that the overcon-
"dent and seemingly convincing LLM outputs can mislead people 
to believe them to be correct [87] and result in people’s overre-
liance on LLM [14, 36]. Recently, Slack et al. [82] developed an 
interactive dialogue system that allows users to inquire about the 
reasons behind the AI model’s predictions. This system leverages 
a LLM to parse user intent and match it with pre-speci"ed, hand-
crafted answers, demonstrating signi"cant potential to enhance 
user understanding and decision performance through conversa-
tional interactions with the AI model. Di#erent from the previous 
work, in this paper, we explore how to utilize LLMs to analyze an AI 
model’s decision recommendations and augment them, and how to 
build an algorithmic framework to dynamically decide what infor-
mation to present to humans from the rich information generated 
by LLMs. 

3 Empirical Examinations of the Impacts of 
LLM-Powered Analysis in AI-assisted 
Decision Making 

We start by investigating whether the incorporation of LLM-powered 
analysis can enhance human decision makers’ decision performance 
and promote their more appropriate reliance on AI models in AI-
assisted decision making. To do so, we conducted a randomized 
human-subject experiment on Proli"c. 

3.1 Decision Making Task 
In our experiment, we considered two types of decision making 
tasks that have widely been used as the testbeds in AI-assisted 
decision making research [12, 58, 101]: 

• Income Prediction [38]: Human decision makers were 
asked to determine whether a person’s annual income level is 
higher or lower than $50k with the assistance of an AI model. 
Speci"cally, in each task, we presented the participant with 
a person’s pro"le containing 7 features, which include the 
person’s gender, age, education level, marital status, occupa-
tion, work type, and working hours per week. We trained a 
random forest model to provide decision recommendations, 
and the accuracy of the model was 76%. 

• Recidivism Prediction [15]: Human decision makers needed 
to predict whether a defendant would reo#end within two 
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years. Each task presented a defendant pro!le with 8 fea-
tures, including basic demographics (e.g., gender, age, race), 
criminal history (e.g., the count of prior non-juvenile crimes, 
juvenile misdemeanor crimes, and juvenile felony crimes 
committed), and information related to their current charge 
(e.g., charge issue, charge degree). We again trained a ran-
dom forest model to provide decision recommendations, and 
the accuracy of the model was 62%1 . 

3.2 Generation of LLM-powered Analysis 
We used LLMs to generate an analysis for each AI-assisted decision 
making task. Speci!cally, we prompted GPT-4 to analyze the de-
cision making task and the AI model’s decision recommendation. 
The prompts for GPT-4 to generate the analysis for both the income 
prediction and recidivism prediction tasks consist of three parts: 

• Introduction Prompt: Please take on the role of a 
data analyst and prepare to analyze the provided 
task instances. Your task is to explain how the 
features in the presented task instances contribute 
to the AI model predictions provided. Each profile 
includes various features that you will need to 
consider in your analysis, [INTRODUCE THE FEATURE 
NAMES AND DESCRIPTIONS]. 

• Instruction Prompt: For each presented task, assess 
how each feature might contribute to [AI MODEL 
PREDICTION]. For each task, your analysis should 
contain 1 identifier (index), [NUMBER OF FEATURES] 
concepts (explanations of how the features could 
support the model prediction), and [NUMBER OF 
FEATURES] case descriptions (specific explanations 
of how the feature values in the current profile 
support the model prediction). [AN EXAMPLE OF THE 
OUTPUT ANALYSIS]. 

• Emotional Stimuli Prompt: This is an academic study 
aimed at enhancing human trust in AI system advice 
through reasonable explanations. The knowledge 
gained will help improve human-AI collaboration. 
This mission is critical to the whole human society. 
Please analyze the task instance thoroughly and 
provide diverse insights. 

The LLM examined the task features and determined how each 
feature may have contributed to the AI model’s prediction. Con-
sequently, the LLM generated a set of analyses for each task in-
stance, associating each task feature with one analysis to indicate 
its possible contribution to the AI recommendation. Table 1 shows 
several examples of analyses generated by GPT-4. This set of anal-
yses serves as the LLM-powered analysis to be incorporated into 
AI-assisted decision making in our study (see the supplemental 

1For the random forest models used in both the income prediction and recidivism 
prediction tasks, we used grid search to !ne-tune the model parameters such as the 
depth of the tree and the number of trees. The relatively low level of prediction accuracy 
of the random forest model was primarily due to the inherent di"culty and uncertainty 
of the task. We also experimented with using zero-shot and few-shot approaches to 
prompt the state-of-the-art LLM, GPT-4, to directly provide binary recommendations 
on these tasks. When evaluating on the same test dataset, we found that the accuracy 
of GPT-4 on income prediction tasks and recidivism prediction tasks were 59% and 
56%, respectively, which were lower than the random forest models. 

materials for more examples of the analyses). While such LLM-
powered analysis can be readily applied to decision making tasks 
with tabular data where the task-related information is presented 
in a structured manner as a collection of features and their values, 
similar analysis can also be conducted on decision tasks involving 
other types of data (e.g., images, texts) after transforming the un-
structured data into structured formats (see more discussions on 
this in Section 6.5). 

Note that we do not consider the analysis generated by the LLM 
as necessarily re#ecting the AI model’s true decision rationale. 
Instead, it is only the LLM’s interpretation/justi!cation of the AI 
recommendation, and is used to augment the AI recommendation 
in the absence of explanations to the AI model. Alternatively, since 
we prompted the LLM to justify a speci!c decision (i.e., the decision 
that is consistent with the AI model’s recommendation), one can 
also view the LLM-powered analysis as the LLM’s own explanations 
to the speci!ed decision. 

3.3 Experimental Treatments 
In our experiment, participants were asked to complete a series of 
decision making tasks. For each task, they were provided with the 
AI model’s prediction along with the task instance, and they needed 
to make the !nal decision. We created 3 experimental treatments by 
varying whether and how LLM-powered analysis was introduced 
into the AI-assisted decision making process. Speci!cally: 

• Control: In this treatment, we did not incorporate LLM-
powered analysis into the AI-assisted decision making pro-
cess. Participants assigned to this treatment were asked to 
make decisions with the assistance provided by the AI model 
alone, without any additional analysis from the LLM. 

• Seqential (Seq): In this treatment, participants started 
working on the decision making task seeing only the task 
instance and the AI model’s recommendation without receiv-
ing any LLM-generated analyses. Then, we told participants 
that an LLM had analyzed how di$erent features of the task 
instance may contribute to the AI model’s recommendation 
on this task. Participants were required to interact with the 
LLM through a designated interface where, in each turn, the 
LLM’s analysis about one task feature’s contribution to the 
AI recommendation would be randomly sampled from the 
generated set and presented to the participant. The partic-
ipant could respond to the analysis by indicating whether 
they agreed or disagreed with it. The participant must inter-
act with the LLM for at least ! rounds where ! is randomly 
sampled between 1 and 3 for each task. After meeting the 
minimum interaction requirement, participants could con-
tinue to review the LLM-powered analysis on more features, 
or they could stop the interaction and make their !nal deci-
sions at any point that they wish. Figure 1a shows an example 
of the task interface used in this treatment. 

• All: In this treatment, we presented all the LLM-powered 
analyses for each one of the task features to participants at 
once, along with the task instance and the AI model’s deci-
sion recommendation. After reviewing all this information, 
participants made their !nal decisions. Figure 1b shows an 
example of the task interface used in this treatment. 
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(a) Seq treatment (b) All treatment 

Figure 1: The example interfaces used in the Seq and All treatments of our experiment for the recidivism prediction task. 

3.4 Experimental Procedure 
Our experiment was conducted on Proli!c. Upon the arrival of a 
participant, we randomly assigned them to one of the two types 
of tasks and one of the three treatments. In the experiment, partic-
ipants were asked to !rst !ll out an initial survey to report their 
demographic information and knowledge of AI models. Then, they 
started the formal experiment by completing a tutorial that de-
scribed the decision making task they needed to work on. To help 
participants get familiar with the decision making task, we set up a 
training stage in which participants completed !ve decision making 
tasks independently without seeing the AI model’s recommenda-
tion or any LLM-powered analyses. During these training tasks, we 
immediately provided participants with the correct answer at the 
end of each task. After completing the training tasks, participants 
moved on to the real tasks. In the real tasks, each participant was 
asked to complete a total of 15 decision making tasks in the assigned 
treatment. We o"ered a base payment of $1.20 and a ra#e with 
$1 bonus if the participant’s accuracy was above 85%. The experi-
ment was open to U.S.-based workers only, and each worker could 
only complete the experiment once. Additionally, we included two 
attention check questions in the experiment where participants 
were required to select a pre-speci!ed option, and only the data of 
those subjects who passed both attention checks was considered 
valid. After !ltering out the inattentive participants, for the income 
prediction task, we obtained data from 134 participants (Control: 
41, Seq: 45, All: 48), while for the recidivism prediction task, we 
obtained data from 150 participants (Control: 49, Seq: 40, All: 
61). The median working time for participants was about 8 min-
utes, which translates to a median hourly payment of $8.9 per hour. 
For more details of the experiment and participant demographics, 
please see the supplemental material. 

3.5 Experimental Results 
Following previous work [42, 101], we used participants’ decision 
accuracy to measure the human-AI team performance in decision 
making, while underreliance and overreliance were used to quan-
tify the degree to which participants’ reliance on the AI model is 
appropriate. Overreliance refers to the fraction of tasks in which 
the participant’s decision was the same as the AI model’s decision 

among all tasks where the AI model’s decision was incorrect. Un-
derreliance refers to the fraction of tasks in which the participant’s 
decision was di!erent from the AI model’s decision among all tasks 
where the AI model’s decision was correct. Lower overreliance and 
underreliance indicate that participants’ reliance on AI is more 
appropriate. 

Figure 2 shows the comparisons of participants’ decision accu-
racy, overreliance, and underreliance on the AI model across the 
three treatments for both the income prediction and the recidivism 
prediction tasks. We found that compared to the Control treat-
ment where participants did not receive any LLM-powered analysis, 
incorporating LLM-powered analyses in AI-assisted decision mak-
ing does not appear to signi!cantly change participants’ decision 
accuracy or reliance on AI, no matter how they are presented (i.e., 
sequentially or concurrently). Our one-way ANOVA test results 
further con!rmed that the di"erences in accuracy, overreliance, 
and underreliance across the three treatments are not signi!cant 
at the level of ! = 0.05 for both types of decision making tasks. In 
other words, the ways that human decision makers interact with 
the LLM-powered analysis in both the All and Seq treatments may 
still be not e"ective for them to critically re$ect on the task and 
calibrate their reliance on the AI recommendation. For example, 
in the All treatment, the sheer volume of information that people 
need to process may cause a signi!cant cognitive burden, and make 
it challenging for people to grasp the essential insights from all 
the information. Meanwhile, in the Seq treatment, although the 
LLM-powered analysis is presented sequentially to enable decision 
makers to digest and re$ect on each analysis, the random order in 
which the analysis is presented may imply a miss of opportunity to 
help decision makers prioritize the most crucial information needed 
for correct decisions. 

4 Algorithmic Selection of LLM-Powered 
Analysis in AI-assisted Decision Making 

Results of our experimental study suggest that in AI-assisted deci-
sion making, although LLMs possess the analytical ability to gener-
ate additional information to assist humans, the current ways that 
humans interact with them are not yet optimal. This suboptimal 
interaction makes it di%cult for humans to e"ectively utilize the 
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(a) Accuracy (b) Overreliance (c) Underreliance 

Figure 2: Comparing the average decision accuracy, overreliance, and underreliance on the AI model for participants across the 
Control, Seq, and All treatments, for both the income prediction and the recidivism prediction tasks. Error bars represent 
the 95% con!dence intervals of the mean values. 

information provided by the LLM, hindering their ability to iden-
tify essential insights and make informed decisions. Given these 
challenges, a natural question arises: How can we enhance the inter-
action between humans and the LLM to help humans better utilize 
the analysis provided by the LLM in AI-assisted decision making? 
To answer this question, we propose an algorithmic framework 
that dynamically and strategically selects the most useful LLM-
powered analysis to present to human decision-makers, aiming 
to help them rely on the AI model more appropriately and make 
correct decisions. 

4.1 Modeling the E"ects of LLM-powered 
Analysis on Human Decision 

To enable the optimal selection of the LLM-powered analysis, we 
start by quantitatively characterizing how the presentation of LLM-
powered analysis impacts humans’ decision making in an AI-assisted 
task. Speci!cally, consider a human who needs to complete a de-
cision making task with the aid of an AI model. The human is 
initially provided with the task ! → X and the AI model’s decision 
recommendation !! → Y. Subsequently, the human interacts with 
the LLM over several rounds to obtain analyses of the task fea-
tures. In each interaction round " (1 ≤ " ≤ # )2 , the human receives 
a LLM-powered analysis " " → R " = R \ {" 1 , . . . , " " −1} from the 
LLM, where R is the entire set of analyses generated for the task ! 
across all task features. The human can then re"ect on this analy-
sis " " and indicate their attitude towards it by selecting an option 
$" → {agree, disagree}. After # rounds of interaction with the LLM, 
the human makes a !nal decision !ℎ → Y. To quantitatively model 
the e#ects of these LLM analyses on the human’s !nal decision, we 
begin by expressing the probability of the !nal decision given the 
sequence of interactions as: 

P(! ℎ |!, ! ! ," 1 , $ 1 , ..., " $ , $ $ ) =  
P(! ℎ |# $ )P(# $ |!, ! ! , " 1 , $ 1 , ..., " $ , $ $ )%# $ (1) 

2$ is the maximum rounds of interaction occurred, which varies with the speci!c 
decision task and may vary across decision makers. 

where #$ re"ects the human’s hidden state at interaction round # . 
Without loss of generality, we assume that human’s hidden state in 
any round " (i.e., # " ) is only dependent on the previous hidden state 
#" −1 , the LLM-powered analysis presented in the current round 
(i.e., " " ), and the human’s reaction to this analysis (i.e., $" ). Thus, 
we can decompose the above probability as follows: 
P(% ℎ |!, % " , " 1 , & 1 , . . . , " # , & # ) = 
 

P(# 0 |!, % " ) ︸!!!!!!!!!!!︷︷!!!!!!!!!!!︸ 
Initial State Mapping 

( 
#∏ 

$ =1 
P(# $ |# $ −1 , " $ , & $ ) 

) 

︸!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!︸ 
Hidden State Updating 

P(% ℎ |# # ) ︸!!!!!!!︷︷!!!!!!!︸ 
Human Final Decision 

'# 0 · · ·'# # 

(2) 

Based on this decomposition, our behavior model characterizing 
how the human’s decision is in"uenced by the LLM-powered anal-
ysis consists of three components (see Figure 3 for a graphical 
illustration): 
1. Initial State Mapping: This component captures the human 
decision maker’s initial hidden state # 0 , before they receive any 
analysis from the LLM. As shown in Figure 3A, we assume that the 
initial hidden state #0 is only in"uenced by the task instance ! and 
the AI model’s recommendation !! , and a model parameterized 
by $ init can be learned to characterize the conditional probability 
distribution of # 0: 

# 0 ∼ P(#0 |!, ! ! ; $ init) (3) 

2. Hidden State Updating: This component characterizes how 
the human decision maker’s hidden state evolves over time as they 
interact with the LLM, i.e., seeing the LLM-powered analysis in 
each interaction round, for which they may or may not agree with. 
As shown in Figure 3B, the hidden state # " in the "-th round is de-
cided by the previous hidden state # " −1 , the LLM-powered analysis 
presented in the current round " " , and the human’s reaction to it $" . 
A model parameterized by $ update can be learned to characterize 
the conditional probability distribution of # " : 

# " ∼ P(# " |# " −1 , " " , $ " ; $ update) (4) 

Note that the current hidden state # " encapsulates the cumulative 
information gathered through all previous human interactions with 
the LLM. It achieves this by iteratively encoding the LLM’s analy-
sis " and the human reasoning processes (as indicated by human 
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Figure 3: Our human behavior model comprises three components: A) Initial State Mapping: this component encodes the 
decision making task and AI recommendation into the human’s initial hidden state, which serves as the foundational setup 
to integrate the task details and initial AI insights into human decision making process. B) Hidden State Updating: This 
component characterizes how the human’s hidden state evolves based on the presented LLM-powered analysis and the human’s 
reactions (i.e., whether they agree or disagree with the LLM’s analysis). Each update is dependent on the previous hidden state, 
re!ecting the iterative incorporation of new information and human reasoning process into the decision making process. C) 
Final Decision: This component maps the human’s latest hidden state to the actual decision made on the task. It translates the 
cumulative understanding and reasoning process through the hidden states into the human actual decision outcome. 

reactions to LLM’s analysis !) to update the hidden state. Each 
iteration integrates new insights from the latest LLM analysis and 
human responses to re!ect humans’ evolving understanding of the 
decision making task. 
3. Final Decision: This component maps the human decision 
maker’s last hidden state at the end of the interaction to the "-
nal decision they make on the task. As shown in Figure 3C, the "nal 
decision !ℎ is only decided by the last hidden state "" , and a model 
parameterized by # decision is used to characterize the conditional 
probability distribution of ! ℎ : 

! ℎ → P(! ℎ "|"  ; #decision) (5) 

With a set of human behavior data indicating how humans re-
act to LLM-powered analysis and then make decisions, i.e., D = 
$ , !𝑁 , "$  % $ ,  " , !ℎ % { & { }& & & $ =1 }& &=1, we can use maximum likelihood estima-
tion to learn the behavior model parameters Θ = {# init, # update, # decisio

4.2 Selecting the LLM-powered Analysis 
Given a learned model Θ that characterizes the impacts of LLM-
powered analyses on humans’ decisions, we next explore how to 
dynamically select the optimal analysis % $ from the set of candidate 
analysis (i.e., R $ ) to maximize human’s appropriate reliance on AI 
models in AI-assisted decision making. To achieve this, we "rst 
need to measure the reliability of the AI model’s prediction !𝑁 on 
each task instance $ . Recent work [32, 86] has proposed methods 
to leverage the complementary strengths of humans and AI in 
decision making tasks by combining the human’s independent 
decisions and an AI model’s decision recommendations intelligently 
(e.g., using a Bayesian modeling framework), which often yields 
more accurate decisions than those made by either the human or 
the AI model alone. Speci"cally, given the human’s independent 

decision !ℎ , the AI model’s recommendation !𝑁 , and the independent
task instance $ , these methods learn models to combine !ℎ 

independent 
and !𝑁 to produce a combined result: 

!combine = CombineModel(! ℎ  $ ) independent, 
𝑁!  , (6) 

In this study, we adopted the human-AI combination method pro-
posed by Kerrigan et al. [32] to obtain !combine. Since the accuracy 
of !combine was shown to be higher than either 𝑁 ! ℎ , independent and !
we treated !combine as the “target” decision and we selected the 
LLM-powered analysis $ % in a way to nudge humans into making 
this 3 target decision  . In other words, when  ! 𝑁

combine = ! , we se-
lected a LLM-powered analysis to nudge humans towards relying 
on the AI recommendation; otherwise, we nudged humans towards 
not relying on the AI recommendation. 

To e#ectively nudge the human towards making the target de-
n }. cision !combine, we "rst de"ne an immediate utility function for 

evaluating the selection of an analysis % in round # given the hu-
man’s hidden state by the end of the previous round is "$ 1  −  . Since 
our goal is to maximize the probability that the "nal decision made 
by the human aligns with the target decision, the utility function 
$ (·) is de"ned as: 

!  " (#combine ! −| 1, " ) =   ! E ! ! −1 
! ;    

Bern 0 5 [ P(" |" , ! , $  #  ℎ !)P (# = !# |" ; # )&" ] (7)
log $ → ( . ) update combine decision

 
P( ℎ # = #combine | ! " −1; #  decision ) 

Here, inside the log term, the numerator represents the probability 
for the human to make the target decision !combine if they see the 
analysis % in round # , and are asked to immediately make a decision 

3We evaluated various human-AI combination models, and our results showed that the 
method proposed by Kerrigan et al. [32] generally resulted in combined decisions that 
outperform AI solo and independent human decisions, as well as other combination 
methods. The evaluation details can be found in the supplementary material. 
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by the end of round ! . Since the human’s reaction "! to the analysis 
! is unknown at this point, when computing this probability, we 
assume that the human is equally likely to agree or disagree with the 
analysis, i.e., "! → Bern(0.5). Moreover, the denominator represents 
the probability that the human would have made the target decision 
at the end of the round ! −1. Intuitively, # ($combine |! , " ! −1) re!ects 
the immediate probability gain for the human to select the target 
decision after they are presented with analysis ! in round ! —when 
# ($combine |! , " ! −1) > 0, it means that presenting ! to the human 
in round ! increases their chance of selecting the target decision 
compared to that at the end of previous round; otherwise, the 
human’s probability of selecting the target decision would decrease 
or remain the same. 

Note that when we need to select the analysis to be presented in 
round ! , instead of knowing the human’s precise hidden state " ! −1 

at the end of the previous round, we can only recursively estimate 
a distribution of this hidden state using the learned model Θ and 
the history of past interactions {#, $" , {! 𝑁 , "𝑁 }!−1𝑁=1 }. We denote this 
distribution of the human’s hidden state prior to round ! as the 
“state belief ” B(! ): 
B(! ) ∝ E # ! −2 →B(! −1) 

 
P(" ! −1 |" ! −2 , ! ! −1 , " ! −1; $ update) 

] 
∀! ≥ 2 

(8) 
and B(1) = P(" 0 |# , $" ; $ init). Thus, given a state belief B(! ), the 
expected immediate utility for selecting the analysis ! in round ! is 
de"ned as % (B(! ), $combine, ! ) = E # ! −1 →B(! ) [# ($combine |! , "! −1 )],
which represents the expected probability gain for the human to 
select the target decision after they are presented with the analysis 
! in round ! and are asked to immediately make a decision by the 
end of round ! . 

However, note that the human does not have to immediately 
make a decision by the end of round ! —instead, we could choose 
to present more LLM-powered analyses to the human if they can 
help further increase the human’s probability of selecting the target 
decision $combine. Therefore, to determine the optimal analysis that 
maximizes the ultimate probability for humans to select $combine, 
we de"ne a value function & to represent the maximum expected 
overall utility that is achievable from the current state belief ' (! ) 
given the set of remaining analyses R ! : 
$ (B (! ), R ! , %combine ) = max 

! ∈R ! 
& (B (! ), " , %combine ) (9) 

& (B (! ), " , %combine ) = 

' (B (! ), %combine, " ) ︸!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!︸ 
expected immediate utility 

+$ (E"! →Bern(0.5) [B (! + 1) ], R ! \ {" }, %combine ) ︸!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︷︷!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!︸ 
maximum expected future utility 

In this de"nition, ((B(! ), ! , $combine) represents the expected overall 
utility that is achievable from round ! onward when the state belief 
prior to round ! is B(! ) and the analysis ! is presented to the 
human in round ! . It is composed of two parts. The "rst part is the 
expected immediate utility % (B(! ), $combine, ! ), which represents 
the immediate probability gain for the human to select the target 
decision in the ! -th round after ! is presented. The second part is the 
maximum expected future utility & (E(! →Bern(0.5) [B(! + 1)], R ! \ 
{! }, $combine), which represents the maximum future probability 
gain for the human to select the target decision in the (! + 1)-
th round and beyond if we continue to present the human with 
the optimal LLM-powered analyses selected from the set R ! \ {! }, 
while our state belief prior to the (! + 1)-th round is B(! + 1). B(! + 

1) is updated from B(! ) according to Equation 8, assuming that 
the human is equally likely to agree or disagree with the analysis 
! that is presented in the ! -th round. Finally, the optimal LLM-
powered analysis ! ! ∈ R ! for round ! is selected to maximize 
((B(! ), ! , $combine), and the expected overall utility associated with 
this optimal choice of analysis is denoted as &  (B(! !), R , $combine) = 
( ! (B(! ), ! , $combine). 

We can iteratively update the value function & ! (B(! ), R , $combine) 
until convergence, which yields the optimal policy 𝑇 ! (B(! ), R , $combine) 
for selecting the optimal analysis ! ! to present in the ! -th round : 

" ! = 𝑇 (B (! ), ! R , %combine ) { 
Not presenting and stop interaction if  $ (B (! ), R ! , %combine ) ≤ 0 

= 
arg max  (B ( ) )! !∈R & ! , ", %combine  otherwise 

(10) 

If the value function & (B(! ), !R  , $combine) is less than or equal 
to zero, it indicates that further interaction with the LLM is not 
expected to increase the chance for the human to make the target 
decision. Therefore, we stop presenting LLM analyses and let the 
human make the "nal decision. Otherwise, we will present the 
analysis that maximizes the expected overall utility. 

5 Evaluation of Algorithmic Framework 
In this section, we explore whether and how our proposed frame-
work, which adaptively presents LLM-powered analysis by esti-
mating the human’s hidden state and the e#ects of LLM-powered 
analysis on human decisions, can enhance human’s decision per-
formance in AI-assisted decision making and calibrate human trust 
in AI models. 

5.1 Operationalizing the Algorithmic 
Framework 

We operationalized our proposed algorithmic framework in Sec-
tion 4 in the context of AI-assisted income prediction and recidivism 
prediction tasks. Speci"cally, we utilized the data collected in Sec-
tion 3 under the Seq treatment to learn parameters Θ of the human 
behavior models for both types of decision making tasks. The behav-
ior models are optimized using Adam [37] with an initial learning 
rate of 1𝑈 − 4 and a batch size of each training iteration of 128. The 
number of training epochs is set as 15. The 5-fold cross validation 
on the collected data shows that the average accuracy of the learned 
models in predicting humans’ decisions under the assistance of AI 
recommendations and LLM-powered analysis is 0.74 for income 
prediction and 0.71 for recidivism prediction, respectively. To en-
able the use of the human-AI combination method [32] to infer the 
target decision for each decision making task, we also conducted a 
pilot study collecting humans’ independent judgments on various 
income prediction and recidivism prediction tasks. Using this pi-
lot data, we trained two models of humans’ independent decision 
making, which achieved an average accuracy of 0.81 and 0.84 for 
predicting humans’ independent judgment in income prediction 
and recidivism prediction, respectively. Finally, we utilized these 
learned human behavior models and human independent decision 
making models to dynamically select the LLM-powered analysis 
for humans in the following study. For more details related to the 
algorithm setting, please refer to the supplementary material. 
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5.2 Experimental Treatments 
In addition to the three baseline treatments discussed in Section 3.3 
(i.e., Control, Seq, All), we introduced two additional experimen-
tal treatments for this phase of evaluation: 

• Al(or)thm)c (Al(): In this treatment, participants started 
working on the decision making task seeing only the task 
instance and the AI model’s recommendation without re-
ceiving any LLM-generated analysis. Then participants were 
required to interact with the LLM, where in each turn, the 
LLM-powered analysis to be presented was selected based 
on Equation 10 to nudge the participant towards relying on 
the AI model’s recommendation appropriately. 

• R-nk: This treatment followed the same experimental proce-
dure as the Seq treatment regarding participants’ interaction 
and decision making processes. However, the R-nk treat-
ment di!ered in how the LLM-powered analysis to be pre-
sented was selected: We "rst used the post-hoc XAI method 
LIME [73] to generate feature importance scores for each 
task instance and then ranked all task features based on 
the absolute values of their importance scores. We then se-
lected the LLM-powered analysis to present according to 
a decreasing order of the absolute importance score of the 
corresponding feature (instead of in a random order as done 
in the Seq treatment). This treatment is designed to examine 
whether selecting LLM analysis based on our proposed algo-
rithm—which takes into account potential human reactions 
to such analyses—can enhance human decision making ac-
curacy compared to selection of LLM analysis that is based 
solely on heuristic feature importance, should it be available. 

Finally, as a reference, we also included a Hum-n-Solo treatment 
where participants completed the decision making tasks on their 
own without receiving either the AI model’s recommendation or 
any LLM-powered analysis. 

5.3 Data Collection 
Following the experimental procedure described in Section 3.4, we 
again recruited participants from Proli"c to complete AI-assisted 
income prediction and recidivism prediction tasks in the six treat-
ments. For each participant in the income prediction task, we ran-
domly sampled 15 di!erent tasks from a pool of about 500 task 
instances, which were di!erent from the instances used in either 
the Section 3 study or our pilot study (i.e., these task instances 
have not be used previously for learning human behavior models or 
human independent decision models). Similarly, in the recidivism 
task, we also randomly sampled 15 di!erent tasks from a pool of 
about 200 task instances which were di!erent from the task pool 
used in the Section 3 study and our pilot study. We o!ered a base 
payment of $1.20 and a potential bonus of $1.00 if the participant’s 
decision accuracy was above 85%. We also excluded participants 
who had previously participated in our study in Section 3 or our 
pilot study from taking this study. After "ltering out inattentive 
participants, for the income prediction task, we obtained data from 
447 participants, while for the recidivism prediction task, we ob-
tained data from 397 participants. The median working time of the 
participants was 9.3 minutes, which translates to a median hourly 

pay of $8.3 per hour. For more details of the collected data, see the 
supplementary material. 

5.4 Experimental Results 
Below, we analyze whether our proposed algorithmic framework 
can help decision makers make more accurate decisions, rely on 
the AI model’s decision recommendation more appropriately, and 
interact with LLM in an e#cient manner. 

5.4.1 Comparisons of Decision Accuracy. Figure 4a compares the 
average decision accuracy of our participants across treatments. 
Visually, it appears that participants in the Al( treatment achieve 
the highest decision accuracy among participants in all treatments 
for both types of tasks. 

To examine whether these di!erences are statistically signi"cant, 
we conducted regression analyses. Speci"cally, the primary inde-
pendent variable of the regressions was the treatment participants 
were assigned to. The dependent variable was the participants’ 
decision accuracy. To minimize the impact of potential confound-
ing variables, we included a set of covariates in the regression 
models, such as participants’ demographic background (e.g., age, 
gender, race, and education level), their knowledge of AI models, 
and the accuracy of the AI recommendation they received in the 
tasks. Our regression results indicate that our proposed algorithmic 
framework can signi"cantly improve humans’ decision making 
accuracy in both the income prediction and recidivism prediction 
tasks. Speci"cally, in the income prediction task, participants in the 
Al( treatment achieved signi"cantly higher accuracy compared 
to participants in the Control (! < 0.001), Seq (! = 0.007), R-nk 
(! = 0.041) and Hum-n-Solo (! < 0.001) treatments. Similarly, in 
the recidivism prediction task, participants in the Al( treatment 
achieved signi"cantly higher accuracy compared to participants 
in the Seq (! = 0.006), All (! < 0.001), R-nk (! = 0.047) and 
Hum-n-Solo (! < 0.001) treatments. 

5.4.2 Comparisons of Appropriate Reliance on AI. Figures 4b and 4c 
compare participants’ overreliance and underreliance on AI across 
treatments, respectively. For participants in the Hum-n-Solo treat-
ment, despite they did not see the AI model’s decision recommen-
dations, we still computed their hypothetical overreliance and un-
derreliance (i.e., computed as if the participant was presented with 
the AI recommendation on each task) to re$ect the natural ten-
dency for participants’ independent judgment to agree with an 
incorrect AI recommendation (Figure 4b) or disagree with a correct 
AI recommendation (Figure 4c). Here, we again see that partici-
pants in the Al( treatment almost always achieve the lowest level 
of overreliance and underreliance on AI among participants in all 
treatments. Our regression analyses suggest that for participants in 
the Al( treatment, the decrease in their overreliance on AI is sta-
tistically signi"cant compared to participants in other treatments. 
For example, in the income prediction task, our proposed frame-
work led to participants’ signi"cantly decreased overreliance on 
AI compared to that of participants in the Control (! = 0.028), 
Seq (! = 0.011), All (! = 0.014), and R-nk (! = 0.034) treatments. 
Similarly, in the recidivism prediction task, our proposed frame-
work signi"cantly decreased overreliance compared to Control 
(! = 0.002), Seq (! = 0.013), All (! < 0.001), and R-nk (! < 0.001) 
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(a) Accuracy (b) Overreliance (c) Underreliance 

Figure 4: Comparing the participants’ average decision accuracy, overreliance, and underreliance on AI in di!erent treatments 
for income prediction and recidivism prediction tasks. The pink dashed lines show that for participants in the Human-Solo 
treatment, (a) the accuracy of their decisions, (b) the frequencies at which their decisions align with AI recommendations 
(despite not seeing them) when AI recommendations are wrong, and (c) the frequencies at which their decisions di!er from 
AI recommendations (despite not seeing them) when AI recommendations are correct. Error bars (shade) represent the 95% 
con"dence intervals of the mean values. * , ** , and *** denote signi"cance levels of 0.05, 0.01, and 0.001, respectively. 

Treatment Income prediction Recidivism prediction 
Seq 4.88 ± 1.79 4.71 ± 1.89 
Rank 4.87 ± 1.03 3.72 ± 1.33 
Alg 2.99 ± 1.51 2.50 ± 1.19 

Table 2: The mean and standard deviation in the round of 
interactions between participants and the LLM in the Seq, 
Rank, and Alg treatments in a single decision making task. 
According to the results of the ANOVA test, followed by 
Tukey’s HSD test, the number of interaction rounds in the 
Alg treatment is signi"cantly lower than the number in the 
other treatments. 

treatments, and it even made participants agree with the wrong 
AI recommendations less than the natural degree of agreement 
exhibited by participants in the H()an-Solo treatment (! < 0.001). 
On the other hand, our regression results suggest that the decrease 
in participants’ underreliance on AI in the Alg treatment was not 
statistically signi!cant compared to other treatments; the only ex-
ception was that on the income prediction task, participants in the 
Alg treatment disagreed with correct AI recommendations signi!-
cantly less than the natural degree of disagreement exhibited by 
participants in the H()an-Solo treatment (! < 0.001). 

5.4.3 Comparisons of E!iciency of Interactions. Lastly, we looked 
into whether the proposed algorithm helps human decision makers 
process the most informative information from the LLM-powered 
analysis in an e"cient manner. First, Table 2 compares the average 
number of interaction rounds between participants and the LLM in 
the Seq, Rank, and Alg treatments in a single decision making task. 
Results of ANOVA tests indicate that the number of interaction 
rounds is signi!cantly di#erent across treatments for both types 
of decision making tasks (! < 0.001). We then proceed with post-
hoc pairwise comparisons using Tukey’s HSD tests. We found that, 
for both the income prediction task and the recidivism prediction 
task, our proposed approach led to signi!cantly fewer rounds of 
interactions between participants and the LLM compared to the 
Rank (! < 0.001 for both tasks) and Seq (! < 0.001 for both tasks) 

treatments. This suggests that our proposed algorithm potentially 
decreased decision makers’ cognitive load and helped them make 
decisions in a time-e"cient manner. 

In addition, as our proposed algorithm resulted in the highest 
decision accuracy among all treatments, it is natural to ask if this 
increase in accuracy was caused by the decreased number of LLM 
analysis shown to participants, or by the nature of the LLM analysis 
selected. To gain a deeper understanding on this, we conducted an-
other human-subject experiment with three treatments—Seq, Rank, 
and Alg—and we controlled the number of interaction rounds in 
a decision making task in the Seq or Rank treatments to match 
that experienced by participants in the Alg treatment4 . For each 
type of decision making task, we recruited 50 participants for each 
treatment. Figure 5 compares participants’ decision accuracy, over-
reliance, and underreliance on AI across the three treatments. Again, 
we found that participants in the Alg treatment achieved signi!-
cantly higher accuracy compared to participants in the Seq (income 
prediction: ! = 0.044, recidivism prediction: ! < 0.001) and Rank 
(income prediction: ! = 0.032, recidivism prediction: ! = 0.012) 
treatments. Moreover, we observed that participants in the Alg 
treatment signi!cantly decreased their overreliance on AI com-
pared to those in the Seq treatment for both the income prediction 
task (! = 0.042) and the recidivism prediction task (! = 0.004). This 
means that the proposed algorithm improved the accuracy of par-
ticipants’ decisions and promoted their appropriate reliance on the 
AI recommendation primarily as it selected the most informative 
LLM-powered analysis to be presented to people. 

5.5 Exploratory Analyses 
Finally, to gain deeper insights into why the proposed algorithm 
e#ectively nudged decision makers towards making more accurate 
decisions and relying on AI recommendations more appropriately, 
we conducted exploratory analyses to understand the nature of the 
LLM-powered analysis selected by the algorithm. 
4Based on our results in Table 2, for the income prediction task, we set the number 
of interaction rounds in a task to be 3. For the recidivism prediction task, we set the 
number of interaction rounds in a task to be 2 or 3 uniformly randomly. 
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(a) Accuracy (b) Overreliance (c) Underreliance 

Figure 5: Comparing the participants’ average decision accuracy, overreliance, and underreliance on AI in di!erent treatments 
for income prediction and recidivism prediction tasks, when "xing the number of interaction rounds at the same level. Error 
bars represent the 95% con"dence intervals of the mean values. * , ** , and *** denote signi"cance levels of 0.05, 0.01, and 0.001, 
respectively. 

Task 
Alignment Rate (%) 

Initial Analysis All Analyses 
AI Correct AI Incorrect AI Correct AI Incorrect 

Income Prediction 59 25 51 21 
Recidivism Prediction 51 38 50 37 

Table 3: The alignment rate between the LLM analyses and the AI model recommendations when the AI model’s decision 
recommendation is correct or incorrect for the income prediction and recidivism prediction tasks. 

Task 
Alignment Rate (%) 

Initial Analysis All Analyses 
AI = Target AI ≠ Target AI = Target AI ≠ Target 

Income Prediction 66 5 64 11 
Recidivism Prediction 64 23 69 15 

Table 4: The alignment rate between the LLM analyses and the AI model recommendation when the AI model’s decision 
recommendation matches or does not match the target decision for the income prediction and recidivism prediction tasks. 

As the example analysis shown in Table 1, given a decision task, 
the LLM typically provides its interpretation on how the value of a 
task feature in!uences the prediction—the value of a feature could 
increase, decrease, or has no in!uence on the likelihood of a certain 
prediction. The direction of this suggested in!uence can either 
align or not align with the AI model’s actual recommendation. For 
example, on an income prediction task, if the LLM suggests the 
education level of the person in the task decreases the likelihood of 
them making over $50k per year, and the AI model’s prediction on 
the task is indeed “below $50k”, then this analysis “aligns” with the 
AI prediction (i.e., on this task, the person’s education level provides 
supporting evidence to the AI model’s recommendation). However, 
if the AI model’s prediction on the task is “above $50k”, then this 
analysis does not align with the AI prediction, and the value of the 
person’s education level provides a contradictory evidence to the AI 
model’s recommendation. 

For all participants in the Alg treatment of our experiment, we 
analyzed whether each LLM-powered analysis presented to them 
on a decision task aligned with the AI model’s recommendation on 
that task. In Table 3, we compared the fraction of selected LLM anal-
ysis that aligned with AI recommendation for tasks in which the 

AI recommendation was correct and tasks in which the AI recom-
mendation was wrong, and such comparison was conducted when 
considering only the "rst analysis selected by the LLM on each 
task (see the “Initial analysis” column), or considering all analyses 
selected by the LLM on each task (see the “All analyses” column). 
Clearly, for both income prediction and recidivism prediction tasks, 
we found that LLM analyses that aligned with the AI recommenda-
tion were signi"cantly more likely to be selected on tasks where 
the AI recommendation was correct than on tasks where the AI rec-
ommendation was wrong (proportion tests suggest that ! < 0.001). 
In other words, when the AI recommendation was correct, our algo-
rithm was more likely to select analysis that provides “supporting 
evidence” to the AI recommendation, while analysis that provides 
“contradictory evidence” was more likely to be selected when the 
AI recommendation was wrong. 

Table 4 shows an even larger discrepancy in the alignment rate 
of the LLM-powered analysis selected when focusing on the com-
parison between tasks where the target decision was the same as 
the AI recommendation (hence the algorithm aimed to nudge the 
participant towards relying on AI), versus tasks where the target 
decision was di#erent from the AI recommendation (hence the 
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algorithm aimed to nudge the participant towards not relying on 
AI). This means that the algorithm primarily presents supporting 
evidence to humans to nudge them to rely on AI, while primarily 
presents contradictory evidence to humans to nudge them towards 
not relying on AI. As a qualitative example, in an income prediction 
task, suppose the AI model predicts the person’s income would be 
above $50k. If the algorithm aims to increase participants’ reliance 
on this prediction, the top three LLM analysis selected by the algo-
rithm across all decision making tasks are “With an occupation of 
professional specialty, this might increase the likelihood of making 
over $50k per year”, “With the sex being male, this might increase 
the likelihood of making over $50k per year”, and “With the work 
type being in the private sector, this might increase the likelihood of 
making over $50k per year”. In contrast, if the algorithm aims to 
decrease participants’ reliance on this prediction, the top three LLM 
analysis selected by the algorithm across all decision making tasks 
are “With an age of X [X is a value that is below median], this might 
decrease the likelihood of making over $50k per year”, “With a marital 
status of divorced, this might decrease the likelihood of making over 
$50k per year”, and “With X [X is a value that is below median] years 
of education, this might decrease the likelihood of making over $50k 
per year”. 

6 Discussions 
In this paper, via two phases of study, we explore how to e!ec-
tively incorporate the analytical capabilities of LLMs in AI-assisted 
decision making to improve human-AI team performance in the 
absence of AI explanations. Based on our "ndings, we discuss the 
potential societal impacts, design implications, and limitations of 
our study. 

6.1 Algorithmic Selection of LLM-powered 
Analysis Could Be a Double-Edged Sword 

In our study, we seek to enhance human-AI team performance 
in decision making by selectively and progressively presenting 
LLM-generated analyses that nudge humans towards making de-
cisions that are considered as optimal by a rational integration 
of human and machine intelligence. This practice demonstrated 
potential bene"ts, such as improving the accuracy of human-AI 
team’s decisions and reducing human overreliance on AI models. 
As we have shown in our study, the integration of carefully se-
lected LLM-powered analyses in AI-assisted decision making can, 
under controlled conditions, lead to improved decision making per-
formance by augmenting AI recommendations with detailed task 
analysis and enabling humans to re#ect on the AI recommendations 
in a structured way. 

However, our "ndings also raise concerns about the susceptibil-
ity of human behavior to algorithmic selection of the information 
that humans receive in their decision making. Despite the apparent 
bene"ts, the ease with which human decisions can be in#uenced by 
algorithmically selected LLM-powered analysis poses notable risks. 
Our study reveals that it is relatively straightforward to set a nudge 
direction that subtly manipulates human decision outcomes. This 
manipulation, while potentially benign and intended to correct for 
known biases or decision making #aws, could also be maliciously 
used by adversarial actors to achieve unethical goals. In the context 

of recidivism prediction, an example of such misuse could involve 
an adversarial actor manipulating the human decision making pro-
cess to be unfairly biased against certain groups [50]. By setting an 
unethical nudge goal, the LLM-powered analysis can be algorith-
mically presented in a manner that selectively emphasizes certain 
aspects over others. This selective presentation might in#uence 
human judicial decisions, nudging them towards more punitive 
measures for targeted populations, which reinforces existing soci-
etal biases and compromises the fairness. 

To counteract the potential adversarial uses of LLM-powered 
analysis, it is crucial that further research not only focuses on de-
veloping and enhancing the capability of AI models to support 
human decision making, but also on devising strategies to prevent 
their misuse in manipulating decisions adversely. For instance, to 
mitigate the risks of adversarial nudges in AI-assisted decision 
making, strengthening security measures around AI systems like 
implementing both physical security measures and cybersecurity 
protocols designed to guard against unauthorized access, hacking, 
and manipulation is critical. In addition, in our study, the successful 
nudging of human decisions to improve the human-AI team perfor-
mance was based upon the accurate modeling of human behavior. 
This modeling was fundamentally based on empirical human-AI 
interaction data. As such, protecting this data from misuse is crucial. 
Strict controls must be in place to ensure that only authorized and 
well-intentioned parties have access to sensitive interaction data, 
to prevent the misuse of algorithmic nudges. Finally, implementing 
continuous monitoring of decisions when humans interact with 
AI/LLM-powered systems is necessary to detect any unusual pat-
terns in human behavior that may indicate potentially misleading 
or biased AI information. 

6.2 On Determining Nudging Directions 
through Combining Human Decisions and 
AI Recommendations 

In our proposed framework, a key step is to determine the trustwor-
thiness of the AI recommendation and decide whether to present 
LLM analysis to nudge human decision makers towards relying 
on the AI recommendation or not. We did so by leveraging the 
“human-AI complementarity”—we inferred a “target decision” on 
each decision making task using existing methods (e.g., [32]) to 
combine the predicted human’s independent decision on the task 
and the AI model’s recommendation on the task, and nudging hu-
man decision makers towards making this target decision. While 
these combination methods could always be used to generate a tar-
get decision, the quality of the target decision—to what extent the 
target decision is more accurate than both human’s independent 
decision and AI’s recommendation and therefore provides useful 
information on the trustworthiness of the AI recommendation— 
may vary with many factors. For example, the correlation between 
human and AI decisions was found to be a signi"cant factor that 
would limit the human-AI complementarity—the more correlated 
humans’ and AI’s decisions are, the less likely the combined de-
cision outperforms both human and AI alone [86]. This implies 
that if the AI model is trained based on historic decisions made by 
humans to mimic human decision making, the algorithmic combi-
nation of human and AI decisions may not yield target decisions 
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of signi!cantly higher accuracy. Another key in"uencing factor is 
the accuracy di#erences between humans and AI—the larger the 
accuracy di#erence, the less likely the combination of human and 
AI decisions would outperform the decision of the more accurate 
party [5, 86]. Di#erent combination methods may also yield target 
decisions with varying levels of accuracy, as each method has its 
own assumptions when modeling human decisions and AI deci-
sions, which may or may not be valid for a speci!c decision making 
task. 

As the e#ectiveness of the combination method may vary with 
many di#erent factors, in practice, given a particular type of de-
cision making task, we recommend !rst collecting pilot data on 
human and AI’s decisions on this task. This data would enable the 
comparison of the performance of various combination methods as 
well as understanding if the combined decisions show true advan-
tages over the independent decisions of either humans’ or AI’s. If 
the accuracies of combined decisions are similar to the more accu-
rate party between the human decision maker and the AI model, 
instead of triggering additional computational cost to compute the 
combined decisions, one may consider simply nudging the decision 
maker to always rely on AI (if AI is more accurate than human) or 
always not rely on AI (if human is more accurate than AI). However, 
if the combined decisions are more accurate than both humans’ 
and AI’s decisions, one should select the combination method that 
produces the most accurate combined decisions, or even design 
new combination algorithms that are tailored to the unique charac-
teristics of human and AI decisions in the current decision making 
task, thereby producing more accurate combined decisions than 
existing algorithms. 

6.3 On the Potential Misalignment between 
LLM Analysis and True AI Decision 
Rationales 

As discussed earlier, in our framework, the analysis produced by 
the LLM on a decision making task does not necessarily align with 
the actual decision rationale of the AI model (e.g., the random 
forest models used in this study). Since the LLM is not directly 
informed of the internal workings of the AI model (as we focus 
on scenarios where internals of AI models are not accessible in 
this study), its analysis—generated based on general knowledge 
about the task—may not capture the speci!c decision boundaries 
or feature correlation relationships of the AI model. However, we 
note that in this study, accurately explaining the AI model’s de-
cision rationale is not the primary motivation for including the 
LLM-powered analysis. Instead, LLM-powered analysis is used to 
provide a subjective interpretation of the AI model’s recommen-
dation and prompt decision makers to engage in critical thinking 
when there is no access to the actual explanations of the AI model. 
That is, while the AI model serves as the primary advisor for human 
decision makers and provides them with the decision recommenda-
tion, the LLM serves as the secondary advisor supplementing the 
primary advisor by providing its own justi!cations to the primary 
advisor’s recommendation, which allows the decision maker to put 
the recommendation into context. 

We argue that the potential lack of alignment between the LLM-
powered analysis and the AI model’s true decision rationale may 

not be a concern in many cases. First, the main motivation for 
including the LLM-powered analysis in our framework is to en-
courage decision makers’ critical re"ection of the decision task as 
well as the AI recommendation. Even if these analyses deviate from 
the AI model’s true decision rationale, it could still e#ectively draw 
decision makers’ attention to key features related to the decision, 
thereby guiding decision makers’ independent and more thought-
ful evaluation of the recommendation, allowing them to act on 
it cognitively rather than blindly trusting/not trusting it simply 
due to the lack of transparency. Second, in many scenarios, there 
may exist multiple reasoning paths to arrive at the same recom-
mendation, making it less practical to align the LLM analysis with 
the “true” decision rationale of the AI model, which may not even 
be well-de!ned. In fact, even when actual AI explanations can be 
obtained, established explainable AI methods were often found to 
have limited !delity [62], and di#erent methods can provide di#er-
ent explanations for the same decision of the same model [39, 40]. 
Thus, when the actual AI explanations are not accessible, the LLM-
powered analysis could just be viewed as one possible reasoning 
path to arrive at the AI model’s recommendation when having 
the LLM engage in “perspective taking” to rationalize that recom-
mendation, or it could even be viewed as the LLM’s independent 
(and true) reasoning path when it has to arrive at the AI model’s 
recommendation. The degree to which the LLM’s reasoning path 
looks reasonable may provide critical insights into the validity of 
the AI recommendation, as the perceived reasonableness of the 
LLM’s reasoning may correlate with the plausibility and robustness 
of the AI recommendation. Finally, when the ultimate goal is to 
improve the decision maker’s appropriate reliance on the AI model 
and thus increase their decision accuracy, the exact reasoning be-
hind the recommendation of the AI model might not matter as 
long as the information provided by the secondary advisor (i.e., the 
LLM) leads to a better-informed decision. In this sense, compared 
to the precise content of the LLM-powered analysis, the knowledge 
about to what extent presenting a LLM analysis will nudge deci-
sion makers towards making a desirable target decision is more 
critical for e#ectively improving humans’ decision accuracy. In our 
algorithmic framework, this knowledge is captured through our 
human behavior model. 

That said, we acknowledge that the when helping decision mak-
ers gain accurate understandings of the internal workings of the AI 
model is a primary end-goal, the LLM-powered analyses may bring 
about risks as humans may build an inaccurate mental model of the 
AI’s internal workings based on these analyses. In extreme cases, 
the LLM-powered analyses may even “sugercoat” incorrect AI rec-
ommendations or hide ethical issues underneath the AI model, such 
as model biases [81]. To address this risk, the ultimate solution is 
to increase the transparency of the AI model to obtain the actual 
explanations of the model, and the proposed algorithmic framework 
could still be used to determine how to present these explanations 
selectively and progressively. However, without access to actual 
AI explanations, methods should be designed to increase people’s 
awareness of the potential mismatch between the LLM analysis and 
the true AI decision rationale. Moreover, one may consult multiple 
secondary advisors (e.g., multiple LLMs) to analyze the AI recom-
mendation and triangulate the reasoning process; this may help 
the human decision makers understand the diversity of possible 
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interpretations of the AI recommendation and reduce the likelihood 
of being misled by the misinterpretation of any single secondary 
advisor. 

6.4 Design Implications for Human-LLM 
Interaction 

Our study demonstrates that while LLMs can generate and provide 
informative analysis for human decision makers, how to present 
this information is critical to its e!ective utilization. The heuris-
tic design of interactions between humans and LLMs, when not 
carefully curated, often proves ine"cient and fails to achieve the 
intended positive utility of LLM’s analytical capabilities. For exam-
ple, when decision makers are directly supplied with an abundance 
of LLM-generated information, the information overload would 
overwhelm users and potentially result in decision fatigue, making 
it di"cult for users to identify relevant information quickly. In 
addition, the practice of randomly slicing abundant information 
into pieces or relying solely on standard importance metrics to 
guide the presentation of data does not adequately consider the 
cognitive processes of how humans process such information. Such 
methods may lead to prolonged interactions between humans and 
LLMs, which may also overwhelm and confuse users, leading to 
suboptimal engagement and diminished utility of the LLM outputs. 

To mitigate these issues and enhance the practical utility of LLM 
for users, it is essential to integrate considerations of cognitive and 
contextual factors into the design of interaction paradigms between 
humans and LLMs to facilitate more e!ective and e"cient interac-
tion. For example, one important consideration in designing these 
interaction paradigms is to determine the most valuable informa-
tion to present to users from the large pool of content that LLMs can 
generate. Given that LLMs are adept at producing vast quantities of 
information, ranging from seemingly meaningful to less relevant 
content, it is crucial to implement intelligent selection strategies to 
group information based on decision making priorities or estimated 
human cognitive needs. This may allow the LLM to dynamically 
adjust to the user’s immediate needs and contexts by predicting 
what information is most pertinent based on user behavior and 
feedback. Additionally, allowing users to customize the presenta-
tion and management of information within the interface can be 
another promising approach to explore in the future. Customiza-
tion options might include adjusting the volume, complexity, and 
format of the information to better align with individual processing 
styles and needs. Finally, incorporating continuous feedback loops 
within the interface design is crucial for optimizing the interaction 
between humans and LLMs. These feedback loops enable users 
to provide input on the usefulness of the information presented, 
which can inform and re#ne the algorithms that select and present 
data, ensuring that the LLM remains dynamically aligned with user 
needs and preferences. 

6.5 Generalization of Methods and Findings 
We acknowledge that our study has a few important limitations 
regarding the generalizability of our methods and #ndings. First, 
our study focused on two speci#c decision making tasks: income 
prediction and recidivism prediction. These tasks are widely used in 
previous research on AI-assisted decision making [4, 21, 90, 96, 101] 

and feature a tabular data format with an explicit structure of fea-
tures; the property of these tasks allows us to e!ectively apply LLM 
in the analysis and estimate how humans might react to these anal-
yses. The success of our proposed framework in these two di!erent 
tabular-data-based tasks strengthens our con#dence in its potential 
to generalize to other AI-assisted decision making scenarios in-
volving tabular data. However, applying our framework to decision 
making tasks with di!erent data types, such as vision-based or 
text-based decision making tasks, presents additional challenges 
and requires further adaptation. This is because the image or text 
data do not contain explicit structured information that is amenable 
to analysis by the LLM in the same manner as tabular data. One 
potential solution is to convert these unstructured data types into 
a structured format that #ts our proposed framework. For example, 
in text-based tasks, one could #rst use an LLM to extract seman-
tically meaningful information from the text (e.g., text sentiment, 
key subjects in the text). This extracted information can then be 
treated as features, similar to how features are handled in tabular 
tasks, and subsequently input into the LLM for generating analyses. 
Likewise, for vision-based tasks, one could start by segmenting 
images into superpixels (i.e., groups of pixels representing visu-
ally meaningful entities) [1] or identifying relevant concepts in the 
images [34]. The presence and absence of certain superpixels and 
concepts would then serve as the features of the image, enabling 
LLMs to directly analyze them. The LLM analysis obtained could 
then be integrated into our framework, allowing it to work with a 
wider range of decision making tasks. When the transformation of 
unstructured data into structured formats is required before con-
ducting the LLM-powered analysis, the decision on what features 
to be extracted from the data can be either made automatically (e.g., 
by the LLM) or manually by the human decision makers. Thus, how 
to ensure a comprehensive set of features will be extracted from 
the unstructured data becomes a critical challenge to be addressed. 

Secondly, as previously discussed, successfully nudging humans 
towards relying on AI models more appropriately hinges on the 
accurate modeling and prediction of how humans will react to 
di!erent LLM-powered analyses. However, data on human-AI inter-
action collected in the past to train such behavioral models may not 
always align perfectly with current human behavior patterns, lead-
ing to potential discrepancies in e!ectiveness when these models 
are applied. It is thus essential to continually update the human-AI 
interaction data. This update process ensures that the models can 
make predictions that align more accurately with current human 
behavior patterns. 

In addition, in our current framework, we model human decision 
makers’ reactions to LLM-powered analysis on a population level 
without accounting for the unique characteristics of each individ-
ual. In other words, our human behavior model characterizes the 
behavior of an “average” decision maker. In our study, we found 
that the e!ects of the proposed algorithmic approach for selecting 
LLM-powered analysis in improving participants’ #nal decision 
accuracy and enhancing their appropriate reliance on AI are robust 
across subpopulations with diverse demographic backgrounds and 
varying levels of AI knowledge, suggesting that modeling an aver-
age decision-maker is a reasonable modeling choice. That said, we 
acknowledge that this average modeling approach may neglect cru-
cial individual di!erences that signi#cantly a!ect the dynamics of 
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human-AI interaction in AI-assisted decision making, and may indi-
cate missing opportunities to further improve di!erent individuals’ 
decision performance by accounting for their unique characteristics. 
Future work could integrate various human characteristics (e.g., a 
person’s intuition or prior knowledge about the task [8], need for 
cognition [6]) into the human behavior models (i.e., one or more of 
the three model components—the initial state mapping model, the 
hidden state updating model, and the "nal decision model) to fur-
ther accommodate individual preferences and traits. For instance, 
a person’s competence or con"dence in a speci"c decision task 
could be a critical moderating factor in#uencing how they would 
react to the AI recommendation and LLM-powered analyses. As 
individuals tend to exhibit low reliance on AI when they are more 
con"dent [60], explicitly accounting for human con"dence in the 
behavior models may enable more e$cient presentation of LLM-
powered analyses (e.g., on tasks where humans are highly con"dent 
and the target decision suggests AI is not trustworthy, one may 
need to present fewer LLM analyses to nudge humans towards the 
target decision). As another example, a person’s inherent tendency 
to trust AI or LLM systems can also be explicitly accounted for in 
the human behavior models, which may allow the algorithm to 
dynamically adjust which and how many LLM-powered analyses 
to be presented to the human decision makers based on their trust 
inclination. 

Finally, we note that our study was conducted on Proli"c, which 
primarily involved non-expert users in low-stake decision making 
scenarios. While this setting provided a suitable testbed for the eval-
uation of the appropriateness of human trust in AI-assisted decision 
making, we urge caution should be used when generalizing our 
conclusions to other populations or decision making scenarios. For 
example, in high-stake decision making scenarios where decision 
makers may utilize di!erent cognitive strategies and where the 
consequences of errors are more signi"cant, it is unclear whether 
the intelligent interaction paradigms we designed for interactions 
between humans and LLMs will perform equally well. However, we 
believe that if su$cient human-AI interaction data can be collected 
in high-stake scenarios to train highly accurate human decision 
making models, the potential to successfully nudge human deci-
sions even in these critical environments still persists. 

6.6 Other Limitations 
Our study has a few additional limitations. For example, our LLM-
powered analysis mainly relies on the GPT-4 model. Consequently, 
our results may not generalize to other "ne-tuned LLMs that are 
speci"cally designed for decision making support in various spe-
cialized "elds, such as medical LLMs employed in clinical decision 
making scenarios. The distinct capabilities and pre-designed func-
tionalities of these specialized models could lead to di!erent out-
comes in human-LLM collaboration compared to those observed 
with GPT-4, which has general-purpose capabilities. Furthermore, 
in our study, we employed random forest models as the AI assistant 
to provide decision support. The outcomes observed could vary 
signi"cantly with the use of di!erent AI models with its own set of 
processing abilities, training datasets, and optimization goals, all of 
which could potentially in#uence the e!ectiveness and reliability 
of the decision making support provided. 

7 Conclusion 
In this paper, we present an initial exploration of whether and how 
incorporating LLM-powered analysis can enhance the performance 
of human-AI teams in AI-assisted decision making, when expla-
nations of the AI recommendations are not easily accessible or 
available. Through a randomized experiment, we "rst show that 
presenting LLM-powered analysis of each feature in decision mak-
ing tasks, either sequentially or concurrently, does not signi"cantly 
improve humans’ performance in AI-assisted decision making. We 
then propose an algorithmic framework to characterize the e!ects 
of LLM-powered analysis on human decisions and dynamically 
decide which analysis to present. Our evaluation with human sub-
jects shows that, by following the proposed approach, humans can 
achieve higher decision accuracy and exhibit reduced overreliance 
on AI in AI-assisted decision making. Overall, our study provides 
important experimental evidence regarding the e!ectiveness of 
incorporating LLMs in AI-assisted decision making, and how to de-
sign intelligent interaction methods between humans and LLMs to 
fully unlock the potential of LLMs for promoting better human-AI 
collaboration in decision making. 
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