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Misinformation on social media has become a serious concern. Marking news stories with credibility indicators,
possibly generated by an AI model, is one way to help people combat misinformation. In this paper, we report
the results of two randomized experiments that aim to understand the e�ects of AI-based credibility indicators
on people’s perceptions of and engagement with the news, when people are under social in�uence such that
their judgement of the news is in�uenced by other people. We �nd that the presence of AI-based credibility
indicators nudges people into aligning their belief in the veracity of news with the AI model’s prediction
regardless of its correctness, thereby changing people’s accuracy in detecting misinformation. However,
AI-based credibility indicators show limited impacts on in�uencing people’s engagement with either real
news or fake news when social in�uence exists. Finally, it is shown that when social in�uence is present,
the e�ects of AI-based credibility indicators on the detection and spread of misinformation are larger as
compared to when social in�uence is absent, when these indicators are provided to people before they form
their own judgements about the news. We conclude by providing implications for better utilizing AI to �ght
misinformation.
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1 INTRODUCTION
In recent years, the growing problem of online misinformation (e.g., “fake news”) has drawn much
attention from society. Indeed, the wide and rapid spread of misinformation can cause confusion and
panic among people and even misguide people’s decisions in the real world, for example, regarding
vaccination and voting [12, 13, 50]. To �ght against online misinformation, one prevalent approach
taken by social media platforms is to have third-party fact-checkers review online information
and put warning labels on those content rated as false [24, 43]. However, the limited scalability
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of manual fact-checking has prompted researchers and practitioners alike to explore alternative
methods for signaling the credibility of online information, such as through automated AI-based
technologies [28, 42]. To this end, a few recent studies show that AI-based credibility indicators,
when presented in appropriate forms, can increase people’s sensitivity in di�erentiating real and
fake news [23, 44] and decrease people’s propensity to share fake news [55].

Despite the promising empirical �ndings, most of the existing research examines the e�ectiveness
of AI-based credibility indicators in a simpli�ed setting in which people’s judgements and actions
on a piece of news are only decided by their own interpretation of the news and the in�uence
brought up by the AI-based credibility indicators. On real-world social media platforms, however,
people’s perceptions of and engagement with the news are often shaped by social in�uence [49, 52],
such as other people’s opinions about the news as well. For example, on Twitter or Facebook, users
can share a piece of news while adding their own comments, such as their explicit judgements
on the veracity of the news, to it. As the news gets spread through the users’ social connections,
these comments can potentially impact how future users (who will see this news later) interpret
the news. Therefore, a critical yet under-explored problem in deepening our understanding of
AI-based credibility indicators is whether and how these indicators can assist people in identifying
misinformation and stopping the spread of misinformationwhen people are subject to social in�uence.
There are reasons to conjecture the answer either way. On the one hand, as the news gets

spread in the social network, if providing an AI-based credibility indicator nudges most individuals
who see this news into aligning their belief in the veracity of the news with the AI model’s
predictions to some extent, the e�ects of AI-based credibility indicators on people’s perceptions of
and engagements with the news may not only still be present under the social in�uence, but even
get ampli�ed by social in�uence due to the possible occurrence of information cascades or herding
behavior (i.e., people give up their own judgement and follow the crowd instead) [4, 47]. On the
other hand, if some, or even the majority of people in the crowd disagree with the AI model in their
evaluations of the credibility of the news after viewing the AI model’s prediction, it may not be
surprising to see the e�ects of AI-based credibility indicators disappear under the social in�uence,
as people may start to question the trustworthiness of the AI model and consider the crowd’s
opinions as more informative. To further complicate matters, credibility indicators generated by AI
models may not be perfectly accurate. Thus, it is unclear whether people, together with their peers,
have the capability of e�ectively telling apart when the AI-based credibility indicators are reliable
and when they are not, as well as how this capability may be a�ected by the ways that AI-based
credibility indicators are presented such as when they are shown to people.

To thoroughly understand the e�ects of AI-based credibility indicators when people are consum-
ing news under the social in�uence, in this paper, we conducted two pre-registered, randomized,
human-subject experiments on Amazon Mechanical Turk (MTurk), recruiting subjects to review
news stories. In our Experiment 1, we adapted the experimental setup from the classical information
cascade experiment in economics [4] to simulate how people will be in�uenced by others’ opinions
in interpreting and reacting to a piece of news as the news gets di�used (i.e., subjects who received
the news later could see the veracity judgements about the news that were made by all preceding
subjects). Moreover, we created three treatments in Experiment 1 by varying whether AI-based
credibility indicators were presented to subjects on the news and when they were presented (i.e.,
before/after subjects processed the news independently and got exposed to others’ veracity judge-
ments about the news). Thus, through Experiment 1, we aim to explore how the presence and the
timing of an AI-based credibility indicator a�ect people’s ability to detect misinformation as well
as their willingness to share real and fake news when people are subject to social in�uence. Our
Experiment 2 serves as a replication of Experiment 1, which allows us to examine the robustness of
our experimental results under a more realistic setup (e.g., when the text of news is accompanied
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by an image), and it also enables us to compare the sizes of AI-based credibility indicators’ e�ects
on the detection and spread of misinformation, between the case when social in�uence is present
and the case when social in�uence is absent.

The results of our two experiments consistently suggest that the presence of AI-based credibility
indicators signi�cantly increases people’s tendency to align their veracity belief in a piece of news
with the AI model’s prediction, regardless of the correctness of the prediction. This means that
when the credibility indicators provided by the AI model are correct (wrong), their presence will
signi�cantly improve (impair) both the ability of each individual and the collective ability of a group
to accurately detect misinformation, even as people are subject to social in�uence when judging the
veracity of the news. However, we �nd minimal evidence suggesting that these changes in people’s
ability to detect misinformation result in changes in people’s sharing intention or the expected
depth of spread for either real news or fake news—the only signi�cant result we obtain is that
providing correct AI-based credibility indicators increases an individual’s willingness to share real
news relative to fake news, but only when these indicators are presented to people after they have
got the opportunity to process the news on their own. Finally, through comparisons of the e�ect
sizes, we �nd that if the AI-based credibility indicators are presented to people before they process
the news on their own, their impacts on the detection and spread of misinformation become larger
when people are subject to social in�uence, compared to when people are not subject to social
in�uence.
Together, our �ndings provide important implications on the possible bene�ts, risks, and limi-

tations of utilizing AI technologies in combating online misinformation. Our �ndings also o�er
lessons on better leveraging AI-based credibility indicators to facilitate the detection of misin-
formation and reduce the spread of misinformation in a complex social environment. Lastly, our
�ndings highlight the importance of studying misinformation in more realistic settings in controlled
experiments. We conclude by discussing these implications.

2 RELATEDWORK
2.1 Misinformation: Harms, Mechanisms, and Mitigation
In the past decade, misinformation has attracted research interests from a wide range of domains
and angles. For instance, researchers have analyzed the harms brought by the spread of misin-
formation [2, 3, 25, 40], and found that misinformation can result in false perceptions and risky
behavior, and it may even lead to a degree of distrust in authorized information. Unfortunately,
researchers have found that false news cascades tend to di�use to more people than the truth [50].
This observation raises the important question of understanding why people believe and are willing
to share false news. Pennycook and Rand [39] synthesized the recent psychological literature
that investigated into this question. Their review suggests that people’s poor ability in discerning
true and false information is associated with a lack of careful reasoning and relevant knowledge,
as well as the use of various heuristics, while people’s sharing of misinformation is more of an
outcome of not paying attention to evaluate the accuracy of the information. Additional research
has further shown that the spread of misinformation is exacerbated by people’s selective exposure
to information [10, 22, 46].
In light of the danger of misinformation, researchers and practitioners have explored ways to

reduce the spread of misinformation [6, 26, 34, 37]. One of the most commonly adopted approaches
is to have professional fact-checkers review online information and then display warning labels
along with those inaccurate information spotted by the fact-checkers. It has been shown that
the usage of such warning labels lowers people’s perceived accuracy of misinformation [16, 51],
reduces people’s intention to share false news stories [30, 55], and improves people’s ability in
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di�erentiating true and false information in the long term, especially when warning labels are
provided as feedback after people have �rst processed the information independently [11]. The
main drawback of such manual fact-checking approach is its limited scalability.

2.2 Utilize AI in Influencing Misinformation-Related Decision Making
In recent years, a rich set of empirical research has been conducted in understanding whether and
how the presence of recommendations from an AI model can in�uence people’s decision-making
ability [9, 14, 27, 29, 41, 53, 56, 57]. In the context of misinformation research, to overcome the
limited scalability of manual fact-checking, AI technologies have been developed to automate the
detection of misinformation [19, 28, 31, 42, 54]. This opens up the possibility of supplying AI-based
credibility indicators to people to assist them in evaluating news veracity. Most recently, researchers
have started to conduct empirical research to examine the e�ectiveness of AI-based credibility
indicators in in�uencing people’s accuracy in evaluating news veracity and their news sharing
intention. For example, Seo et al. [44] and Nguyen et al. [34] showed that displaying the AI model’s
recommendations on the veracity of news headlines/claims has the potential of increasing people’s
accuracy in detecting both real news and fake news, and they both emphasized the importance of
the transparency of the model. Horne et al. [23] found that interventions from an AI model are
more e�ective in increasing people’s ability to detect fake news when the AI advice is tailored to
con�rmed heuristics used by news consumers. Moreover, through a comparative study, Yaqub et
al. [55] found that AI-based credibility indicators can decrease people’s propensity to share fake
news, though their impacts are smaller than those of indicators provided by fact-checkers.

2.3 Social influence on Belief in Misinformation
The primary di�erence between our study and the earlier research that examines the e�ects of AI-
based credibility indicators is that we consider a more realistic setting where people are in�uenced
by others when evaluating the credibility of news, i.e., they are subject to social in�uence. Such
social in�uence may come naturally from one’s social networks [15, 48]—it can be as explicit
as other’s comments on whether a piece of news is fake or not, or as implicit as other’s social
engagement with the news (e.g., like or upvote a news post)—and it can potentially shape how
people interpret and act upon the news. For example, it was found that seeing a comment from
other people criticizing a news article as fake decreases one’s likelihood of sharing it [17], while
seeing a high level of social engagement statistics for a fake news story increases one’s tendency to
share it [5]. While these studies con�rm that people’s perceptions of news are a�ected by social
in�uences, little is known on whether AI-based credibility indicators still have any impacts on
people’s detection and spread of misinformation, when they are subject to social in�uence. Our study,
thus, �lls this gap.
We note that in the real-world social media environment, as a piece of news di�uses to more

people through a path in the social network, those ones who are exposed to the news later could
be in�uenced by all the people who are exposed to the news earlier on the path. To simulate the
sequential nature of how people get impacted by social in�uence, we get inspirations from the the
information cascade literature in economics [1, 4, 21] when designing our experiment. Speci�cally,
in the classical information cascade experiment in economics (e.g., [4]), there are two urns labeled𝐴
and ⌫. For Urn𝐴, the proportion of balls in it with a label of “0” is @ (@ > 0.5) while the proportion of
balls with a label of “1” is 1−@. Conversely, for Urn ⌫, the proportion of balls in it with a label of “1”
is @ while the proportion of balls with a label of “0” is 1−@. In the experiment, the experimenter will
�rst randomly select a urn between Urn 𝐴 and Urn ⌫, with the probability of Urn 𝐴 selected being
? . Then, participants are asked to each draw a random ball from the selected urn in a sequential
order and guess which urn (i.e., Urn 𝐴 or Urn ⌫) is selected by the experimenter, and participants
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are informed about the values of ? and @. For the (: + 1)−th participant in the sequence, they will
�rst observe the label of the ball they draw, which are their “private signals.” Then, they will see the
public decisions made by all : participants preceding them in terms of their guesses of which urn
is selected. With all these information, they will �nally make their public decisions on the selected
urn. Empirically, it is observed that in such experiment, “information cascade” often occurs such
that a participant will report a public decision that contradicts with the participant’s private signal
but aligns with public decisions made by previous participants (e.g., guess Urn 𝐴 is selected despite
the private signal is “1”), though such cascade does not necessarily lead to the correct decisions.
We adopted a similar setup in our experiment. However, our emphasis was not to understand

whether information cascade occurs as people consume the news in a sequential order and be
in�uenced by early receivers’ opinions about the news when judging its veracity. Instead, our goal
is to understand how providing AI-based credibility indicators impacts people’s ability to detect
misinformation and their willingness to share true and false information, in an environment where
people are subject to social in�uence and a cascade of belief in news veracity may occur.

3 EXPERIMENT 1
In our Experiment 1, we aim to obtain an understanding of how providing an AI-based credibility
indicator along with a piece of news will a�ect people’s perception of the news and their intention
to engage with the news, considering that these people are in a social environment such that their
interpretation of the news is also a�ected by others’ attitudes towards the news. Speci�cally, we
are interested in examining how the presence and the timing of a credibility warning produced by
an AI model will impact the detection and spread of misinformation. We ask:

• RQ1: How do the presence and the timing of an AI-based credibility indicator a�ect people’s
accuracy in detecting misinformation (i.e., fake news) when they are impacted by others’
judgement on the veracity of the news?

• RQ2: How do the presence and the timing of an AI-based credibility indicator a�ect people’s
willingness to share real news and fake news when they are impacted by others’ judgement
on the veracity of the news?

To answer these research questions formally, we conducted a randomized, pre-registered experi-
ment1. The design of our experiment was largely adapted from the classical information cascade
experiments in economics [4], where human subjects were recruited from Amazon Mechanical
Turk (MTurk) to review news while they could also observe the judgements on the news made by
all preceding subjects who reviewed the news before themselves. In addition, subjects in di�erent
experimental treatments may or may not get access to the AI model’s prediction of the credibility
of the news. All of our experiments were approved by the IRB of the authors’ institution.

3.1 Experimental Task
In this experiment, subjects were asked to complete a series of 10 tasks to review short news stories.
News stories used in these tasks came from a dataset that we collected, which included a total
of 40 news stories—20 true news stories (i.e., “real news”) and 20 false news stories (i.e., “fake
news”)—related to COVID-19 (see the supplementary materials for the full list of news we used in
this experiment). The veracity of the real news in our dataset was con�rmed by cross-checking
multiple reliable media outlets and peer-reviewed publications, while the fake news in our dataset
was considered false because it was either disputed by authoritative sources (e.g., fact-checking
sites) or con�icted with veri�ed information. We decided to use COVID-19 related news in our
experiment as COVID is a topic that has been intensively discussed by people today. Thus, having
1Our pre-registration document can be found here: https://aspredicted.org/u5fu5.pdf
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subjects determine the veracity of COVID-19 related news and decide how much to engage with
this news in our experiment has the potential to re�ect people’s real-world behavior, as they are
likely interacting with massive amounts of COVID information in their real life.
In each task, the subject was presented with one piece of news that was randomly drawn from

our news dataset and was asked to complete the following steps (see Figure 1 for an example of the
task interface):

• Step 1: The subject was asked to carefully review the news.
• Step 2: The subject was asked to make an initial binary judgement on whether this news is
real and fact-based or fake and contains false information. The subject also needed to report
their con�dence in this initial judgment on a 7-point Likert scale from 1 (not con�dent at all)
to 7 (extremely con�dent).

• Step 3: If the subject was not the �rst one to review this news, they would be presented with
a list of binary veracity judgments on this news that were made by other subjects who had
reviewed this news before them, with the list sorted in chronological order.

• Step 4: After reviewing others’ judgments, the subject needed to make their �nal binary
judgment on the veracity of the news as well as reporting their con�dence on the �nal
judgement, again on a 7-point Likert scale. Note that for those subjects who would review
this news after the current subject, in their Step 3, the veracity judgement they saw from the
current subject would be this �nal judgement.

• Step 5: Finally, the subject was asked to indicate the likelihood for them to share the news on
social media platforms as a percentage between 0% (impossible to share) to 100% (extremely
likely to share).

In this 5-step procedure, we intended to use Step 3 to re�ect real-world scenarios where people
are exposed to “social in�uence” when interpreting a piece of news. Here in this experiment, we
consider the social in�uence as other people’s explicit judgement on the veracity of the news
stories. Thus, given a particular piece of news, subjects who reviewed this news successively would
produce a sequence of veracity judgements, and subjects who reviewed it at a later stage could see
the veracity judgements made by all previous subjects. This design was adopted to simulate that as
a piece of news gets spread through a path in the social network, late receivers of the news may be
in�uenced by those early receivers in interpreting the news, thus a cascade of news veracity belief
may occur. Note that one may map this 5-step procedure to the setup in the classical information
cascade experiments [4] (see Section 2.3 for details)—An urn (i.e., the “real news” urn or the “fake
news” urn) is selected in Step 1, and the subject observes their private signal (in Step 2) as well as
the public decisions made by all preceding subjects (in Step 3), before they make their own public
decision in Step 4.

3.2 Experimental Treatments
To re�ect that in addition to being in�uenced by the opinions of “others,” people may also get access
to an AI model’s prediction on news credibility and be in�uenced by it, we created three treatments
in Experiment 1 by varying the presence and the timing of the AI-based credibility indicators:

• Control: Subjects in this treatment did not have access to the AI-based news credibility
indicator in each task.

• AI-before: For subjects in this treatment, in each task, they saw the AI model’s binary
prediction on the credibility of the news in Step 1, which was before when they were asked
to make their initial judgement on the veracity of the news and when they were exposed to
other people’s opinions about the news.
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Step 1

Step 2

Step 3

Step 4

Step 5

Fig. 1. An example of our task interface (for the AI������� treatment, so the model’s prediction on news
credibility is shown in Step 1). All steps are displayed on the same page, but are shown to subjects progressively.

• AI-after: For subjects in this treatment, in each task, they saw the AI model’s binary predic-
tion on the credibility of the news in Step 3 along with previous subjects’ judgements on the
veracity of the news, which was after when they were asked to make their initial veracity
judgement, while they were exposed to other people’s opinions about the news.

The AI������� treatment was designed to simulate the scenario that social media platforms
directly display AI-based credibility warning labels along with each news item, so that these labels
have the potential to shape people’s belief about the news even before they form their own opinions
independently. This is similar to how Twitter and Facebook have applied fact-checking labels to
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Fig. 2. The procedure of our Experiment 1 (the case that a subject gets randomly assigned to the AI�������
treatment is shown).

content on their platforms today [24, 43]. Meanwhile, the AI������ treatment could re�ect the
scenario that social media platforms simply provide the AI model’s prediction on the veracity of a
news item to people as a reference (e.g., as a third-party plugin) along with others’ opinions about
the news, after people are actively encouraged to consider their own opinions about the news.

Importantly, in our experiment, the AI model we used in the AI������� and AI������ treatments
was the same—using a subset of the COVID-19 healthcare misinformation dataset introduced in [18]
as the training dataset, we developed a multinomial naive Bayes model to classify the veracity of
COVID news. On the 40 news stories that we included in our experiment, the accuracy of our AI
model was 75%, and the false positive rate and false negative rate of the model were both 25% (i.e.,
the AI model’s accuracy was 75% for both the real news and the fake news in our dataset). Note
that we tuned the AI model to achieve a 75% accuracy on our news dataset because this allows us
to get su�cient data to examine the e�ects of AI-based credibility indicators both for the case that
the model’s prediction is right and for the case that the model’s prediction is wrong. Whether the
AI model’s prediction on news credibility is correct or not is not communicated to subjects anytime
during the experiment, though.

3.3 Experiment Procedure
We posted our experiment as a HIT on Amazon Mechanical Turk (MTurk) to U.S. workers only, and
we allowed each worker to take our experiment HIT at most once. Figure 2 provides a schematic
illustration of our experimental procedure.
Speci�cally, upon subjects’ arrival, we randomly assigned each of them to one of the three

experimental treatments. Subjects were told that in this HIT, they would complete 10 tasks to
review 10 pieces of COVID-19 related news and determine the veracity of each news, together
with other MTurk workers. Following the design of the information cascade experiments [4], we
informed subjects that the 10 pieces of news that they would review in the HIT would be randomly
drawn from a news dataset, with half of the news in this dataset being real (i.e., fact-based) and the
other half being fake (i.e., contains false information), so that all subjects had a common prior belief
of the veracity distribution of the news2. We then presented detailed instructions to subjects on
what they would need to do in each task (e.g., the 5 steps as discussed in Section 3.1; the availability
of the AI-based credibility indicators was also communicated to subjects if they were assigned
to the AI������� or AI������ treatment). After that, subjects were asked to complete two more

2In a real-world social media environment, such information is unlikely available to people, and di�erent individuals may
also have di�erent prior beliefs. We thus examined the robustness of our experimental results in Experiment 2 for the case
when such information is not provided to subjects.
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steps before proceeding to the actual experiment: (1) they needed to complete a consent form; (2)
they needed to select an avatar to represent themselves in our experiment, so that their veracity
judgement on a piece of news could be shown along with their chosen avatars to later subjects.

As the subject entered the actual experiment, we selected the 10 tasks for the subject to complete
in the HIT. Each task was characterized by a piece of news, as well as a sequence of veracity
judgements about this news sorted in the temporal order, which re�ected whether those subjects
who had reviewed this news subsequently thus far believed it as real or fake. Then, in each task,
the subject followed the 5-step procedure as described before to review the news and others’
judgements on it, evaluate its veracity, and determine their willingness to engage with it. Once
they completed a task, their �nal veracity judgement on the news in that task (produced in Step 4)
would be added to the end of the judgement sequence (see the bottom part of Figure 2).

Note that in practise, within each treatment, we formed 4 judgement sequences for each of the 40
news in our dataset to simulate that each news gets spread in the social network through 4 paths3.
That is, given a speci�c experimental treatment - (e.g., AI�������), we had 40⇥ 4 = 160 judgement
sequences—“Sequence 8 − 9” (1  8  40, 1  9  4) represented the 9-th sequence of veracity
judgements on news 8 , which were made by a group of subjects who were all assigned to treatment
- and reviewed this news following a sequential order (see the top part of Figure 2). Thus, for a
subject of treatment - , the 10 tasks that they worked on were randomly selected based on the
following procedure: (1) Firstly, we randomly selected a set of 10 unique news {=1,=2, · · · ,=10}
from the 40 news in our dataset; (2) Secondly, for each selected news =C (1  C  10), we randomly
selected a judgement sequence “Sequence =C − 9C ” (1  9C  4) from the 4 sequences of news =C in
treatment - . In other words, in this subject’s C-th task in the HIT, they would review news =C , as
well as the veracity judgements made by all previous subjects in “Sequence =C − 9C ” of treatment - ,
before they made their �nal judgement on the news veracity. This task selection design helps us
ensure that all veracity judgements in the same sequence were made under the same condition,
with respect to whether and when subjects got access to the AI-based credibility indicators.

To minimize the chance that subjects in our experiment were misled by the fake news that they
reviewed in our experiment, we debriefed subjects about the ground-truth veracity label for each
news that they reviewed after they completed all tasks in the HIT. To �lter out potential spammers,
we also included an attention check question4 in our HIT, and workers could complete the HIT
only if they passed the attention check. Finally, we asked subjects to �ll out a brief demographic
survey (e.g., age, gender) before they submitted the HIT.
The base payment of the HIT was $1.2. To encourage subjects to carefully analyze the veracity

of news in each task, we told subjects that they could earn a bonus of 5 cents for each correct �nal
veracity judgment that they made, if the accuracies of their �nal veracity judgments in our HIT
were over 60%. Thus, the subject could receive a bonus payment up to $0.5 in this HIT.

3.4 Analysis Methods
3.4.1 Independent Variables. The main independent variable we used in our analysis is the experi-
mental treatment that a subject was assigned to, i.e., the presence and the timing of the AI-based
credibility indicators.

3.4.2 Dependent Variables. To understand how the presence and the timing of the AI-based credi-
bility indicators change people’s accuracy in detecting misinformation (RQ1), we pre-registered
two dependent variables: (1) the accuracy of a subject’s �nal judgement on the news veracity (i.e.,

3We did so to ensure an adequate sample size for our experiment.
4In the attention check question, subjects were asked to determine whether the statement “Washington DC is the capital
city of the USA” is real or fake.
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“individual-level accuracy”), and (2) the accuracy of the majority �nal veracity judgement made
by subjects in a sequence on the news of that sequence (i.e., “sequence-level accuracy”)5. The �rst
dependent variable enables us to take a microscopic look at the e�ects of AI-based credibility
indicators on the capability of each individual in detecting misinformation. However, the change in
some individuals’ capability in detecting misinformation does not necessarily imply a change in
the crowd’s capability in detecting misinformation as a group. Thus, we de�ned a group of people’s
veracity perception of a piece of news as the majority judgement made by all members of the group,
so the second dependent variable allows us to take a macroscopic perspective and examine how the
AI-based credibility indicators in�uence the collective capability of a group of people in identifying
misinformation as they process the news content sequentially. Besides, by considering the majority
�nal veracity judgement made by the �rst = subjects in each sequence, we can also obtain a more
�ne-grained understanding of how the crowd’s capability in detecting misinformation changes as
the size of the group = gets larger (i.e., the news spreads deeper).

Moreover, to understand how the presence and the timing of the AI-based credibility indicators
change people’s willingness to spread the news (RQ2), we also considered a few dependent variables.
The �rst one was a subject’s average level of self-reported willingness to share real (or fake) news.
Earlier research has con�rmed the validity of such self-reported sharing intention measures as they
are found to be correlated with people’s actual sharing behavior on social media platforms [33]. As
the second dependent variable, we computed the expected depth of the spread for each real (or
fake) news using the sharing willingness data we collected from our subjects. In particular, given a
sequence formed for a piece of real (or fake) news, we simulated each subject’s sharing decision
based on the sharing likelihood that the subject reported (e.g., if a subject’s willingness to share
the news was 40%, then with a probability of 40%, this subject’s simulated decision was “share”),
and we de�ned the depth of the spread as the maximum number of consecutive subjects in the
sequence whose simulated decision was “share” starting from the �rst subject in the sequence (i.e.,
the news stopped spreading once it encountered the �rst “not share” decision in the sequence). The
expected depth of the spread for the news in this sequence was then computed as the average depth
value across 1000 such simulations. Ideally, we hope people could minimize their sharing of fake
news as much as possible (i.e., lower sharing intention and smaller expected depth of spread for
fake news) so that misinformation would not be propagated to and a�ect a bigger crowd.

3.4.3 Statistical methods. For RQ1, we conducted the one-way analysis of variance (ANOVA)
across the three treatments on the individual-level accuracy, and post-hoc Tukey’s test was used to
detect signi�cant di�erences between pairs of treatments. We further visualized how the sequence-
level accuracy for the three treatments changes as the length of the sequence gets longer. Since
the AI model had an accuracy of 75% on the news that we included in our experiment, we further
separated the news into two subsets based on whether the model made a correct prediction on its
veracity or not and repeated the analyses above on these two subsets.

For RQ2, we conducted ANOVA on individual subjects’ sharing intention for a piece of news
and the expected depth of spread of the news for both the set of real news and the set of fake news.
Similar to that for RQ1, Tukey’s test was used for the post-hoc pairwise comparisons, and we
again repeated all of these analyses for the two subsets of news where the AI model was correct or
wrong separately.

5If there was no majority judgement among subjects’ �nal judgements in a sequence, we randomly picked a label (i.e., real
or fake) to break the tie.
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Fig. 3. The impacts of AI-based credibility indicators on individual subject’s final accuracy in judging news
veracity. Error bars represent the standard errors of the mean.

3.5 Results
In total, 538 subjects (34.3% female, with the majority aged between 25 and 44) took our experiment
HIT and passed the attention check. As a result, for each of the 160 ⇥ 3 = 480 sequences we formed
in the experiment, we had at least 9 subjects, and most of the sequences contained 11 subjects. In
the following, we analyzed these experimental data to answer our research questions.

3.5.1 The E�ects on Detection of Misinformation. We set out to analyze the e�ects of AI-based
credibility indicators on people’s ability in detecting misinformation when they are also in�uenced
by others’ opinions in judging the veracity of news (i.e., RQ1).
When people are under social in�uence, AI-based credibility indicators can still change an
individual’s accuracy in detecting misinformation, regardless of their correctness. As shown
in Figure 3, when examining the individual subject’s accuracy of �nal veracity judgements that
were made on all news stories (i.e., the “All” group in Figure 3), the impact of the AI-based credibility
indicators is not clear. However, when we focus on the cases where the AI model’s prediction on the
veracity of the news is correct (the “AI Correct” group), we �nd that a correct AI model prediction
helps people increase their accuracy in judging the veracity of news, despite they are in�uenced
by others’ opinions when making such judgements. Indeed, a one-way ANOVA con�rms that the
di�erences across the three treatments on the individual-level accuracy are signi�cant (F(2,3958) =
11.79, ? < 0.001) when the AI model is correct. Post-hoc pairwise comparisons further show that
these signi�cant di�erences are mainly caused by the presence of the AI-based credibility indicators
(C������ vs. AI�������: ? = 0.001, Cohen’s 3 = 0.17; C������ vs. AI������: ? = 0.001, Cohen’s
3 = 0.15), while the timing of when the AI-based credibility indicators are displayed does not lead to
substantially di�erent impacts. On the contrary, when restricting our attention to the cases where
the AI model’s prediction on the veracity of the news is incorrect (the “AI Incorrect” group), we see
exactly the opposite—providing a wrong AI model prediction results in a signi�cant decrease in
subjects’ �nal veracity judgement accuracy (F(2,1317) = 17.16, ? < 0.001). Again, only the presence,
but not the timing, of the AI-based credibility indicators leads to the signi�cant di�erences across
the three treatments.

Together, these observations imply that providing AI-based credibility indicators to people has
the e�ect of swaying their belief on the news veracity to be in favor of the AI model’s prediction,
thus people’s veracity judgement accuracy changes accordingly with the AI model’s correctness.
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(a) Seq-level accuracy (All) (b) Seq-level accuracy (AI Correct) (c) Seq-level accuracy (AI Incorrect)

Fig. 4. The impacts of AI-based credibility indicators on the crowd’s accuracy in judging news veracity when
considering all news (4a), only the news on which the AI model’s prediction is correct (4b), or only the news
on which the AI model’s prediction is wrong (4c). Error shades represent the standard errors of the mean.

AI-based credibility indicators a�ect the crowd’s accuracy in detecting misinformation as
the news spreads in the crowd, though the e�ect size does not change with the depth of
spread of the news. Figure 4 compares the sequence-level accuracy across the three treatments
when varying the “length” of the sequence (i.e., considering only the �rst= subjects in each sequence,
= = 1, 2, · · · , 11), which e�ectively re�ects the crowd’s ability in detecting misinformation as the
news spreads deeper. Similar to the observations that we’ve made on the individual level, here, we
again �nd that when the AI model provides a correct (incorrect) prediction on the veracity of a piece
of news, the crowd’s accuracy in judging the news veracity is increased (decreased)—for example,
when considering all subjects in each sequence (i.e., = = 11), the sequence-level accuracy in the
AI������� and AI������ treatments is signi�cantly higher than that in the C������ treatment
when the credibility warning given by the AI model is correct (𝐹 (2, 476) = 5.19, ? = 0.006). The
speci�c timing of when the credibility warnings are displayed, again, does not seem to have a clear
impact on the sequence-level accuracy. A closer look at Figure 4 further indicates that the e�ect of
AI-based credibility indicators on the crowd’s veracity judgement accuracy is neither ampli�ed
nor attenuated as the news gets spread to more people and the size of the crowd increases (i.e., =
becomes larger).

3.5.2 The E�ects on Spread of Misinformation. We now move on to examine the e�ects of AI-based
credibility indicators on people’s willingness to share real and fake news when they are in�uenced
by others’ opinions in interpreting these news (i.e., RQ2).
AI-based credibility indicators have no signi�cant impacts on an individual’s sharing
intention on real news or fake news. First, we compare a subject’s self-reported sharing
intention on both real news and fake news across the three treatments. The results suggest that
when people are under the social in�uence in interpreting the news, displaying the AI-based
credibility warnings with an accuracy of 75% along with each news does not change people’s
intention to share either real news or fake news, and this is true even after we analyze the cases
that the AI model makes correct/wrong veracity predictions separately. In particular, when the
AI model provides correct prediction on the veracity of a piece of news, subjects slightly increase
their willingness to share real news (AI������� – C������: " = 1.42; AI������ – C������:
" = 1.05) and decrease their willingness to share fake news (AI������� – C������: " = −1.00;
AI������ – C������: " = −3.09), although these di�erences are not signi�cant (? > 0.05). On
the other hand, when the AI model’s prediction is wrong, the incorrect credibility indicators nudge
people into sharing less real news (AI������� – C������: " = −4.35; AI������ – C������:
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" = −6.42) and more fake news (AI������� – C������: " = 2.37; AI������ – C������:
" = 3.55). Again, these di�erences are not statistically signi�cant.
AI-based credibility indicators have no signi�cant impacts on how deep real or fake news
spreads.We obtain similar �ndings when examining the impacts of AI-based credibility indicators
on the expected depth of spread for both real news and fake news. For example, when the credibility
warnings provided by the AI model are correct, compared to that in the C������ treatment, the
expected depth of spread for real news becomes larger in both treatments where subjects had access
to the AI model’s veracity prediction (AI������� – C������: " = 0.26, AI������ – C������:
" = 0.28), while the expected depth of spread for fake news only becomes slightly smaller in
the AI������ treatment (AI������� – C������: " = 0.20, AI������ – C������: " = −0.06).
Conversely, when the AI model makes wrong predictions on the veracity of news, real news tends
to be propagated to fewer people (AI������� – C������: " = −0.11, AI������ – C������:
" = −0.04) while fake news tends to be propagated to more people (AI������� – C������:
" = 0.12, AI������ – C������: " = 0.07), compared to when the AI model’s prediction is
absent. Nevertheless, results of ANOVA tests show that none of these di�erences are signi�cant at
the level of ? = 0.05.

3.5.3 Exploratory Analysis. So far, our �ndings suggest that even as people are in�uenced by
others’ opinions in interpreting the news, providing AI-based credibility indicators along with news
items tends to encourage people to align their veracity belief about the news with the AI model’s
prediction. To obtain deeper insights into the mechanisms underlying the AI-based credibility
indicators’ impacts on people under the social in�uence, we conduct a set of exploratory analyses.
Providing AI-based credibility indicators before people process news independently sig-
ni�cantly shapes people’s �rst impression of the news. Using a one-way ANOVA test, we
detect a signi�cant di�erence across the three treatments on the likelihood of a subject’s initial
veracity judgement to be the same as the AI model’s prediction (𝐹 (2, 5275) = 36.78, ? < 0.001)6. In
particular, compared to subjects in the C������ or AI������ treatments, subjects in the AI�������
treatment were signi�cantly more likely to align their own initial veracity judgement of the news
with the AI model’s predictions (AI������� vs. C������: ? = 0.001, Cohen’s 3 = 0.24; AI������� vs.
AI������: ? = 0.001, Cohen’s 3 = 0.26). Furthermore, we compute subjects’ initial con�dence in the
AI model’s veracity prediction on a piece of news based on their self-reported con�dence in their
own initial veracity judgements—if the subjects’ initial judgements were the same as the model’s
prediction, their initial con�dence in the model’s prediction would be the same as their con�dence
in their initial judgements; otherwise, we denote their initial con�dence in the model’s prediction
as the opposite of their con�dence in their initial judgement. Doing so, we �nd that subjects in the
AI������� treatment were signi�cantly more con�dent in the AI model’s prediction than subjects
in the other two treatments when making their initial veracity judgements (? = 0.001 for both
comparisons). In other words, a key reason that explains the e�ectiveness of presenting AI-based
credibility indicators before people process the news independently is that it frames people’s �rst
impression of the news by nudging them into con�dently believing in the AI model’s veracity
prediction on the news.
People increase their alignment with the AI model more when the model’s prediction is
di�erent from their initial veracity judgements, especially when the AI-based credibility
indicators are displayed a�er people process the news independently. Next, we aim to obtain

6For subjects in the C������ treatment, even though they never saw the AI model’s prediction, we knew what our AI model
would have predicted for each news story. We thus used this “hypothetical” AI model prediction to determine whether the
subject’s initial judgement was the same as the model.
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Fig. 5. The likelihood of a subject’s final veracity judgment on a piece of news being the same as the AI model’s
prediction, when separating the data into four cases based on whether the subject’s initial judgement was
the same as the AI model, and whether the majority judgement of other people (i.e., subjects who reviewed
this news before the current subject) was the same as the AI model. Error bars represent the standard errors
of the mean.

a deeper understanding of whether and how providing AI-based credibility indicators along with a
news item changes the ways that individuals updates their �nal veracity judgements on the news
after they are exposed to social in�uence. In particular, consider a subject who needs to make
the �nal veracity judgement on a news item. Depending on whether the subject’s initial veracity
judgement is the same as the AI model’s prediction, and whether the majority judgement made by
the set of subjects who have seen this news so far (i.e., the majority judgement of “others”) is the
same as the AI model’s prediction, we have 4 possible scenarios in total. Figure 5 compares the
likelihood of a subject’s �nal veracity judgement on a news item being the same as the AI model’s
prediction across the three experimental treatments for each of these 4 scenarios.
We start by examining the two scenarios where the subject’s initial veracity judgement is the

same as the AI model’s prediction (i.e., the “Initial=AI, Others=AI” and “Initial=AI, Others<AI”
group in Figure 5). Under both scenarios, we �nd that there are no signi�cant di�erences across the
three treatments on how likely the subject’s �nal veracity judgement would be the same as the AI
model. This means that seeing the AI model supporting their own judgement (i.e., “Initial=AI”) has
limited impacts on strengthening people’s belief in their own judgement, regardless of whether
others agree with them or not. For both scenarios, we also �nd that people’s �nal con�dence in
the AI model’s prediction7 is statistically the same across the three treatments, implying that the
agreement between the AI model and one’s initial veracity judgement does not boost people’s
con�dence in their own judgement when they are subject to social in�uence.

On the contrary, for the two scenarios where the subject’s initial veracity judgement is di�erent
from the AI model’s prediction (i.e., the “Initial<AI, Others=AI” and “Initial<AI, Others<AI” group
in Figure 5), we �nd that there are substantial di�erences across the three treatments on how likely
the subject would eventually “switch” to align with the model’s prediction. For example, when
people disagree with others in their judgement on the veracity of a news item and the AI model
supports the crowd (i.e., the “Initial<AI, Others=AI” scenario), we �nd that subjects in the AI������
treatment were signi�cantly more likely to switch to the AI model’s prediction than subjects in
the other treatments (C������ vs. AI������: ? = 0.001, AI������� vs. AI������: ? < 0.001),
and their �nal con�dence in the AI model’s prediction was also signi�cantly higher (C������
vs. AI������: ? = 0.002, AI������� vs. AI������: ? = 0.001). Moreover, when people �nd the
7The subjects’ �nal con�dence in the AI model’s prediction are computed based on their self-reported con�dence in their
own �nal veracity judgements, similar to how the subjects’ initial con�dence in the AI model’s prediction are computed.
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AI model’s prediction to be di�erent than both the crowd and themselves (i.e., the “Initial<AI,
Others<AI” scenario), we �nd that those in the AI������ treatment were more likely to eventually
switch to the AI model’s prediction and have higher �nal con�dence in the AI model’s prediction
than those in the AI������� treatment (? = 0.001 for �nal agreement with AI and ? = 0.008 for
�nal con�dence in AI), who in turn were more likely to align their �nal judgement with the AI
model than those in the C������ treatment (? = 0.004 for �nal agreement with AI and ? = 0.008
for �nal con�dence in AI). We conjecture that a plausible explanation for these observations is that
when people see the AI model makes a di�erent veracity prediction than themselves, they treat it
as a sign of the AI having access to additional information that they don’t have, which leads to the
increase in their likelihood of aligning with the AI model. Further, such an increase may be less
salient for subjects in the AI������� treatments, possibly because they have a strong subjective
belief in their own initial veracity judgement—after all, they were the ones who had actively chosen
a di�erent initial judgement than the AI even after seeing the AI model’s prediction.

4 EXPERIMENT 2
In Experiment 1, we �nd that when people are subject to social in�uence, the presence of the AI-
based credibility indicator still has a signi�cant e�ect on people’s capability to detect misinformation,
though such impact does not seem to directly result in a signi�cant change on people’s willingness
to engage with the news. We note that as the design of Experiment 1 was directly adapted from the
information cascade experiments in economics, some aspects of the design might not perfectly
re�ect the realistic social media environment—for example, in the real world, people may have
little or di�erent knowledge about the distribution of the veracity of news, and the news items
are also often displayed together with non-textual components (e.g., images, videos) which may
in�uence people’s perceptions of the news.
Thus, in our Experiment 2, we aim to answer RQ1 and RQ2 again under a more realistic

experimental setting to examine the robustness of our Experiment 1 results. In addition, to put the
e�ects of AI-based credibility indicators on the detection and spread of misinformation that we’ve
observed in our experiment into context, an interesting question to ask is how do the size of these
e�ects—which are obtained when social in�uence is present—compare with the e�ect size in those
cases that social in�uence is absent. We thus ask an additional research question in Experiment 2:

• RQ3: Compared to when social in�uence doesn’t exist, how do the magnitude of the e�ects of
AI-based credibility indicators on people’s accuracy in detecting misinformation and people’s
willingness to share real or fake news change when social in�uence is present?

To answer these questions, we conducted a second randomized, pre-registered human-subject
experiment on Amazon Mechanical Turk (MTurk)8.

4.1 Experimental Design
4.1.1 Experiment Task. In Experiment 2, we again asked subjects to complete a series of 10 tasks
to review COVID-19 related news, which were randomly sampled from the same dataset that we
had used in Experiment 1. To re�ect the real-world formats of news stories, in this experiment, the
news we showed to subjects consisted of not only the text but also an image. Figure 6 shows an
example of the news that we showed to subjects in Experiment 2. The steps that a subject needed
to follow in each task will be detailed next in Section 4.1.2.

4.1.2 Experiment Treatments. To allow us to answer RQ3, in this experiment, we adopted a 2 ⇥ 3
factorial design. The �rst factor we varied was the existence of social in�uence:

8Our pre-registration document can be found here: https://aspredicted.org/rh32h.pdf.
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Fig. 6. An example of the news we showed to subjects in Experiment 2.

• No social in�uence (Independent): Subjects in this treatment reviewed the news inde-
pendently without observing the veracity judgments made by other people who previously
reviewed the same news.

• With social in�uence (Non-Independent): Subjects in this treatment were subject to social
in�uence when reviewing the news; that is, they could see the veracity judgments made by
other people who previously reviewed the same news.

The second factor that we varied was the existence and timing of the AI-based credibility indicators.
As that in Experiment 1, we included three levels: C������, AI������� and AI������. Speci�cally,
for subjects whowere exposed to social in�uence (i.e., subjects in theN���I���������� treatments),
if they were also assigned to the C������ (alternatively, AI������� or AI������) treatment in
Experiment 2, in each task they would need to follow exactly the same 5-step procedure as those
subjects in the C������ (alternatively, AI������� or AI������) treatment in Experiment 1. In
contrast, for subjects who were not exposed to social in�uence (i.e., subjects in the I����������
treatments), in each task they were asked to follow three steps: (1) review the news, (2) provide a
binary judgement on the veracity of the news and report their con�dence on the judgement, and
(3) indicate the likelihood for them to share the news. In addition, here, if subjects had access to the
AI-based credibility indicators (i.e., subject were not in the C������ treatment), they would see
the AI model’s prediction on the news veracity either along with the news in Step 1 (if the subject
was in the AI������� treatment), or after Step 2 so that they got a chance to update their veracity
judgements and con�dence before proceeding on to Step 3 (if the subject was in the AI������
treatment).

4.1.3 Experiment Procedure. Again, we posted our second experiment as a HIT on MTurk to U.S.
workers. The procedure of Experiment 2 was largely identical to that of Experiment 1, except for
the following di�erences: (1) Workers who had previously participated in our Experiment 1 were
excluded from taking this HIT; (2) upon the approval of a subject, we randomly assigned the subject
into one of the six treatments (i.e., {I����������, N���I����������} ⇥ {C������, AI�������,
AI������}); (3) we did not tell subjects about the veracity distribution of the news dataset from
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which the news in the HIT were randomly drawn; (4) for subjects assigned to the the I����������
treatments, they followed the 3-step procedure in each task as described in Section 4.1.2 rather
than the 5-step procedure.

4.1.4 Analysis Methods. To answer RQ1 and RQ2, we restricted our analyses to the data obtained
in the N���I���������� treatments, and we adopted the same independent variable, dependent
variables, and statistical methods as those used in Experiment 1. In addition, inspired by a few recent
research [38, 39], we pre-registered a third dependent variable for RQ1—“truth discernment”, which
was calculated as a subject’s frequency of labeling a piece of real news as “real” minus the subject’s
frequency of labeling a piece of fake news as “real” in the �nal veracity judgement. Di�erent from
the two accuracy-related metrics (i.e., individual-level accuracy and sequence-level accuracy), this
truth discernment metric captures how much more a subject believed true information relative
to false information and therefore re�ects the subject’s sensitivity in distinguishing true and
false information. Similarly, for RQ2, we also pre-registered an additional dependent variable—
“sharing discernment”, which was a subject’s average level of willingness to share real news minus
the subject’s average level of willingness to share fake news. Intuitively, higher values in truth
discernment indicate that people are better at telling apart real and fake news, and higher values in
sharing discernment imply a larger decrease in people’s engagement with fake news relative to
real news.
Finally, to compare the e�ect size of the AI-based credibility indicators on subjects with and

without social in�uence (i.e., RQ3), we adopted the following method: for a dependent variable,
we used bootstrapping ( = 1000) to re-sample our experimental data and estimated the e�ect
sizes of the AI������� (or AI������) treatment against the C������ treatment as Cohen’s 3 . Such
estimation was done within the I���������� and N���I���������� treatments separately. We
then used paired t-tests to compare the mean value of estimated e�ect sizes in N���I����������
treatments (i.e., when social in�uence is present) and the mean value of estimated e�ect sizes in
I���������� treatments (i.e., when social in�uence is absent). We also reported the probability of
superiority [20], which re�ects how often a randomly selected e�ect size estimate in one group
(e.g., with social in�uence) is larger than a randomly selected e�ect size estimate in the other group
(e.g., without social in�uence). These analyses were conducted separately for news where the AI
model’s prediction was correct and incorrect. Moreover, we only conducted these analyses on the
individual-level dependent variables as sequence-level dependent variables were not well-de�ned
for subjects who were not exposed to social in�uence (i.e., subjects in the I���������� treatments).

4.2 Results
In total, 1098 workers took our HIT and passed the attention check (35.4% female, with the ma-
jority aged between 25 and 44), among whom 476 workers and 622 workers were assigned to the
I���������� and N���I���������� treatments, respectively. In the following, we highlight our
main �ndings of Experiment 2. For a complete summary of all statistical analyses results, please
see the supplemental materials.

4.2.1 Robustness Check of RQ1. We start by checking whether our answers to RQ1 (i.e., the e�ects
of AI-based credibility indicators on people’s accuracy in detecting misinformation) still hold
when subjects were not informed of the distribution of news veracity and the news contained
multimedia components. Figure 7a compares the accuracy of subjects’ �nal veracity judgements (i.e.,
individual-level accuracy) across the three treatments when they were impacted by others’ opinions
in determining news veracity. Consistent with what we’ve found in Experiment 1, one-way ANOVA
tests suggest signi�cant di�erences across the three treatments both when the AI model is correct
(𝐹 (2, 4099) = 30.23, ? < 0.001) and when the AI model is incorrect (𝐹 (2, 1350) = 15.41, ? < 0.001).
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(a) With social influence (b) No social influence
Fig. 7. The impacts of AI-based credibility indicators on subjects’ individual-level accuracy in judging news
veracity, for subjects who were subject to social influence (7a) and who were not subject to social influence
(7b), respectively. Error bars represent the standard errors of the mean.

(a) With social influence (b) No social influence
Fig. 8. The impacts of AI-based credibility indicators on subjects’ truth discernment in judging news veracity,
for subjects who were subject to social influence (8a) and who were not subject to social influence (8b),
respectively. Error bars represent the standard errors of the mean.

Post-hoc pairwise comparisons further show that the signi�cant di�erences are caused by the
presence of the AI-based credibility indicators rather than their timing.Whenwe examine the impact
of AI-based credibility indicators on the sequence-level accuracy, we again get similar conclusions
as those in Experiment 1—the crowd’s accuracy in judging the news veracity signi�cantly increases
when a correct AI prediction is provided and decreases when an incorrect AI prediction is provided
(see supplementary materials for additional �gures).

In addition, Figure 8a shows the comparison of individual subject’s truth discernment across
the three treatments. Again, we �nd that the di�erences are signi�cant both when the AI model is
correct (𝐹 (2, 565) = 23.06, ? < 0.001) and when the AI model is wrong (𝐹 (2, 316) = 13.45, ? < 0.001),
while the timing of when the AI-based credibility indicators are shown doesn’t have a clear impact
on subjects’ truth discernment. In other words, when people’s interpretation of a piece of news is
in�uenced by others’ judgements on its veracity, providing a correct (incorrect) AI-based credibility
indicator signi�cantly increases (decreases) people’s capability to di�erentiate real news and
fake news, though whether the credibility indicator is provided before or after people form their
independent opinions doesn’t seem to matter.

Together, our results here suggest that under the new and more realistic settings of Experiment
2, our answers to RQ1 still hold.
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(a) With social influence (b) No social influence
Fig. 9. The impacts of AI-based credibility indicators on subjects’ sharing discernment, for subjects who
were subject to social influence (9a) and who were not subject social influence (9b), respectively. Error bars
represent the standard errors of the mean.

4.2.2 Robustness Check of RQ2. Repeating the similar analyses as what we’ve done in Experiment
1, we again �nd consistent results with respect to the e�ects of AI-based credibility indicators
on people’s willingness to share real and fake news when social in�uence is present (i.e., RQ2).
Speci�cally, when the AI model provided a correct prediction on the news veracity, subjects tended
to report slightly higher levels of willingness to share real news (AI������� – C������: " = 2.25,
AI������ – C������: " = 0.78) and slightly lower levels of willingness to share fake news
(AI������� – C������: " = −1.52, AI������ – C������: " = −3.78), though these di�erences
are not statistically signi�cant (? > 0.05). Our statistical tests on the expected depth of spread
also suggest that the di�erences between the AI�������/AI������ treatments and the C������
treatment are not statistically signi�cant (? > 0.05), both for real news and fake news. Finally, we
obtain similar observations in those cases when the AI model provides an incorrect prediction on
the news veracity—the provision of incorrect AI-based credibility indicators does not exhibit a
signi�cant impact on either the individual’s sharing intention or the expected depth of spread for a
piece of news, regardless whether the news is real or fake.
Interestingly, as shown in Figure 9a, we detect some di�erences across the three treatments in

terms of individual subject’s sharing discernment. One-way ANOVA tests suggest that when the
AI model’s veracity prediction on a piece of news is correct, the di�erences in sharing discernment
are statistically signi�cant across the three treatments (𝐹 (2, 565) = 4.04, ? = 0.018), and post-hoc
pairwise comparisons indicate that the signi�cant increase in sharing discernment is only observed
between the C������ and AI������ treatment (? = 0.015). This implies that providing correct AI
model predictions on news veracity only nudges people into decreasing their sharing of fake news
relative to real news, when these predictions are shown to people after they have formed their
independent judgements about the news. On the other hand, while we also see a similar trend in
Figure 9a that the provision of incorrect AI-based credibility indicators leads to a decreased level of
sharing discernment, this decrease is not signi�cant according to our one-way ANOVA test.

4.2.3 Compare e�ect sizes when social influence is present/absent. Finally, we look into RQ3 to
compare the e�ect sizes of the AI-based credibility indicators in in�uencing people’s detection and
spread of misinformation, between the case when social in�uence is present and the case when
social in�uence is absent. To provide some visual intuition �rst, we include in Figures 7b, 8b, and
9b the illustrations of the e�ects of AI-based credibility indicators on subjects’ individual-level
accuracy, truth discernment, and sharing discernment, respectively, when social in�uence is absent.
One can directly compare the observed e�ects in these �gures with the corresponding ones in
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AI Correctness Dependent Var 3 (Independent) 3 (Non-Independent) 3 Prob. of Superiority

AI Correct
Individual accuracy 0.24 [0.16, 0.32] 0.27 [0.19, 0.34] 0.03⇤⇤⇤ 0.68
Truth discernment 0.61 [0.38, 0.84] 0.70 [0.50, 0.90] 0.09⇤⇤⇤ 0.72
Sharing discernment 0.18 [-0.05, 0.39] 0.21 [-0.01, 0.41] 0.02⇤⇤⇤ 0.58

AI Incorrect
Individual accuracy 0.27 [0.12, 0.41] 0.30 [0.16, 0.44] 0.03⇤⇤⇤ 0.59
Truth discernment 0.25 [-0.07, 0.55] 0.69 [0.40, 0.98] 0.44⇤⇤⇤ 0.98
Sharing discernment 0.02 [-0.29, 0.32] 0.17 [-0.10, 0.43] 0.14⇤⇤⇤ 0.76

Table 1. Comparison of e�ect sizes of the AI������� treatment. 3 (Independent) and 3 (Non-Independent)
report the treatment’s e�ect sizes (in terms of Cohen’s 3) and the 95% bootstrap confidence intervals when
social influence is absent and present, respectively. 3 is the di�erence of the average e�ect sizes; a positive
value suggests that the e�ect size is larger when social influence is present. Paired t-tests are used to examine
whether the di�erences in e�ect sizes are statistically significant, and results are reported in superscripts
along with 3 , with ⇤⇤⇤ representing a significance level of 0.001. Probability of superiority reports the chance
that a randomly selected e�ect size estimate from the case when social influence is present is larger than
that from the case when social influence is absent; the larger the probability the more certain we are that in
any random experiment, the e�ect size is larger when social influence is present.

AI Correctness Dependent Var 3 (Independent) 3 (Non-Independent) 3 Prob. of Superiority

AI Correct
Individual accuracy 0.34 [0.25, 0.43] 0.24 [0.16, 0.32] -0.10⇤⇤⇤ 0.05
Truth discernment 0.84 [0.58, 1.10] 0.57 [0.37, 0.77] -0.26⇤⇤⇤ 0.05
Sharing discernment 0.16 [-0.08, 0.39] 0.29 [0.10, 0.49] 0.13⇤⇤⇤ 0.80

AI Incorrect
Individual accuracy 0.42 [0.26, 0.59] 0.33 [0.20, 0.47] -0.09⇤⇤⇤ 0.21
Truth discernment 0.44 [0.08, 0.80] 0.57 [0.30, 0.88] 0.13⇤⇤⇤ 0.72
Sharing discernment 0.26 [-0.10, 0.58] 0.13 [-0.14, 0.39] -0.13⇤⇤⇤ 0.28

Table 2. Comparison of e�ect sizes of the AI������ treatment. 3 (Independent) and 3 (Non-Independent)
report the treatment’s e�ect sizes (in terms of Cohen’s 3) and the 95% bootstrap confidence intervals when
social influence is absent and present, respectively. 3 is the di�erence of the average e�ect sizes; a positive
(negative) value suggests that the e�ect size is larger (smaller) when social influence is present. Paired t-tests
are used to examine whether the di�erences in e�ect sizes are statistically significant, and results are reported
in superscripts along with 3 , with ⇤⇤⇤ representing a significance level of 0.001. Probability of superiority
reports the chance that a randomly selected e�ect size estimate from the case when social influence is present
is larger than that from the case when social influence is absent; the larger the probability the more certain
we are that in any random experiment, the e�ect size is larger when social influence is present.

Figures 7a, 8a, and 9a to infer how the sizes of these e�ects compare to those in the case when
social in�uence is present.

To conduct this comparison formally, we follow themethod that we’ve described in Section 4.1.4 to
generate bootstrapped samples of our experimental data and estimate the e�ect sizes of a treatment—
both with and without social in�uence—as Cohen’s 3 based on the bootstrapped samples. We report
the e�ect size estimation results in Tables 1 and 2, for the AI������� and AI������ treatments,
respectively (see the “3(Independent)” and “3(Non-Independent)” columns)9. Note that since we
were not able to �nd any signi�cant impacts in terms of the presence and timing of AI-based
credibility indicators on subject’s willingness to share real news or fake news (see Section 4.2.2),
we omit the e�ect size comparison on individual’s sharing intention.

9When the AI model’s prediction is correct, the C������ treatment is treated as the reference; when the AI model’s
prediction is incorrect, the AI������� or AI������ treatment is treated as the reference. Doing so, all estimated e�ect sizes
take positive values and are easier to interpret.
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As shown in Table 1, if the AI-based credibility indicators are provided along with the news
before people form their independent opinions about the news, it appears that their e�ects on
people’s detection and spread of misinformation are consistently larger when social in�uence is
present, compared to when social in�uence is absent. Indeed, our paired t-tests results con�rm
that the average e�ect size of the AI������� treatment is signi�cantly larger (? < 0.001) when
subjects were exposed to social in�uence, regardless of the correctness of the AI model and the
dependent variable we consider (see “3” column in Table 1). Moreover, to inform that in any
random run of the experiment, how likely the e�ect size of the AI������� treatment is larger when
social in�uence exists (as opposed to whether on average, the e�ect size of the AI������� treatment
is larger when social in�uence exists), we further report the probability of superiority in Table 1.
As these probabilities are consistently larger than 0.5, we are reasonably con�dent about our
conclusion that the e�ect size of the AI������� treatment is larger when social in�uence is present.
Interestingly, a closer look at Figures 7–9 indicates that when social in�uence is present, subject’s
individual-level accuracy, truth discernment, and sharing discernment do not seem to reach a level
that is signi�cantly di�erent from those in the case when social in�uence is absent; so the increase of
e�ect size is mainly driven by the di�erences in the C������ treatments. For example, on the news
where the AI model’s prediction is correct, subjects in the N���I����������, C������ treatment
tended to have lower individual-level accuracy, truth discernment, and sharing discernment than
subjects in the I����������, C������ treatment, possibly as they were in�uenced by others’
incorrect veracity judgements; thus, the e�ect sizes of the AI������� treatment become larger with
social in�uence potentially because providing the correct AI-based credibility indicators before
people form their independent opinions cancels out or at least reduces the negative impacts brought
up by others’ incorrect judgements.

In contrast, the comparison of the e�ect sizes for the AI������ treatment between the cases with
or without social in�uences is less clear. As shown in Table 2, we �nd that in most cases, especially
with respect to subjects’ individual-level accuracy in detecting misinformation, the impacts of
showing the AI-based credibility indicators after people have formed their independent opinions
seem to be weakened by the social in�uence. However, we also note that when social in�uence
exists, the e�ect size of the AI������ treatment seems to be larger on sharing discernment when
the AI model’s prediction is correct, and on truth discernment when the AI model’s prediction
is incorrect, although Figures 8–9 again suggest that this observation is mainly driven by the
di�erences across the two C������ treatments.

5 DISCUSSIONS
In this section, we �rst summarize the potential bene�ts and risks of AI-based credibility indicators
as well as the limitations of these indicators. We then provide implications on better utilizing AI to
combat misinformation, as well as designing experimental research to study the e�ects of news
credibility indicators in more realistic settings. Finally, we discuss the limitations of our study.

5.1 Benefits, Risks, and Limitations of AI-based Credibility Indicators
The results of our study suggest that leveraging AI-based credibility indicators to help people
identify misinformation comes with bene�ts, risks, as well as limitations, when these people are
subject to social in�uence in judging the credibility of online information. On the positive side,
our study shows that even if people are in�uenced by others when judging the veracity of news,
providing accurate AI-based credibility indicators along with news items can e�ectively improve
people’s ability in detecting misinformation. This highlights the promise of utilizing automated AI
technologies to signi�cantly speed up the evaluation of the quality of online information. Indeed,
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the traditional approach of recruiting fact-checking professionals to manually check the reliability
of each news is not only expensive, but also falls short in catching up with the unprecedented speed
that information is generated and spread today. Even more worrisome, the sparse application of
warning labels on news stories due to the limited scalability of manual fact-checking can even bring
up an unintended side e�ect called the “implied truth e�ect” [35], that is, people may consider false
information without warning labels to be true as they incorrectly assume these information have
already been veri�ed. In light of this, reliable AI-based misinformation detection technologies can
be especially bene�cial as they can be used to signal the credibility of all of the online information
almost in real-time, while they still exhibit a high degree of e�ectiveness in in�uencing people’s
perceptions of the information.
However, our study results also reveal that people, even together with their peers, lack the

capability in determining the correctness of AI-based credibility indicators. This implies serious
risks of people being misled by AI-based credibility indicators that are wrong, and consequently
believing in or even spreading misinformation. In our exploratory analysis (Section 3.5.3), we show
that the presence of AI-based credibility indicators signi�cantly increases people’s tendency to
align their �nal veracity judgement on a piece of news with the model’s prediction when their
initial judgement disagrees with the model. In fact, if we restrict our attention to only those cases
where the AI-based credibility indicator is wrong while an individual’s initial veracity judgement
on the news is correct, we still �nd that the individuals will signi�cantly increase the likelihood of
switching their belief in the veracity of the news to the wrong prediction despite their independent
predictions being correct, when the incorrect AI-based credibility indicator is shown to them
as a reference together with others’ veracity judgements on the news. This is true even when
both the individuals’ independent veracity judgements and the majority of other people’s veracity
judgements on the news are correct. Together, these results imply the urgent need of assisting
people to e�ectively gauge the accuracy of AI-based credibility indicators, so that they can make
use of these indicators more appropriately.
Finally, we note that when people are exposed to social in�uence in evaluating the veracity of

news stories, it appears that AI-based credibility indicators can not unlock their full potential in
in�uencing people’s perception of and engagement with the news. As discussed in Section 3.5.3, the
presence of AI-based credibility indicators is not able to “strengthen” an individual’s veracity belief
in news when the individual’s initial veracity judgement aligns with the AI model’s prediction.
We �nd this is still true when we focus on only those cases where both the individual’s initial
veracity judgement and the AI model’s prediction are correct. In other words, even if the AI-based
credibility indicators are perfectly reliable, the agreement between the AI model and one’s own
judgement on the veracity of a piece of news does not motivate people to stick with their correct
judgement to a higher extent, regardless of whether the majority of other people agrees with the AI
model or not. This phenomenon may have partly contributed to our observation that the positive
impacts brought up by accurate AI-based credibility indicators on the crowd’s accuracy in detecting
misinformation are not ampli�ed by social in�uence as the news spreads into a larger number
of people. It is thus an important future work to explore how to further release the potential of
AI-based credibility indicators to strengthen people’s belief in their correct judgements via the
agreement between people and the AI model.

5.2 Implications for Be�er Utilizing AI to Combat Misinformation
The potential risks of supplying AI-based credibility indicators, as we have discussed in Section 5.1,
suggest AI technologies should be incorporated into the �ght against misinformation with extra
care. One possible approach is to adopt a hybrid, human-AI collaborative fact-checking procedure,
which may be implemented either through a machine-in-the-loop paradigm where fact-checkers
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produce all the �nal credibility warning labels but get recommendations from AI models [34],
or a human-in-the-loop paradigm where the AI models actively decide when they need human
inputs [45]. In the former case (i.e., machine-in-the-loop), one critical challenge to address is to
design the AI models to optimize for the human-AI joint decision-making outcome [8]. Addressing
this challenge requires a better understanding on both how to tune the AI model to complement
human fact-checkers, and how to structure the information exchange between human fact-checkers
and the AI model to enhance fact-checkers’ trust calibration in the AI (e.g., via presenting model
explanation and con�dence [53, 57], allowing fact-checkers to interact with the model [34], etc.).
In the latter case (i.e., human-in-the-loop), beyond a similar challenge of optimizing the design of
AI-based credibility indicators so that end-users can e�ectively determine the reliability of these
indicators, a few additional interesting questions to ask include whether and how the AI model can
solicit the wisdom of a mixed-expertise crowd (e.g., professional fact-checkers, domain experts, and
a community of laypeople), as well as whether and how to present credibility indicators generated
from various channels (e.g., AI, AI+fact-checkers, AI+community, AI+community+fact-checkers)
to end-users to maximize their desirable e�ects.

5.3 Towards Studying Credibility Indicators in More Realistic Se�ings
The �ght against misinformation is of great societal importance, which urges researchers to
maximize the ecological validity of their research, especially for those related to understanding
the e�ectiveness of interventions. To this end, conducting �eld experiments is a straight-forward
solution (e.g., [32, 37]) whenever possible. We believe another approach for increasing the ecological
validity of misinformation-related research is to design more realistic experimental settings in
controlled experiments. In this study, we make the �rst attempt to study the e�ects of AI-based
credibility indicators in a more realistic setting by taking social in�uence into consideration. Our
results provide us with useful understandings that we would not have been able to get if the
experiment is designed in a simpli�ed setting, such as the size of AI-based credibility indicators’
impacts on people in a real social environment may be larger than what we would conclude from a
controlled experiment with no social in�uence, when these indicators are presented to people before
they form their own judgements about the news. We acknowledge that, however, our experimental
setting is still far away from what a natural social media environment looks like, and there are
plenty of opportunities for creating more realistic experimental settings to study the e�ects of
credibility indicators in future work. For example, previous research has shown that people su�er
from the “illusory truth e�ect” when judging the credibility of online information, which suggests
that they tend to consider repeatedly seen and thus familiar information to be more true than
novel information [36]. Taking the impacts of both social in�uence and repeated exposure on one’s
perceptions of the news into consideration requires us to place human subjects into a full-�edged
social network rather than a di�usion “path” in the network. As another example, in our study,
the social in�uence that subjects get exposed to when evaluating news veracity essentially comes
from a random population. However, in the real world, people have the tendency to befriend with
like-minded individuals, which contributes to the creation of �lter bubbles [7] and may a�ect
the extent to which the views of those people that one connects to are polarized. Thoroughly
understanding the e�ects of AI-based credibility indicators in the presence of selective exposure is
therefore another interesting future work.

5.4 Limitations
Our study was conducted with laypeople (i.e., subjects recruited from Amazon Mechanical Turk)
on one speci�c type of news (i.e., news related to COVID-19). Cautions should be used when
generalizing results in this work to di�erent settings, such as when there exist some domain experts
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in the crowd, or when the news is about a di�erent topic. In particular, Horne et al. [23] �nd that
people are more receptive to advice from AI when evaluating the veracity of news topics that are
novel and evolving, and we consider COVID-19 as such a topic. Thus, more experimental studies
should be carried out in the future with recurring news topics (e.g., climate change) to understand
to what extent the results reported here can be generalized when people have strong prior beliefs
on the topic. Another limitation of our study is that our experimental setup can not re�ect the
“closeness” between people who review the same news. In reality, individuals’ perceptions of a piece
of news may be in�uenced by those people who they consider as close to them to a larger extent;
thus, it is unclear whether our experimental results will generalize to the scenario when di�erent
people in�uence one’s judgements to a di�erent degree. We also note that the format of the news
stories that we presented to our subjects was fairly simple—e.g., only the text/image of the news
stories was shown without any sources of the news being displayed. As earlier research shows that
information such as the source of news stories may serve as a critical heuristic for people to gauge
its credibility [23, 39], it would be interesting to explore in the future how contextual information
(e.g., news sources) and social in�uence, together, impact people’s perceptions of and engagement
with the news.

6 CONCLUSIONS
In this paper, we present two randomized human-subject experiments to understand the e�ects
of AI-based credibility indicators on people while taking social in�uence into consideration. We
�nd that even when people’s perceptions of the news are in�uenced by others’ opinions about
it, presenting the AI-based credibility indicators along with the news can still nudge people into
aligning their veracity belief in the newswith the AImodel’s prediction, regardless of the correctness
of the prediction, thereby changing people’s ability in detecting misinformation. However, these
AI-based credibility indicators exhibit limited impacts on people’s engagement with the news
under the social in�uence, regardless of whether it is real or fake. We also �nd that compared
to the case when social in�uence is absent, providing AI-based credibility indicators to people
before they make their independent judgements of the news results in a larger impact on people’s
perception of and engagement with the news when people are subject to social in�uence. Our
results provide important insights into understanding the possible bene�ts, risks, and limitations
of AI-based credibility indicators, and we discuss practical implications on better utilizing AI
technologies to combat misinformation and on improving the design of controlled experiments to
study misinformation in more realistic settings.
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