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Abstract

AI-assisted decision-making systems hold immense potential
to enhance human judgment, but their effectiveness is often
hindered by a lack of understanding of the diverse ways in
which humans take AI recommendations. Current research
frequently relies on simplified, “one-size-fits-all” models to
characterize an average human decision-maker, thus failing
to capture the heterogeneity of people’s decision-making be-
havior when incorporating AI assistance. To address this, we
propose Mix and Match (M&M), a novel computational frame-
work that explicitly models the diversity of human decision-
makers and their unique patterns of relying on AI assis-
tance. M&M represents the population of decision-makers as
a mixture of distinct decision-making processes, with each
process corresponding to a specific type of decision-maker.
This approach enables us to infer latent behavioral patterns
from limited data of human decisions under AI assistance,
offering valuable insights into the cognitive processes under-
lying human-AI collaboration. Using real-world behavioral
data, our empirical evaluation demonstrates that M&M con-
sistently outperforms baseline methods in predicting human
decision behavior. Furthermore, through a detailed analysis
of the decision-maker types identified in our framework, we
provide quantitative insights into nuanced patterns of how
different individuals adopt AI recommendations. These find-
ings offer implications for designing personalized and effec-
tive AI systems based on the diverse landscape of human be-
havior patterns in AI-assisted decision-making across various
domains.

Introduction
The increasing integration of artificial intelligence (AI) into
people’s decision-making processes across diverse domains,
from entertainment to healthcare and to finance (De Man-
taras and Arcos 2002; Shaheen 2021; Cao 2022), has ini-
tiated a new era of human-AI collaboration. Combining
AI’s competence and humans’ agency, the paradigm of AI-
assisted decision-making, where AI models provide rec-
ommendations and humans make the final decisions, holds
immense potential to enhance human judgment and im-
prove decision outcomes (Lysaght et al. 2019; Lai et al.
2021). However, realizing this potential hinges on a deep
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understanding of how humans interact with and adopt AI-
generated recommendations (Steyvers and Kumar 2023).

Although a growing body of research has focused on
quantitatively describing how human decision-makers re-
spond to AI recommendations, these studies suffer from a
few limitations. Some approaches, particularly those rooted
in deep learning, treat the problem as a mere prediction
task without considering the cognitive underpinnings and
interpretability of the decision-making process (Hartford,
Wright, and Leyton-Brown 2016). Despite the high perfor-
mance, these models provide little insight into the underly-
ing reasons behind people’s decision behavior. While some
recent work has attempted to incorporate cognitive pro-
cesses for characterizing behavioral patterns in AI-assisted
decision-making, these works often rely on an “average”
human decision-maker representation (Wang, Lu, and Yin
2022; Tejeda et al. 2022). This simplification overlooks the
inherent diversity in people’s decision-making patterns un-
der AI assistance, potentially resulted from individual pref-
erences, risk tolerances, and cognitive styles (Franken and
Muris 2005; Appelt et al. 2011). Neglecting this diversity
impedes the development of personalized AI assistance and
restricts our ability to fully harness AI’s potential in aug-
menting human decision-making.

To address these gaps, we propose Mix and Match (M&M),
a computational framework designed to model the diverse
ways in which humans interact with and adopt AI recom-
mendations. M&M explicitly acknowledges the heterogeneity
of human decision-makers. The framework operates in two
main stages: “Mix” and “Match”. In the “Mix” stage, M&M
considers K distinct decision-making processes, each repre-
senting a different type of decision-maker. Specifically, each
decision process captures the cognitive process the corre-
sponding type of decision-maker goes through to generate
their AI-assisted decisions—the decision-maker first forms
their independent judgments without AI assistance, and then
aggregates their independent judgments with the AI model’s
recommendations to arrive at a final decision after comput-
ing the utilities of different possible actions. We assume that
each decision made by an individual is influenced by a prob-
ability distribution over these K types, with a latent variable
indicating the specific types of decision-makers responsible
for that decision. Thus, during this stage, given a set of AI-
assisted decisions made by a population of decision-makers,
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we jointly learn the latent variables and parameters for each
decision-maker type. Next, in the “Match” stage, given a
new individual decision-maker, we estimate the likelihood
that each decision-maker type is responsible for this indi-
vidual’s final decision on a particular decision task, and pre-
dict their final decision accordingly. Note that M&M lever-
ages the varied decision-making behavior across the popu-
lation to uncover underlying patterns. Additionally, M&M ac-
knowledges that the same individual may exhibit different
decision-making behaviors depending on the context or task,
providing a more nuanced understanding of the dynamic na-
ture of AI-assisted decision-making.

Using real-world behavioral data collected from diverse
decision-making scenarios, our empirical evaluation demon-
strates that M&M consistently outperforms baseline methods
in predicting human decisions under AI assistance. By accu-
rately characterizing the different types of decision-makers
and their unique adoption patterns, our framework offers
valuable insights into the cognitive processes underlying
human-AI collaboration. For example, our analysis reveals
that there exists a range of decision-makers with different
perceptions of penalties for incorrect decisions and sensitiv-
ities to utility differences in accepting or rejecting AI rec-
ommendations. In addition, the majority of decision-makers
perceive high penalties for incorrect decisions and exhibit
high sensitivity to utility differences. Furthermore, percep-
tions of penalties for incorrect decisions and sensitivity to
utility differences tend to be positively correlated in AI-
assisted decision-making. These insights can inform the de-
sign of more effective and personalized AI assistance, ul-
timately leading to improved AI-assisted decision-making
outcomes in various domains.

Related Work
Empirical Studies in AI-assisted Decision Making
The increasing use of AI-powered decision aids has spurred
a wave of experimental studies aimed at understanding how
humans interact with and rely on AI models in decision-
making scenarios. Researchers have identified a multi-
tude of factors that can influence people’s reliance on AI
in decision-making—on a population level—including the
model’s accuracy (Yin, Wortman Vaughan, and Wallach
2019; Lai and Tan 2019), confidence (Zhang, Liao, and
Bellamy 2020; Rechkemmer and Yin 2022), the type and
presentation of AI explanations (Yang et al. 2020; Bansal
et al. 2021b), individuals’ mental models of AI (Bansal et al.
2019a,b), the degree of agreement between human judgment
and AI recommendations (Lu and Yin 2021), and more.

Beyond factors existing at the population level, recent
studies also found that individual differences make signifi-
cant impacts on how humans take AI recommendations. For
instance, it was found that an individual’s personality affects
their trust in and advice-taking from AI (Sharan and Romano
2020). As another example, Matthews et al. (2019) found
that people could activate different mental models when col-
laborating with AI, thus leading to diverse attitudes towards
AI. These studies have revealed a wide array of behavioral
patterns exhibited by decision-makers in AI-assisted con-

texts, highlighting the importance of characterizing the di-
versity in human behavior.

Modeling Human Decision Behavior
Research on modeling human decision behaviors has been
well-established in economy and psychology, as decision-
making is an abstract of a wide range of human behaviors
(Wang and Ruhe 2007; Montgomery 1983). Pivoting around
this, a large amount of theories and models were developed
to capture how people make decisions. For instance, the ex-
pected utility theory links behavior with the utilities behind
decisions (Schoemaker 1982). Research further reveals that
factors including task context and individual differences can
lead to people’s different ways of calculating the utilities of
their actions (Schoemaker 2013).

With AI-based decision aids becoming more prevalent,
the community started to investigate computational mod-
eling of human behavior in AI-assisted decision-making,
with a focus on characterizing and predicting when decision-
makers will solicit or rely on AI recommendations (Pyna-
dath, Wang, and Kamireddy 2019; Bansal et al. 2021a; Li,
Lu, and Yin 2023; Kumar et al. 2021; Wang, Lu, and Yin
2022; Guo et al. 2024; Strickland et al. 2024). Drawing in-
spiration from economic theories (e.g., Cumulative Prospect
Theory (Tversky and Kahneman 1992; Allais 1953)) or
cognitive modeling exemplified by sociocognitive construct
(Askarisichani et al. 2022), previous work made efforts in
constructing computational models with the capability to
explain human decision-making under modern AI systems
with uncertainty. These models have also been used to im-
prove AI-assisted decision-making by enabling AI systems
to adapt their recommendations based on human behaviors
or by designing interfaces that adjust how AI recommenda-
tions are presented depending on how people behave (Ma
et al. 2023; Amin, Lu, and Yin 2024). However, most of
these studies model decision behaviors using an “average”
human decision-maker to represent the entire population,
overlooking the diversity in decision-making patterns that
can result from individual differences.

Problem Setup
We focus on the AI-assisted decision-making setting, where
a human decision-maker (DM) completes a sequence of
T tasks, receiving a decision recommendation from an AI
model on each task but making the final decision by them-
selves. This setting is particularly prevalent in high-stakes
domains such as medical diagnosis, where the human retains
the ultimate authority to make the final decision. Each deci-
sion making task t ∈ {1, . . . , T} is characterized by features
xt ∈ Rn and an associated correct decision yt ∈ Y . For il-
lustrative purposes and without loss of generality, our study
centers on binary classification tasks (i.e., Y = {0, 1}).

Under this setup, an AI model first provides a decision
recommendation m(xt; θm) to a human DM, who has their
own independent judgment h(xt; θh) on the same case. The
human DM then aggregates the AI’s suggestion with their
own assessment to arrive at a final team decision ŷt:

ŷt = f(xt,m(xt; θm), h(xt; θh); θa) (1)
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Figure 1: The probabilistic model of the generation pro-
cess of the decision-maker’s final decision in AI-assisted
decision-making. The shaded node is observed.

We consider the scenario where the AI decision recommen-
dation comprises two components: a binary decision and the
confidence in that decision. Formally, m(xt; θm) = {1 :
P(yt = 1 | xt), 0 : P(yt = 0 | xt)}, which can be
further used to generate the binary recommendation ŷtm =
argmaxm(xt; θm) and the confidence in that recommen-
dation ctm = maxm(xt; θm) = m(xt; θm)[y = ŷtm]. Sim-
ilarly, the human DM’s initial judgment h(xt; θh) is char-
acterized by the binary judgement ŷth = argmaxh(xt; θh)
and the confidence in that judgment cth = h(xt; θh)[y = ŷth].
The final team decision ŷt = f(xt, ŷtm, ctm, ŷth, c

t
h) is influ-

enced by the task features xt, the AI model’s decision rec-
ommendation ŷtm, the AI model’s confidence ctm, the human
DM’s initial judgment ŷth, and the human DM’s confidence
cth. Since final team performance is often of paramount inter-
est, it is critical to understand the form of the team decision
making model f(·).

While AI model parameters (θm) can be accessible, hu-
man judgment and aggregation parameters (θh, θa) are often
challenging to characterize. Prior works often assume “aver-
age” human behavior models (i.e., each DM shares the same
θh, θa). Our work aims to address this limitation by for-
mally capturing the diversity among decision-making types,
recognizing that effective modeling of AI-assisted decision-
making must account for individual differences.

Method
We propose a novel computational framework, Mix and
Match (M&M), to effectively characterize human behavior
in AI-assisted decision-making. M&M is a Bayesian approach
that models the diverse ways in which humans interact with
AI recommendations as a generative process involving a
mixture of different types of decision-makers. Figure 1 illus-
trates the structure of the proposed model. The framework
consists two main stages:
1. Mix: Modeling decisions as mixture models. In this

stage, instead of a single average model, we use in to-
tal K distinct decision-making processes {f1, . . . , fK}.
Each decision is influenced by a probability distribution
over these K types, with a latent variable indicating how
each specific type of decision-making process is respon-
sible for that decision trial.

2. Match: Inferring DM types. In this stage, we match
a decision trial with a distribution of DM types by infer-
ring how likely each type is to have generated a particular
decision given the observed data.

As a particular realization of the M&M framework, we now
introduce how we model the decision-generation process, as
well as how model learning and inference can be done in
practice.

Decision Generation
Modeling a Single Type of DM We start with elaborat-
ing on how a single type of DM (i.e., DM type k) generates
the final decision on task xt given m(xt; θm). Previous find-
ings in economics and psychology have shown that people’s
decision-making process consists of multiple steps (Lunen-
burg 2010). Similarly, it has been suggested that AI-assisted
decision-making may also involve multiple steps (Cao, Liu,
and Huang 2024). Thus, consistent with previous studies, we
divide the each type of DM into three steps: DM’s initial
judgment, the AI recommendation, and DM’s aggregated
decision.
Step 1: DM’s initial judgment. In the first step, the hu-
man DM forms an independent judgment without AI assis-
tance. This judgment is quantified by an independent deci-
sion model hk(x

t; θhk), which we assume follows the form
of a logistic model:

hk(x
t; θhk) = softmax(θhk · xt)

This choice is consistent with previous work in well-
established decision-making literature from economic re-
search, where Logit models are widely used to model hu-
mans’ independent decision-making, especially decisions
under uncertainty (Chapman 1984; Lovreglio, Fonzone, and
Dell’Olio 2016). Logit models and their variations are em-
ployed in modeling human behavior in advice-taking and
AI-assisted decision-making as well (Tejeda et al. 2022; Li,
Lu, and Yin 2024).

The DM’s independent judgment on the task is then given
by ŷthk = argmaxh(xt; θhk), with the confidence in this
judgment being cthk = maxhk(x

t; θhk).
Step 2: AI model’s recommendation. Given the AI
model parameterized by θm, we can compute its recom-
mendation consisting of two parts: the prediction ŷtm =
argmaxm(xt; θm), with its confidence in this prediction
being ctm = maxm(xt; θm).
Step 3: Aggregated decision. In the final step, the DM
aggregates their own initial judgment and the AI recom-
mendation to generate the final decision. Previous work
in AI-assisted decision-making suggests that the cognitive
process for DMs to aggregate their initial judgments and
AI recommendations could further involve multiple stages
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(Tejeda et al. 2022; Cao, Liu, and Huang 2024). Specifi-
cally, to model the aggregation process g(·) while recogniz-
ing the decision-maker’s goal of maximizing overall utility,
we characterize g(·) through the following three stages: con-
fidence estimation, utility calculation, and action selection,
as inspired by previous studies (Wang, Lu, and Yin 2022).

First, the DM estimates the likelihood of the AI recom-
mendation being correct by aggregating the confidence of
the DM’s independent judgment ŷth and the AI’s recommen-
dation ŷtm together. This is quantified as:

cth+m,k =

{
1
2 (c

t
hk + ctm) if ŷthk = ŷtm

1
2 (1− cthk + ctm) if ŷthk ̸= ŷtm

(2)

Intuitively, cth+m,k is an average of the DM’s confidence in
the AI recommendation and the AI’s confidence in its rec-
ommendation. Higher cth+m,k indicates that the DM esti-
mates the AI recommendation to be more likely correct after
comparing it with the DM’s independent judgment.

Next, in line with the expected utility theory (Schoemaker
1982), we assume the DM estimates the expected utility
(EU) of accepting or rejecting the AI recommendation, in-
corporating a parameter βk that represents their perceived
penalty for making a wrong decision:

ût
accept,k = EU(ŷt = ŷtm) = (1 + βk)c

t
h+m,k − βk

ût
reject,k = EU(ŷt ̸= ŷtm) = 1− (1 + βk)c

t
h+m,k

(3)

After computing the utilities, the human DM needs to se-
lect an action to take. We consider the human DM will use
a Logit model to compare among actions, assuming that hu-
mans are more likely to choose options with higher expected
utility. Specifically, the probability for the human DM to ac-
cept the AI recommendation is given by a softmax function:

rtk =
exp(δkû

t
accept,k)

exp(δkût
accept,k) + exp(δkût

reject,k)
(4)

where the parameter δk indicates the DM’s sensitivity to
utility differences. Such a Logit model is a widely-used
model in economics to characterize people’s discrete choices
(Adeogun et al. 2008; Train 2009).

With the probability of DM accepting the AI recommen-
dation rtk, we then model the action atk of DM to accept or
reject the AI recommendation with a Bernoulli distribution
atk ∼ Bern(rtk), i.e., atk = 1 (atk = 0) means the DM accepts
(rejects) the AI recommendation. The final decision ŷtk is
then determined by ŷtk = I(atk = 1)ŷtm+I(atk = 0)(1−ŷtm).

In summary, the k-th decision process involves two sets
of parameters: θhk captures how the DM forms their in-
dependent judgement, and θak = {βk, δk} captures how
the DM makes the aggregated decision. Together, the k-
th decision process is quantified by the set of parameters
Θk = {θhk, θak}.

Modeling the Mixture of K Types of DM With each type
of DM parameterized by Θk and in total K types of DM, we
define a parameter set Θ = {θhk, θak}Kk=1 that character-
izes a wide range of different DMs. Since the final decision

is considered to be a mixture of the K types of DMs, the
conditional probability of the final decision is:

P(ŷt | xt,m(xt; θm),Θ,Z)

=
K∑

k=1

ztk · P(ŷt|xt,m(xt; θm),Θk) (5)

where Z is a latent mixing coefficient matrix with element
ztk indicating the responsibility of the k-th type of DM in a
decision trial t.

Model Learning
Our objective is to learn M&M model given a training dataset
of decision trials, and a set of DMs’ final decisions D =
{dt, ŷt}Tt=1 on these trials. Specifically, each decision trial
dt consists of the decision task xt and the AI recommenda-
tion on this task m(xt; θm). In total, the parameter space of
the model has two parts, the parameters of the K types of
DMs Θ, and a mixing coefficient matrix Z.

With a known Z, learning the parameters Θ of the model
given involves computing the posterior P (Θ | D). As di-
rect computation is intractable, we leverage variational in-
ference to approximate it using the parameterized distribu-
tion qϕ(Θ). We aim to minimize the KL divergence between
qϕ(Θ) and P (Θ | D):

KL(qϕ(Θ)∥P (Θ)) =

∫
Θ

qϕ(Θ) log
qϕ(Θ)

P (Θ | D)
dΘ

=

∫
Θ

qϕ(Θ)

(
log

qϕ(Θ)

P (Θ)
− logP (D | Θ) + logP (D)

)
dΘ

= KL(qϕ(Θ)∥P (Θ))− Eqϕ(Θ)[logP (D | Θ)− logP (D)]

where P (Θ) is the prior distribution of Θ and P (D) is a
constant. Specifically, qϕ(Θk) of the k-th type of DM con-
sists of three variational distribution families:

1. For θhk (DM’s independent judgment), we use a multi-
variate normal distribution: N (θhk;µϕ,Σϕ).

2. For θak = {βk, δk} (DM’s aggregation model), we use
a Beta distribution for β (reflecting the bounded na-
ture of the penalty parameter) and a normal distribu-
tion with a positive constraint for δ (reflecting the sen-
sitivity to utility differences): q(β) = Beta(Aβ , Bβ),
q(δ) = N (µδ, σδ), δ > 0.

We use λ to denote all variational parameters in qϕ(Θ).
However, the coefficient matrix Z is a latent variable un-

known. Therefore, similar to the approximation of posterior
of Θ, we again leverage a variational inference to approxi-
mate the distribution of {ztk}Kk=1 using a parameterized dis-
tribution. Specifically, we use a Dirichlet distribution of or-
der K, Dir(αt), to model the responsibility of the K types
of DMs in each decision trial t. Without further knowledge,
we use a αt

k = 1
K as prior.

Due to the presence of the latent variables, we use the ex-
pectation maximization algorithm to optimize for the vari-
ational parameter space (λ,α) . Firstly, in the E-step, we
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Dataset # of Decision Tasks # of Task Features AI Model for Recommendation Average AI Confidence
Diabetes Prediction 2130 6 Decision Tree Classifier 0.896

Loan-risk Assessment 7600 7 Random Forest Classifier 0.660
Income Prediction 1376 6 Wizard-of-Oz 0.749

Table 1: Summary of the datasets used in the evaluation.

calculate the posterior of each ztk based on the current esti-
mate of parameters:

γt
k = P (ztk | dt, ŷt,λ,α)

=
P (ŷt | dt, ztk,λk)P (ztk | αt)∑K
k=1 P (ŷt | dt, ztk,λk)P (ztk | αt)

Then for the Maximization step, we search for optimal
parameter values to maximize the auxiliary function Q, i.e.,
the expectation of the complete data log-likelihood:

Q(λ,α) =
T∑

t=1

K∑
k=1

γt
k logP (ŷt | dt, ztk,λk)+

T∑
t=1

K∑
k=1

γt
k logP (ztk | αt)

In each M-step, we use gradient descent to update hidden
parameters to the values that locally optimize Q.

Determining the number of DM types. In practice, the
number of DM types (K) is not always accessible. Do-
main knowledge can sometimes provide the prior of K (e.g.,
known categories of doctors). However, for more general
cases, we leverage the Bayesian Information Criterion (BIC)
(Kuha 2004) to determine the optimal K:

BIC = −2 ln L̂+K lnT

where L̂ is the maximized likelihood of the model, K is the
number of parameters (including those for each DM type),
and T is the number of trials in the training dataset. We train
models with varying K and select the model with the lowest
BIC to balance between fit and complexity.

Model Inference
Given a new decision-making trial di with decision task xi

and AI recommendation m(xi; θm), we calculate the prob-
ability of the human DM accepting the AI recommendation
and predict the DM’s final decision on this trial as follows.

First, with the learned K types of DM, we aim to calcu-
late the latent mixing coefficients of the K types of DMs
corresponding to the decision trial. To obtain it, we need to
first obtain the parameter set αi of the Dirichlet distribution
parameters that generate the latent coefficients. As the direct
computation is intractable, we use a heuristical method to
estimate the parameters αi. Intuitively, when two decision
trials are similar, DMs are more likely to apply similar de-
cision processes on them. That is, the influence of a training
trial on the decision-making process of the current trial in-
creases with its similarity to the current trial. Therefore, we

approximate αi using kernel-weighted parameters:

α̂i =
T∑

t=1

K(dt,di)αtP (αi)

where

K(dt,di) =
exp(−s(dt,di))∑T
j=1 exp(−s(di,dj))

s(·) is the Euclidean distance, and P (αi) is the prior of
αi. The mixing coefficient zi is then obtained by averag-
ing M samples from the distribution Dir(α̂i), with Zi =
1
M

∑M
m=1 Z

m, Zm ∼ Dir(αi). Finally, the DM’s final deci-
sion in trial i is a weighted mixture calculated by Eq. 5.

Evaluation
In this section, we evaluate the effectiveness and generaliz-
ability of our proposed M&M framework.

Decision Tasks
In our evaluation, we consider three distinct real-world
datasets encompassing diverse decision-making scenarios
collected from previous empirical studies of AI-assisted
decision-making (Wang, Lu, and Yin 2022; Li, Lu, and Yin
2024; Vodrahalli et al. 2022):

1. Loan Risk Assessment: This dataset focuses on the task
of assessing loan default risk. Participants were presented
with loan applicant profiles containing seven features:
loan amount, interest rate, repayment period, monthly in-
stallment, annual income, credit score, and homeowner-
ship status. The AI model provided binary recommenda-
tions (default or not) along with confidence scores.

2. Diabetes Prediction: This dataset involves predicting di-
abetes in patients based on demographic and medical his-
tory data. Patient profiles included six features: gender,
age, history of heart disease, Body Mass Index (BMI),
HbA1c level, and blood glucose level. The AI model
offered binary recommendations (diabetes or not) with
confidence scores.

3. Income Prediction: The decision task in the dataset is to
determine a person’s annual income level. Given a pro-
file of a person with seven features—the person’s gen-
der, age, education level, marital status, occupation, work
type, and working hours per week—people were asked to
decide whether this person’s annual income is higher or
lower than 50k. The AI model provides its recommenda-
tions in the form of binary classification and the confi-
dence score.
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Treatment
Loan Risk Assessment Diabete Prediction Income Prediction

NLL ↓ Accuracy ↑ F1 ↑ NLL ↓ Accuracy ↑ F1 ↑ NLL ↓ Accuracy ↑ F1 ↑
Logistic Regression 0.515 0.601 0.740 0.446 0.713 0.744 0.889 0.815 0.896

Random Forest 0.721 0.602 0.715 0.472 0.692 0.738 0.999 0.826 0.903

MLP 0.665 0.599 0.724 0.554 0.734 0.751 0.704 0.757 0.854

SVM 0.558 0.646 0.651 0.461 0.754 0.758 0.958 0.652 0.753

CPT Utility 0.542 0.611 0.644 0.546 0.633 0.725 0.784 0.758 0.863

Confidence Threshold - 0.600 0.656 - 0.629 0.723 - 0.736 0.845

M&M (Ours) 0.491 0.632 0.774 0.413 0.770 0.762 0.656 0.805 0.913

Table 2: Comparing the performance of the proposed method with baseline methods on three decision-making tasks in terms of
NLL, Accuracy, and F1-score. “↓” denotes the lower the better, “↑” denotes the higher the better. Best result in each column is
highlighted in bold. All results are averaged over 5 runs. “-” means the method can not be applied in this scenario.

These datasets were preprocessed to ensure consistency
and suitability for our analysis. For all datasets, we con-
verted the human decisions and AI recommendations into
binary format (0 or 1) and normalized the AI confidence
scores to the range of [0, 1] to facilitate comparison. Table 1
provides the summary of the datasets.

Examining the Predictive Performance of M&M
We first examine how well the M&M framework can predict
human DMs’ final decisions in AI-assisted decision making.

Evaluation Setup For each dataset, we randomly split the
data into training (80%) and test (20%) sets. To quantify
model performance, we employed three key evaluation met-
rics: negative log-likelihood (NLL), accuracy, and F1-score.
NLL measures the model’s ability to predict the probabil-
ity of observed human decisions, with lower values indicat-
ing better performance. Accuracy assesses the proportion of
correct predictions, while the F1-score provides a balanced
measure of precision and recall, capturing the model’s abil-
ity to correctly identify both acceptance and rejection of AI
recommendations. To ensure the robustness of evaluations,
all experiments were repeated 5 times, and the average per-
formance across these repetitions was reported.

Our M&M model is trained using a Bayesian approach
with variational inference, as outlined in the previous sec-
tion. We experiment with different numbers of DM types
(K ∈ {2, 3, . . . , 6}) and select the K that achieves the min-
imum BIC score for each task. To provide a robust bench-
mark for evaluating the performance of our proposed M&M
framework, we consider three distinct classes of baseline
models, each capturing different aspects of human decision-
making behavior in AI-assisted scenarios:
1. Standard Supervised Learning Models: We employ

four widely-used supervised learning models: Logis-
tic Regression, Random Forest, Multi-Layer Perceptron
(MLP), and Support Vector Machine (SVM). These mod-
els directly predict the human DM’s final decision ŷt in
a decision task based on task features xt, AI recommen-
dations ŷtm, and AI confidence scores ctm. These mod-
els serve as a baseline for predictive accuracy, allowing
us to assess whether incorporating explicit modeling of

human-AI interaction patterns can improve upon stan-
dard machine learning approaches.

2. Utility-Based Model: We adapt the model proposed by
(Wang, Lu, and Yin 2022), which is grounded in Cumu-
lative Prospect Theory (CPT). This model assumes that
DMs assess the utility of accepting or rejecting AI rec-
ommendations based on a distorted perception of proba-
bilities, as captured by CPT’s probability weighting func-
tion w(p) = pk

pk+(1−p)k
(k > 0). Based on this distorted

estimate, the DM computes the utility of accepting or re-
jecting the AI recommendation as U = w(p) · gain +
w(1 − p) · loss. With calculated utility, the DM then use
a Logit model to select the action to accept or reject the
AI recommendation.

3. Confidence Threshold Model: We include the
confidence-based model used in (Amin, Lu, and Yin
2024), which posits that human DMs have an internal
confidence threshold τ drawn from a distribution f(τ).
If their confidence in their own judgment exceeds this
threshold, they reject the AI recommendation; otherwise,
they accept it. Practically, we use a Beta distribution
q(τ) = Beta(Aτ , Bτ ) to approximate the distribution
f(τ), with the constraint τ ∈ (0, 1). This model serves
as a simple yet effective baseline that captures the role
of self-confidence in AI-assisted decision-making.

Evaluation Results. Table 2 presents the performance
comparison of multiple models in predicting DM’s decisions
across varied datasets. Overall, our proposed M&M frame-
work consistently emerges as the best-performing model
with respect to NLL and F1 score. In terms of accuracy,
our method performs the best in diabetes predictions and is
comparable to the top-performing models in the other two
decision tasks.

Quantifying Heterogeneity in Human DMs
Beyond prediction, the M&M framework offers a nuanced un-
derstanding of the heterogeneous nature of human decision-
making in AI-assisted contexts. By explicitly modeling di-
verse DM types and their associated parameters, the pro-
posed framework provides insights into the underlying fac-
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Task k-th Type of DM Parameters
Perceived Penalty (β) Sensitivity (δ) Percentage in Population (α)

Diabetes Prediction Type I 0.81 2.41 0.26
Type II 0.92 4.72 0.74

Loan Risk Assessment
Type I 0.44 3.24 0.29
Type II 0.52 4.73 0.38
Type III 0.66 7.25 0.33

AI-assisted Income Prediction Type I 0.61 1.83 0.13
Type II 0.93 4.40 0.87

Table 3: Comparisons between model parameters learned for the identified types of DMs across three datasets.

(a) Diabetes Prediction (b) Loan Risk Assessment (c) Income Prediction

Figure 2: Comparing decision behavior across identified DM types in the three AI-assisted decision-making tasks. The plots
show the probability of a DM accepting the AI recommendation given the aggregated confidence. The green dashed line
represents a "greedy" decision maker who always accepts AI recommendations with confidence levels above 0.5.

tors influencing human decisions. There are three key pa-
rameters learned by the model in our current setup. Per-
ceived penalty (β) reflects the DM’s aversion to incorrect de-
cisions, with higher values indicating greater risk aversion.
Sensitivity (δ) captures the DM’s responsiveness to changes
in the utility of accepting or rejecting AI recommendations.
Population proportion (α) represents the prevalence of each
DM type within the overall population. Table 3 presents the
learned parameters for the different types of DMs identified
in varied AI-assisted decision-making scenarios. Analysis of
these parameters yields several important insights.

Decision context significantly influences DM behavior.
We find that the decision context significantly influences the
distribution of DM types. The proportion of each DM type,
as indicated by the α values, varies significantly across tasks.
For example, in the diabetes prediction and income predic-
tion tasks, Type II DMs, characterized by higher perceived
penalty aversion and sensitivity to utility change, constitute
the majority (α = 0.74 and α = 0.87 for the two tasks re-
spectively) of the DMs. However, differences in proportions
across DM types are less prominent in the loan risk assess-
ment task, showing that the risk attitude tends to be uni-
formly distributed among DMs in this decision task. This
suggests that the specific nature of decision context can in-
fluence the decision-making style adopted by individuals,
highlighting the importance of considering context when de-
signing AI systems that aim to assist human DMs.

Task complexity and risk perception shape diversity in
DM types. The number of identified DM types and the ab-
solute values of the perceived penalty (β) parameter vary
across tasks, reflecting differences in task complexity and
the granularity of risk perception. The loan risk assessment
task, with its three distinct DM types and relatively lower β
values (ranging from 0.44 to 0.66), suggests a more nuanced

understanding of risk among DMs due to the availability of
detailed information. In contrast, diabetes and income pre-
diction tasks, with only two DM types each and higher β
values, may reflect simpler risk assessments or less avail-
able information to mitigate potential losses. This observa-
tion underscores the need for flexible and adaptable AI sys-
tems that can cater to varying levels of task complexity and
individual risk perceptions.

Risk preference could act as a moderator of decision sen-
sitivity. A consistent positive correlation is observed be-
tween perceived penalty and sensitivity across DM types
within each task. For example, in the loan risk assessment
task, Type III DMs, with the highest perceived penalty (β =
0.66), also demonstrate the highest sensitivity (δ = 7.25).
This finding implies that people who are more averse to
incorrect outcomes (higher β) are more likely to engage
in analytical decision-making processes, carefully consider-
ing the potential consequences of their choices (higher δ).
This aligns with economic theories that highlight the role of
perceived risk in decision strategies under uncertainty(Kim,
Menzefricke, and Feinberg 2007; Train 2009).

Figure 2 further illustrates these behavioral differences by
plotting the probability of accepting AI recommendations
against the aggregated confidence level for each DM type.
For instance, the curves for Type II DMs consistently rise
more steeply than those for Type I DMs in the interval close
to 0.5, suggesting changes in aggregated confidence around
0.5 will lead to a higher change chance of decision change
for Type II DMs. Furthermore, the acceptance probability
of Type I DM is consistently higher than that of Type II
DM when confidence is lower than 0.5, indicating that Type
I DMs are generally more trusting of AI recommendations
and require lower confidence levels to accept them. This ob-
servation aligns with their lower perceived penalty and sen-
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sitivity values, suggesting a less risk-averse decision making
style. In contrast, Type II DMs exhibit a more cautious ap-
proach, requiring higher levels of confidence before accept-
ing AI recommendations. In the loan risk assessment task,
the presence of a third DM type with even higher perceived
penalty and sensitivity further emphasizes the diversity of
human behavior in AI-assisted decision-making scenarios.

Inferring Human DM’s Independent Judgment
An additional benefit of our proposed framework is its abil-
ity to infer independent human judgment without relying on
explicitly labeled data. This can address a crucial limitation
in prior research that employs a separate model trained ex-
clusively to characterize the human DM’s independent judg-
ment, a process that can be resource-intensive and may not
be feasible in all scenarios. To validate the efficacy of M&M in
inferring human DM’s independent judgment, we leveraged
the pilot study data from the loan risk assessment and dia-
betes prediction datasets. These previously conducted stud-
ies used pilot studies to collect data for human DMs review-
ing tasks and making judgments without AI assistance, pro-
viding a ground truth for initial DM judgment.

Evaluation Setup. This analysis involved the pilot study
data collected in the loan risk assessment and diabetes pre-
diction tasks. Specifically, we split the pilot data into training
and test sets, gradually increasing the training size from 10%
to 90% of the entire pilot data. For each split, we trained
an independent human decision model, as done in previ-
ous studies, and evaluated its accuracy on the test set (pidp).
Specifically, we use a random forest classifier for predictions
in loan risk assessment tasks and logistic regression with di-
abetes data, following the approach taken by the work that
collected the data.

We then used the independent human decision models
{θhk}Kk=1 inferred by M&M on AI-assisted data to predict
DMs’ initial judgments on the test set of pilot data. Simi-
lar to Equation 5, we use a weighted mixture of independent
human decision models to predict the initial DM judgment
on a specific data instance xi:

ŷi = argmax(
K∑

k=1

zikhk(x
i; θhk))

and we evaluated its accuracy (pinf ). Finally, we compared
pinf with pidp across different splits, to evaluate M&M’s abil-
ity to accurately capture independent human judgment in
scenarios with varying amounts of training data.

Evaluation Results. Figure 3 presents the comparison be-
tween the accuracy of independent human decision model
trained on actual data of initial DM judgment without AI as-
sistance (pidp), and the accuracy of the initial human judg-
ments inferred by M&M (pinf ). We generally find the ac-
curacy difference (pidp − pinf ) between the model trained
on independent judgment data and our proposed model in-
ferring independent judgments to be small, indicating com-
parable usefulness of the M&M model without the need for
additional data collection. Interestingly, when the training
set size is smaller, indicating a scarcity of training data for

(a) Loan Risk Assessment (b) Diabetes Prediction

Figure 3: Accuracy difference between the human decision
model trained on the training set and the model inferred from
AI-assisted decision-making data on the test set of human
judgment data. Error bars depict standard error of the mean.

the independent model, the accuracy difference is actually
negative, i.e., the independent human judgment model in-
ferred from data of AI-assisted prediction ends up outper-
forming the model trained on the independent human judg-
ment dataset. These findings underscore M&M’s potential to
unlock insights into human decision making in situations
where independent judgment data is limited or unavailable.

Conclusion
In this work, we present Mix and Match (M&M), a novel com-
putational framework that models the heterogeneous nature
of human decision-making under AI assistance as a mixture
of distinct decision-making processes. M&M acknowledges
variations across different individuals and recognizes that
the same individual may adopt different decision-making
processes for different tasks. Our empirical evaluation on
real-world data across three distinct scenarios demonstrates
that the M&M framework consistently outperforms baseline
methods in predicting human decisions under AI assistance.
Notably, the framework infers independent human judgment
without the need for additional training data. Moreover, by
analyzing the learned parameters of different DM types, we
uncover nuanced behavioral patterns that align with estab-
lished psychological theories and reveal context-dependent
variations in decision-making styles. By unfolding the inter-
play between human intuition and AI recommendations, the
M&M framework paves the way for the development of more
effective, personalized, and trustworthy AI systems that can
more effectively empower human DMs.

It is still important to acknowledge that this study has lim-
itations. The human behavior data used for evaluation were
collected from laypeople on predictive tasks based on tabu-
lar data with relatively few features. Whether the proposed
model generalizes to tasks with higher-dimensional feature
spaces or greater complexity remains to be investigated. Fur-
thermore, the AI-assisted scenarios examined explicitly pro-
vided confidence values to human DMs. Future research
should explore the applicability of the M&M framework to
scenarios where AI models communicate confidence implic-
itly, such as through verbal descriptions in large language
models. Finally, we assumed a logistic regression model
for independent human judgment, and exploring alternative
models could further enhance the framework’s flexibility.
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