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Abstract

The use of AI-based decision aids in diverse do-
mains has inspired many empirical investigations
into how AI models’ decision recommendations
impact humans’ decision accuracy in AI-assisted
decision making, while explorations on the impacts
on humans’ decision fairness are largely lacking
despite their clear importance. In this paper, using
a real-world business decision making scenario–
bidding in rental housing markets—as our testbed,
we present an experimental study on understand-
ing how the bias level of the AI-based decision aid
as well as the provision of AI explanations affect
the fairness level of humans’ decisions, both during
and after their usage of the decision aid. Our results
suggest that when people are assisted by an AI-
based decision aid, both the higher level of racial
biases the decision aid exhibits and surprisingly,
the presence of AI explanations, result in more un-
fair human decisions across racial groups. More-
over, these impacts are partly made through trig-
gering humans’ “disparate interactions” with AI.
However, regardless of the AI bias level and the
presence of AI explanations, when people return to
make independent decisions after their usage of the
AI-based decision aid, their decisions no longer ex-
hibit significant unfairness across racial groups.

1 Introduction
As Artificial Intelligence (AI) technology advances in the past
decade, more AI-based decision aids have been developed to
assist human decision making in various domains such as hir-
ing [Peng et al., 2022], smart pricing [Zhang et al., 2021], and
criminal justice [Angwin et al., 2016]. Many empirical stud-
ies have been conducted to evaluate the effectiveness of the
collaborations between humans and AI in AI-assisted deci-
sion making settings, especially in terms of the decision mak-
ing accuracy of the human-AI team. It has been found that AI
recommendations often help the human-AI team make more
accurate decisions, surpassing the performance of human de-
cision makers alone [Bansal et al., 2021; Lai and Tan, 2019].
However, they seldom lead to a team that outperforms both

humans and AI, possibly due to decision makers’ inappropri-
ate reliance on AI recommendations [Dietvorst et al., 2015;
Buçinca et al., 2021].

On the other hand, while many studies find that AI mod-
els can inherit biases from the training data and show un-
equal treatment to individuals from different groups [Angwin
et al., 2016], much less attention has been paid on evaluat-
ing the fairness of human decisions in AI-assisted decision
making, despite its clear importance. Only a few most recent
research finds that humans have some capabilities in correct-
ing the biases of AI models, thereby the racial and socioeco-
nomic disparities exhibited in their AI-assisted decisions are
smaller than those inherent in the AI models [Fogliato et al.,
2022], although the specific architecture of the AI model em-
ployed may also influence human decision fairness [Peng et
al., 2022]. In general, however, systematic understandings on
which factors may influence human decision fairness in AI-
assisted decision making and how are still largely lacking.

In this paper, we make an initial attempt to fill this re-
search gap. Specifically, we conjecture that a key factor
that may affect human decision fairness in AI-assisted deci-
sion making is the level of bias exhibited by the AI model,
though the precise impact is unclear—while higher levels of
AI biases may exacerbate the unfair human decisions, it is
also possible that humans may consciously avoid being in-
fluenced by the AI model after recognizing it as highly bi-
ased. Another potential influencing factor is the provision
of AI explanations—the AI explanations may explicitly ex-
pose the AI model’s biases to human decision makers [Dodge
et al., 2019], but they may also lead to decision makers’
unwarranted faith in the model and subsequently change
their receptivity to AI recommendations [Ehsan et al., 2021;
Schaffer et al., 2019]. Thus, our first research question is:

• RQ1: During AI-assisted decision making, how do the
bias level of an AI model and the provision of AI expla-
nations affect (a) the fairness level of humans’ decision
outcome, and (b) the fairness level of humans’ decision
process, in terms of the extent to which they are influ-
enced by the AI recommendations in their interactions
with AI?

Moreover, as an AI model is often depicted as being able
to uncover hidden patterns from data, the AI-assisted decision
making process may also present an opportunity for humans
to “learn” the data-driven insights from the AI model. Thus,
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we are prompted to investigate a second research question:

• RQ2: How do the bias level of an AI model and the
provision of AI explanations affect the fairness level of
humans’ independent decision outcomes, after they have
been assisted by the AI model?

To answer these questions, we conducted a randomized
human-subject experiment. Our experiment involved a real-
world business decision making scenario, i.e., bidding in a
rental housing market. We recruited participants on Ama-
zon Mechanical Turk (MTurk) and asked them to act as travel
agents to help clients bid on rental property listings provided
by hosts of different races, given the client’s budgets. We
created a total of 5 treatments in our experiment, including a
control treatment in which participants had no access to AI
models, and the other four treatments were arranged in a 2 by
2 factorial design varying on the bias level of the AI model
(low vs. high) and the provision of AI explanations (with
vs. without). Moreover, decision making tasks in our exper-
iments were divided into two phases—participants made de-
cisions with AI assistance in Phase 1 (when applicable), and
independent decisions without AI assistance in Phase 2.

Our experimental results demonstrate that when human de-
cision makers are assisted by AI models in their bidding,
the bias that the AI model exhibits across hosts of different
races can propagate to humans’ decisions, as humans’ de-
cision outcomes become less fair across racial groups when
the AI model’s bias level gets higher. Surprisingly, we also
find that the provisions of AI explanations, which is of-
ten believed to help people identify fairness issues of the
AI model, turns out to result in higher levels of unfair-
ness in humans’ decision outcomes. Moreover, both the
higher bias level of the AI model and the presence of AI
explanations are shown to result in more unfair human de-
cisions across racial groups by increasing the human decision
makers’ “disparate interactions” [Green and Chen, 2019a;
Green and Chen, 2019b] with the AI model (i.e., the extent
to which humans’ decisions are influenced by the AI model’s
recommendations is different across hosts of different races).
For example, when the AI bias level becomes higher, decision
makers are more strongly influenced by the AI recommenda-
tions to decrease their bid prices to Black hosts than to White
hosts. Finally, we find that the AI biases and explanations
have no impacts on the fairness of humans’ independent de-
cisions after they have been assisted by the AI model, which
implies that the impacts of AI models on human decision fair-
ness do not extend beyond the short-term usage of the model.
Together, these results highlight the needs for gaining deeper
understandings on the impacts of AI model properties and
presentations on various aspects of human decision making.

2 Related Work
Biases and fairness concerns throughout the AI model de-
velopment pipeline have been increasingly recognized by re-
searchers and practitioners alike. The machine learning com-
munity has responded by proposing many algorithmic fair-
ness definitions [Verma and Rubin, 2018; Mehrabi et al.,
2021] and developing many bias mitigation methods and
tools [Dwork et al., 2012; Bird et al., 2020; Hu et al., 2020;

Duan et al., 2020]. More recently, a growing number of
human-centered studies have been carried out to understand
people’s fairness perceptions of AI models [Saxena et al.,
2019; Wang et al., 2020; Gemalmaz and Yin, 2022]. For
example, Srivastava et al. [2019] matched individual per-
ceptions of fairness to mathematical definition of fairness,
and found that “demographic parity” aligns the best with hu-
mans’ ideas of fairness. Following many calls to present ex-
planations to decisions to promote informational justice, re-
searchers have also explored the effects of providing AI ex-
planations on people’s perceived algorithmic fairness. The re-
sults are mixed, however, as choices of explanation styles im-
pact fairness perception in different ways [Binns et al., 2018;
Dodge et al., 2019; Angerschmid et al., 2022].

On the other hand, despite AI models have been increas-
ingly used in supporting humans in their decision making,
research on how the fairness level of humans’ decisions is
affected by their usage of AI-based decision aids is lim-
ited. Indeed, most empirical research on AI-assisted deci-
sion making has been carried out to understand how humans
trust [Chiang and Yin, 2022; Zhang et al., 2020] and under-
stand the AI model [Wang and Yin, 2021; Poursabzi-Sangdeh
et al., 2021], and how their decision accuracy is affected by
their usage of the AI-based decision aids [Lai and Tan, 2019;
Bansal et al., 2021]. Only most recently, some efforts have
been spent on examining the fairness of AI-assisted deci-
sions. For example, it is found that interacting with an AI
model may have differing impacts on the fairness of humans’
decisions depending on the model configurations [Peng et
al., 2022] and the balanced degree of data representation
in the decision making tasks humans encounter [Peng et
al., 2019]. Also, humans show a degree of bias in their
interactions with the AI model [Green and Chen, 2019a;
Green and Chen, 2019b], thus they may be influenced by
AI recommendations to different extents on decision making
cases concerning different demographic groups. Our work
complements prior work by systematically examining how
the bias level and the provision of explanations of an AI
model affect human decision fairness, both during and after
humans’ interactions with the AI model.

3 Study Design
To understand how the bias level of AI models and the provi-
sion of AI explanations affect human decision fairness during
and after AI-assisted decision-making, we conducted a ran-
domized human-subject experiment on MTurk.

3.1 Experimental Setup
Tasks. In our experiment, participants were asked to com-
plete a set of bidding tasks. Specifically, each participant was
told to act as a “travel agent” to help their “clients” secure
rental places to stay for one night in New York City. In each
task, participants were presented with a profile of a rental
house listing with 21 features, including information on the
host (e.g., race, superhost status), the house (e.g., number of
beds), and reviews of the listing (e.g., overall rating and rat-
ing on sub-scales). Participants were also given the client’s
“budget” for this listing, which was the highest possible price
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the client could pay for it. With these information, partici-
pants could then submit a bid price on behalf of the client to
the host of the listing, which should not exceed the client’s
budget. Participants were told that the host also had an “ask-
ing price” in their mind, which was the lowest possible price
that they can accept to rent their place. As a result, if the par-
ticipant’s bid price was no less than the host’s asking price,
the transaction would succeed—the client would pay the bid
price to the host, and pay 50% of the difference between their
budget and the bid price to the participant as the reward to
them. However, if the participant’s bid price was lower than
the host’s asking price, the transaction would not happen and
the participant would earn zero reward1. Thus, to maximize
their rewards, in each task, participants should try to submit
a bid price that is as low as possible, while ensuring that it
is greater than the host’s asking price for the transaction to
happen—in other words, participants need to make accurate
predictions of the host’s asking price. To assist participants
in making these predictions, an AI model’s predictions and
explanations may be provided to participants in some experi-
mental treatments (see Section 3.2 for details).

Dataset. Rental house profiles that participants saw in the
experiment were taken from a dataset provided on the In-
side Airbnb website2—we downloaded a version of the NYC
Airbnb dataset that contained records about all 38,277 Airbnb
listings in New York City scraped in December 2021, and
we restricted our attention to short-term rental listings whose
minimum nights to stay were fewer than 7 days. For each
listing, in addition to information on the host, house, and re-
views, we also had its daily price that was given by the host
of the listing; this was used as the ground truth for the host’s
asking price in our experiment. To determine each host’s
race, following [Zhang et al., 2021], we first used Deepface
[Serengil and Ozpinar, 2021], a lightweight facial recogni-
tion and attribute analysis framework, to categorize the host’s
race based on their profile photo, and then recruited a group
of in-house annotators to manually verify the correctness of
the White/Black race labels given by Deepface. This proce-
dure yielded a cleaned dataset of 3,884 Airbnb listings whose
hosts were verified as either White or Black3.

Within the cleaned dataset, we found a clear price gap be-
tween listings provided by Black and White hosts in NYC
(top two rows in Table 1, Mann-Whitney U test: p < 0.001).
To control for potential confounding influences on the list-
ing’s price caused by factors other than the race of the host,
we conducted coarsened exact matching (CEM) [Iacus et al.,
2012] to group together listings with similar characteristics
but different host race. We considered the number of guests
the listing can accommodate, number of bedrooms, whether

1To induce realism in tasks, we used incentive structures that
align with actual bid agent behaviors by adapting the widely used
incentive-aligned contingent valuation method [Becker et al., 1964]
to the travel agent scenario.

2http://insideairbnb.com/get-the-data.
3Note that participants in our experiment did not see the host’s

actual profile photo in a task. Instead, based on the host’s race and
gender, a photo was randomly selected from the public Chicago Face
Database [Ma et al., 2015] and presented to participants.

Host’s Race # of Listings Avg. Price
All Black 876 $136.5

White 3,008 $196.8

Matched Black 580 $134.6
White 1,273 $161.8

Table 1: Price gap between listings provided by Black and White
hosts in the entire cleaned dataset and the matched subset.

the listing is a private room or an entire unit, whether the
host is a superhost, number of reviews, review scores, and
the neighborhood4, as covariates to be used in creating the
subclasses, and we coarsened all numeric covariates into two
bins. This yielded a subset of 1,853 matched listings belong-
ing to 231 subclasses. As shown in Table 1 (bottom rows),
the price gap between listings provided by Black and White
hosts is still significant after matching (p < 0.001).

3.2 Experimental Treatments
We adopted a between-subject design by randomly assigning
participants into one of the 5 treatments—a control treatment
in which participants had no access to AI models in all bid-
ding tasks, and another four experimental treatments arranged
in a 2×2 factorial design. In the later 4 treatments, partic-
ipants were assisted by an AI model in predicting the host’s
asking price in the first phase of bidding tasks (see Section 3.3
for details). The AI model used in different treatments dif-
fered on the level of racial bias it exhibited when predicting
prices for listings provided by White/Black hosts (low-bias
vs. high-bias), and the provision of explanations for why the
AI model made certain predictions (with vs. without).

Bias level of AI models. We randomly selected 50% of data
samples in the cleaned dataset, both within and outside of the
matched subset as the held-out test data, while the rest 50% of
the data was used as the training dataset for the AI model. We
followed the fair regression algorithm proposed in [Agarwal
et al., 2019] to train AI models with different levels of bias.

Specifically, given training examples in the form of
(X,A, Y ) triples, where X is a feature vector, A ∈ A is a
protected attribute (e.g., host’s race), and Y ∈ Y = [0, 1] is
the label, the fair regression algorithm attempts to train a pre-
dictor f that satisfies demographic parity such that f(X) is
independent of A. Since f(X) ∈ [0, 1], achieving the (ap-
proximate) demographic parity is equivalent to ensure that
on the cumulative distribution function of f(X), |P[f(X) ≥
z|A = a]−P[f(X) ≥ z]| ≤ ϵ, ∀a ∈ A, z ∈ [0, 1]. Intuitively,
the smaller the slack parameter ϵ(0 ≤ ϵ ≤ 1), the less biased
the predictor is across subgroups with different protected at-
tribute values. Thus, based on our training dataset, we trained
two linear regression models by setting the slack parameter
value as ϵh = 1 and ϵl = 0.005, separately. These two mod-
els were then used as the AI models in the experiment for
the high-bias and low-bias AI treatments, respectively (see

4Based on the geographical information of each listing, we ob-
tained the zip code of the area that the listing locates at and mapped
it to different neighborhoods [Des Jarlais et al., 2018].
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Figure 1: An example of the task interface (with AI explanation).

the supplemental materials for the evaluations of these two
models on the test dataset).

Provision of AI explanations. We further adopted the
SHAP algorithm [Lundberg and Lee, 2017], a model-agnostic
explanation method, to compute the contribution that each
feature in the listing profile made to the AI model’s prediction
on the host’s asking price for that listing. In each task across
all treatments with AI explanations, we color-coded each fea-
ture of the rental place listing based on its SHAP value to
help participants understand how different features influence
the AI model’s prediction—A feature was highlighted in a
red (or blue) background if based on the SHAP algorithm, its
value increased (or decreased) the AI model’s price predic-
tion; the darker the background color, the larger the influence
was (see Figure 1 for an example).

3.3 Experimental Procedure
We posted our experiment as a human intelligence task (HIT)
on MTurk. Upon arrival, participants were randomly as-
signed to one of the 5 treatments as described in Section 3.2.
They first completed a questionnaire on their background, in-
cluding their demographics, familiarity with Airbnb, techni-
cal literacy, and expertise in AI and machine learning. Then,
we presented participants with an interactive tutorial to ex-
plain the bidding task to them as well as walking through the
interface with them. To help participants get a sense of the
Airbnb rental housing market in NYC, in the tutorial, we also
presented the price distribution and summary statistics for a
one-night Airbnb stay in NYC based on our training dataset.
Upon completion of the tutorial, participants were asked to
answer a few qualification questions to show they understood
all the information presented. They could not proceed to the
next part of the experiment unless they answered all qualifi-
cation questions correctly.

After passing the qualification, participants started to work
on a sequence of bidding tasks divided into two phases, each
consisting of 10 tasks. Phase 1 was designed to evaluate the
fairness of human decisions when they are assisted by an AI
model. Thus, prior to the commencement of Phase 1, all par-

ticipants, except for those in the control group, were explicitly
informed that they were provided with a free trial of an AI-
powered predictive tool to help them predict the host’s asking
price for each rental place listing. Then, in each task, we
presented to participants the profile of the listing, along with
the client’s budget, which was set to $200 for one-bed listing
or $250 for listings with more than one bed. Depending on
the treatment a participant was assigned to, the AI model’s
prediction on the host’s asking price with or without its ex-
planations might also be provided. Participants then needed
to submit their bid prices, although feedback on whether the
transaction succeeded and how much reward they earned was
not revealed to them until the end of the experiment.

Note that the task instances we presented to participants
in Phase 1 were carefully selected from our test dataset. In
particular, the 10 tasks in Phase 1 were consisted of 8 “reg-
ular” instances and a pair of “counterfactual” instances (pre-
sentation order was randomized). We conjectured that par-
ticipants’ bid price for a listing can be largely affected by
the host’s race (Black vs. White), the number of beds (1 vs.
1+), and whether the host is a superhost. We selected 8 regu-
lar instances to be balanced on these three features (i.e., one
instance from each feature combination). Additionally, in
accordance with the correspondence study design [Bertrand
and Duflo, 2017], the pair of counterfactual instances was se-
lected from the matched subset in the test dataset, so they
were very similar to each other except for the host’s race.
In the bidding task sequences, we intentionally presented the
two counterfactual tasks to participants one after another—
after participants finished bidding on the first instance in the
pair, we told them that the previous listing turned out to be not
available, but there was a very similar listing nearby, except
that it was owned by a host of a different race (the presen-
tation order of race within the counterfactual instances was
randomized). Then, in the next task, we showed participants
the second instance in the pair and asked them to bid on it, and
we included their bid price and if applicable, the AI model’s
prediction, on the previous instance on the interface for their
reference. Importantly, for the 10 task instances of Phase 1,
we manually verified that the explanations of the high-bias
AI model consistently suggested a host’s race being Black re-
sulted in a relatively large decrease in the AI model’s price
prediction, while the explanations of the low-bias AI model
indicated very little impact from the host’s race.

Phase 2 was very similar to Phase 1, except for that it
was designed to evaluate the fairness of human decisions af-
ter they have had the experience of being assisted by an AI
model in their decision making. Prior to the commencement
of Phase 2, we told participants who had access to an AI
model in Phase 1 that the free trial of the AI-powered pre-
dictive tool was ended. As a result, participants of all treat-
ments predicted the host’s asking price in Phase 2 tasks on
their own. We still included 8 balanced regular instances and
a pair of counterfactual instances in Phase 2, although they
were randomly sampled from a larger pool of task instances
(i.e., 40 regular instances—5 for each feature combination,
plus 5 pairs of counterfactual instances).

We included three attention check questions at different
places throughout the experiment, in which participants were
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instructed to select a pre-specified option. These attention
check questions later helped us to exclude inattentive partic-
ipants. Our experiment was only open to U.S. workers who
had completed at least 1,000 HITs before and had an approval
rate of at least 95%, and each worker could participate only
once. The base payment of the experiment was $2.00. To
incentivize participants to carefully deliberate on how to bid
in each task, at the end of our experiment, we revealed to
participants the outcome of their bids and the total rewards
they earned as travel agents, and we converted the rewards to
actual bonus payments using a conversion ratio of 200:1.

4 Data and Methods
We collected response data from 678 participants in total. The
median time a participant spent on our HIT was 15.8 minutes,
leading to a median hourly wage of $12.5. We considered a
participant as inattentive if they failed on any attention check
question, or their bid prices were less than $20 on any of the
20 task instances5. After excluding inattentive participants,
we retained valid data from 459 participants (see supplemen-
tal materials for participant demographics), which we utilized
to perform our analyses and address our research questions.

4.1 Measurements
Based on the experimental data we collected, we defined a
few metrics to quantify the fairness of humans’ decisions, in
terms of both the decision outcome and the decision process.

Demographic disparity. We used demographic disparity
to evaluate the fairness level of humans’ decision outcomes.
Specifically, the demographic disparity of a participant k’s
decisions on a set of N tasks can be defined as DDk =∑

Racei=black b̂
k
i /Nblack −

∑
Racei=white b̂

k
i /Nwhite, where

b̂ki is the normalized bid price participant k made on listing
i (i.e., their original bid price bki divided by the client’s bud-
get on that listing), while Nblack (or Nwhite) is the number
of listings in the N tasks for which the host’s race is Black
(or White). When a participant was not biased towards ei-
ther Black or White hosts in deciding their bid prices, the
value of DDk would be close to zero. On the other hand,
DDk < 0 (or DDk > 0) suggests that participant k tended
to offer lower (or higher) bid prices on listings provided by
Black hosts than on listings provided by White hosts.

AI influence disparity. Next, to gain more insights into
why humans’ decision outcomes across racial groups were
fair or unfair during their usage of the AI model, we further
measured the fairness level of humans’ decision processes.
In particular, we focused on evaluating how fairly partici-
pants interacted with the AI model in Phase 1 across listings
provided by hosts of different races. Following prior work
[Green and Chen, 2019b], we quantified the extent to which
the AI model influenced participants’ decisions by comparing
the bid prices made by participants who were given the AI

5We chose $20 as the threshold to determine outlier bids since
bid prices less than $20 consisted of the lowest 5% of all bid prices
we obtained. We didn’t consider a highest 5% outlier threshold since
participants’ bid prices were bounded by the client’s budgets.

model’s predictions with the bid prices made by those who
were not given the AI model’s prediction on the same task
instances. That is, we defined Iki as the “AI influence” on

participant k for listing i, and Iki =
bki −ci
ai−ci

, where bki is par-
ticipant k’s bid price on listing i after seeing the AI model’s
prediction ai on the host’s asking price, while ci is the average
bid price on listing i made by participants in the control treat-
ment. This metric was similar to the “weight of advice” met-
ric widely used in the advice-taking literature [Yaniv, 2004],
and it measured how much participant altered their decisions
when presented with the AI’s advice—Iki = 0.5 means that
participant k equally weighed their independent bid price and
the AI’s advice to make their final bid on listing i, while
Iki < 0.5 (or Iki > 0.5) suggests participant k’s final bid
price on listing i was closer to their independent bid price (or
the AI’s advice).

Given the quantification of AI influence, we then used AI
influence disparity to measure whether participants were in-
fluenced by the AI model to a similar degree between list-
ings provided by Black/White hosts. In particular, we first
separated the task instances in Phase 1 into two sets based
on whether the AI model’s predicted host’s asking price ai
was greater or smaller than ci. Within the set of tasks where
ai > ci (i.e., the AI model attempted to pull participants to-
wards higher bids), the AI influence disparity for participant
k can be defined as AIDAI>control

k = mean{Iki |∀i,Racei =

black, ai > ci} − mean{Iki |∀i,Racei = white, ai > ci}.
Thus, when AIDAI>control

k < 0 (or AIDAI>control
k > 0), it

means that participant k was less (or more) strongly influ-
enced by the AI model to increase their bid prices on listings
provided by Black hosts than on listings provided by White
hosts. Similarly, within the set of tasks where ai < ci (i.e., the
AI model attempted to pull participants towards lower bids),
the AI influence disparity for participant k can be defined as
AIDAI<control

k = mean{Iki |∀i,Racei = black, ai < ci} −
mean{Iki |∀i,Racei = white, ai < ci}. An AIDAI<control

k
value that is below (or above) zero implies that participant
k was less (or more) strongly influenced by the AI model to
decrease their bid prices to Black hosts than to White hosts.

4.2 Statistical Methods
We first performed normality tests to all of the measure-
ments and found that none of them were normally dis-
tributed. Thus, we conducted Aligned Rank Transform
(ART) ANOVA [Wobbrock et al., 2011], a non-parametric
approach to factorial ANOVA, to analyze the data. We start
by comparing the fairness level of humans’ decision out-
comes (i.e., the demographic disparity) across different treat-
ments. As discussed earlier, our experiment had a 2×2 + 1
(control) design. Following recommendations on analyzing
experimental data when the control treatment does not fit into
the factorial design [Himmelfarb, 1975], we first conducted
one-way ART ANOVA to examine if any significant differ-
ences in demographic disparity exist across all treatments.
Then, we conducted two-way ART ANOVA on the data ob-
tained from all but the control treatment to understand how
the bias level of the AI model and the existence of AI explana-
tions affect demographic disparity. These analyses were con-
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(a) Demographic Disparity, Phase 1 (counterfactual tasks) (b) Demographic Disparity, Phase 1 (all tasks)

Figure 2: Violin plots with boxplots for demographic disparity comparisons in Phase 1. Orange lines represent the median values. Red dotted
lines represent the demographic disparity values computed for the AI model used in the corresponding treatments.

ducted for Phases 1 and 2 separately, each time both within
the pair of counterfactual instances only and on all task in-
stances in the phase. We then compared the fairness level of
humans’ interactions with the AI model (i.e., the AI influence
disparity) using two-way ART ANOVA tests on the data ob-
tained from all but the control treatment. This analysis was
conducted only for Phase 1 (since participants only had ac-
cess to the AI model in Phase 1), and within subsets of tasks
where the AI model’s price prediction was higher or lower
than the baseline bid price separately.

5 Results
5.1 Effects on Outcome Fairness in Phase 1
We start by examining RQ1a, how the AI biases and explana-
tions affect the fairness in humans’ decision outcomes during
their usage of the AI model, i.e., in Phase 1. We first com-
pare the demographic disparity in participants’ bid prices on
Phase 1 counterfactual instances—a pair of listings with very
similar characteristics but are provided by Black/White hosts
respectively—and we visualize the differences across treat-
ments using violin plots with boxplots in Figure 2(a). Visu-
ally, it is clear that in our tasks, the bids that participants who
had no access to AI models (i.e., in the control treatment)
or received assistance from a low-bias AI model made were
relatively unbiased, while participants assisted by a high-bias
AI model tended to bid lower to Black hosts than to White
hosts and thus had more negative demographic disparity val-
ues6. Results of the one-way ART ANOVA suggest a signifi-
cant difference in demographic disparity across all treatments
(p < 0.001). A post-hoc pairwise comparison with Bonfer-
roni adjustment indicates the significant differences are be-
tween the control treatment and the two high-bias AI treat-
ments (vs. high-bias w/o explanation: p = 0.006; vs. high-
bias w/ explanation: p < 0.001), and between the high-bias

6Note that when comparing the demographic disparity of par-
ticipants’ bidding decisions to that of the AI model’s predictions
(shown as the red dotted lines in Figure 2), we find that participants’
bid prices tended to be less biased towards the Black hosts com-
pared to the AI model. This is consistent with findings in Fogliato et
al. [2022] and implies that humans have some ability in correcting
the AI model’s bias in their AI-assisted decisions.

AI w/ explanation treatment and the two low-bias AI treat-
ments (vs. low-bias w/o explanation: p < 0.001; vs. low-bias
w/ explanation: p = 0.011). Figure 2(b) shows similar results
on the comparisons of demographic disparity across all tasks
in Phase 1. Again, the one-way ART ANOVA suggests a sig-
nificant difference across treatments (p < 0.001), with the
pairwise comparisons suggesting the differences between the
control and the two high-bias AI treatments, and between the
two high-bias AI and the two low-bias AI treatments are all
significant at the level of p < 0.001.

When examining how the AI bias level and AI explana-
tions affect the demographic disparity of participants’ bids
to Black/White hosts, our two-way ART ANOVA results
on both the counterfactual instances and all task instances
show that the higher level of bias in the AI model’s predic-
tions results in higher demographic disparity (counterfactu-
als: low-bias Mdn.= −0.008 vs. high-bias Mdn.= −0.032,
p < 0.001; all: low-bias Mdn.= −0.004 vs. high-bias
Mdn.= −0.082, p < 0.001). Surprisingly, we also detect a
significant main effect of the AI explanation on demographic
disparity (counterfactuals: w/o explanation Mdn.= 0 vs. w/
explanation Mdn.= −0.036, p = 0.032; all: w/o expla-
nation Mdn.= −0.011 vs. w/ explanation Mdn.= −0.023,
p = 0.025). This means that the provision of AI explanations
actually made participants even more biased against Black
hosts when making the bidding decisions, potentially as they
made participants “justify” the bias of the AI model as captur-
ing hidden patterns in the data more than raising participants’
awareness of the AI model’s biased predictions.

5.2 Effects on Interaction Fairness in Phase 1
We then move on to answer RQ1b, whether the AI biases and
explanations affect the fairness in humans’ interactions with
the AI model in Phase 1. Figure 3(a) compares the AI influ-
ence disparity AIDAI>control

k across the four treatments with
AI models, within the subset of tasks where the AI model’s
predicted price is higher than the average bid price made
by participants in the control treatment (i.e., ai > ci). A
two-way ART ANOVA test suggests a significant main effect
of the AI bias level (low-bias Mdn.= 0.166 vs. high-bias
Mdn.= 0, p = 0.035). This suggests that when the AI bias
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(a) AI Influence Disparity, AI > Control (b) AI Influence Disparity, AI < Control

Figure 3: Violin plots with boxplots for AI influence disparity comparisons in Phase 1. Orange lines represent the median values.

level is low, participants are more strongly influenced by the
AI model to increase their bid prices to Black hosts than to
White hosts, but this is no longer the case when the AI model
becomes more biased against Black hosts in general.

Interestingly, the inverse pattern is found for tasks where
the AI model’s predicted price is lower than the average bid
price made by participants in the control treatment (i.e., ai <
ci, see Figure 3(b)). Here, a significant main effect of AI
bias (low-bias Mdn.= −0.004 vs. high-bias Mdn.= 0.092,
p < 0.001) and a marginally significant main effect of AI
explanation (w/o explanation Mdn. = 0 vs. w/ explanation
Mdn. = 0.045, p = 0.061) are found from the two-way ART
ANOVA test on AIDAI<control

k . This means that when the AI
bias level increases, especially when provided with the AI
explanations, participants are more strongly influenced by the
AI model to decrease their bid prices when making bids to
Black hosts than when making bids to White hosts.

Together, these results provide evidence that higher level
of AI bias and the provision of AI explanations may result in
participants’ unfair bid decisions across racial groups partly
because they lead participants to engage in “disparate inter-
actions” with the AI model, i.e., participants respond to the
AI model’s predictions in a biased way that disproportion-
ately result in lower bids to Black hosts than to White hosts.

5.3 Effects in Phase 2
Finally, we examine whether AI biases and explanations af-
fect the fairness of humans’ decisions, after they have had
the experience of being assisted by the AI model and re-
turn to make independent decisions (RQ2). We again use
ART ANOVA to compare the demographic disparity of par-
ticipants’ bid prices on both the counterfactual instances and
all task instances in Phase 2. This time, we do not detect any
significant difference across all five treatments (see supple-
mental materials for figures). This means that in our experi-
ment, the AI model’s impacts on human decision fairness are
only limited to the duration of their interaction with the AI
model. Humans do not seem to apply their observed patterns
in AI decision making to their own decision making.

We provide two possible explanations on this null effect.
Firstly, we did not provide participants with immediate per-
formance feedback, potentially making participants unsure

about the “quality” of the hidden patterns uncovered by the
AI model. Secondly, participants only completed 10 tasks in
Phase 1 of our experiment, and this limited exposure to the
AI model may not be sufficient for learning to occur.

6 Conclusions and Discussions
In this paper, we ask the question of how AI biases and ex-
planations impact human decision fairness during and after
the usage of AI-based decision aids. Via an experimental
study on a real-world business decision making setting, we
find that both higher level of AI bias and the presence of AI
explanation can result in more unfair AI-assisted human de-
cisions across racial groups, partly as humans are influenced
by the AI recommendations across racial groups in a biased
way. However, the fairness level of humans’ independent de-
cisions after their usage of the AI model is not impacted by
their previous interactions with AI.

Our results highlight the importance of thoroughly exam-
ining the fairness properties of AI-based decision aids, and
perhaps explicitly mitigating their bias level, before provid-
ing them to human users to promote human decision fairness.
More research should also be conducted to understand how
AI explanations can be better designed to more effectively ex-
pose the internal biases of AI models , and support humans to
interact with the AI models fairly and make fairer decisions.

There are a few limitations in our current study. For ex-
ample, since our study is conducted in a specific decision
making context (i.e., bidding in rental housing markets) with
relatively low stakes and humans are relatively unbiased in
their independent judgements, we caution readers to not over-
generalize the results to other significantly different contexts.
Also, we had a limited number of Black participants in our
study. We recommend future studies to target marginalized
subgroups for further investigation by aiming for a balanced
sample of White and Black participants. Our results from a
short online experiment may not generalize to scenarios in-
volving persistent and prolonged biased AI exposure in the
field. We hope this work can inspire more future studies to
systematically examine how human decision makers’ own bi-
ases, AI models’ biases and presentations, and the biased in-
teractions between humans and AI, together, impact decision
fairness in the real-world AI-assisted decision making.
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