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Abstract
With the rapid development of decision aids that
are driven by AI models, the practice of AI-assisted
decision making has become increasingly prevalent.
To improve the human-AI team performance in deci-
sion making, earlier studies mostly focus on enhanc-
ing humans’ capability in better utilizing a given
AI-driven decision aid. In this paper, we tackle this
challenge through a complementary approach—we
aim to train “behavior-aware AI” by adjusting the
AI model underlying the decision aid to account for
humans’ behavior in adopting AI advice. In partic-
ular, as humans are observed to accept AI advice
more when their confidence in their own judgement
is low, we propose to train AI models with a human-
confidence-based instance weighting strategy, in-
stead of solving the standard empirical risk min-
imization problem. Under an assumed, threshold-
based model characterizing when humans will adopt
the AI advice, we first derive the optimal instance
weighting strategy for training AI models. We then
validate the efficacy and robustness of our proposed
method in improving the human-AI joint decision
making performance through systematic experimen-
tation on synthetic datasets. Finally, via random-
ized experiments with real human subjects along
with their actual behavior in adopting the AI advice,
we demonstrate that our method can significantly
improve the decision making performance of the
human-AI team in practice.

1 Introduction
Artificial Intelligence (AI) technologies have been widely used
to support decision making in many domains, leading to the
paradigm of “AI-assisted decision making” where AI provides
decision recommendations while humans integrate the AI ad-
vice with their own knowledge to arrive at the final decisions.
However, the potential of such human-AI collaboration often
falls short in practice, and “human-AI complementarity”—that
is, the human-AI team outperforms either human or AI alone
in decision making—is rarely achieved. This necessitates the
exploration of novel approaches to improve the human-AI
team performance in AI-assisted decision making.

Prior efforts have primarily focused on improving the
human-AI collaborative decision making performance by
“augmenting” humans, with particular emphasis on promot-
ing humans’ appropriate reliance on AI [Bansal et al., 2021b;
Buçinca et al., 2021]. In these endeavors, the AI model un-
derlying the decision aid is often assumed to be given and is
designed to maximize its independent accuracy. This indicates
a largely under-explored direction for improving AI-assisted
decision making—can we quantitatively characterize how hu-
man decision makers would factor AI recommendations into
their decisions, and utilize this to directly design AI models
that optimize for the human-AI team accuracy in joint deci-
sion making? In other words, can we develop AI models that
are aware of human behavior and complement humans by de-
sign? Compared to existing methods focusing on augmenting
humans, designing behavior-aware AI can potentially be a
more powerful and scalable approach to improve the human-
AI team performance in AI-assisted decision making, as AI
models are often more “tunable” than their human teammates.

In this paper, we take a first step towards designing behavior-
aware AI for AI-assisted decision making, building upon re-
cent empirical observations of the real-world human behavior
in these scenarios. It is found that human decision makers’
confidence in their own judgment (i.e., their “self-confidence”)
on a decision making case significantly influences their likeli-
hood of adopting the AI’s recommendation, with lower self-
confidence associated with higher chance of adopting AI rec-
ommendation [Chong et al., 2022]. We thus create a threshold-
based team decision making model to characterize such human
behavior, and propose to train the AI models to account for
this behavior by following a human-confidence-based instance
weighting method rather than solving the standard empirical
risk minimization problem. This method effectively shifts the
AI model’s attention to those cases where decision makers
have low self-confidence and have higher “needs” for accurate
AI recommendations.

To validate the effectiveness of the proposed approach,
we conduct comprehensive experiments that encompass both
simulation-based evaluations and real-world human-subject
studies. Our real-world human-subject experiment results
show that when human decision makers are assisted by the AI
model trained using our proposed method, the human-AI team
accuracy in decision making is increased significantly com-
pared to when they are assisted by a standard AI model that
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is trained to maximize its independent accuracy; this perfor-
mance increase primarily comes from task instances on which
humans are less confident about their own judgments. More-
over, our simulation results suggest that the human-AI team
performance gain brought up by the human-confidence-aware
AI is the largest over the standard AI when the expertise of
human decision makers exhibits significant overlaps with the
standard AI model, and is the largest over the human-accuracy-
aware AI when humans’ confidence is highly uncalibrated.

2 Related Work
As AI-driven decision aids are increasingly used to support
decision making, research on how to improve human-AI col-
laboration in AI-assisted decision making has surged recently.
A key objective of this research is to explore novel approaches
to improve the human-AI team accuracy in joint decision mak-
ing. To this end, researchers have been mostly focusing on
helping humans better utilize the given AI, including assisting
them to form better mental models of AI [Bansal et al., 2019;
Mozannar et al., 2022], providing additional model infor-
mation to enable calibrated trust in AI [Zhang et al., 2020;
Yang et al., 2020], and forcing them to engage with AI’s advice
cognitively [Buçinca et al., 2021].

In contrast, very limited studies take the approach of re-
designing the AI models to account for humans’ behavior
in adopting AI recommendations and directly optimizing for
the human-AI team accuracy in AI-assisted decision making.
A notable exception is Bansal et al. [2021a], although the
study assumes humans to be rational and uniformly accurate
across all decision cases. In the real world, however, humans
often exhibit irrational behavior. Indeed, empirical studies
have shown that humans’ adoption of AI recommendations is
often influenced by their cognitive biases [Lu and Yin, 2021;
Rastogi et al., 2022; Bertrand et al., 2022]. Thus, optimizing
human-AI team decision making in practice requires us to
model the empirically-grounded, realistic human behavior in
AI-assisted decision making [Li et al., 2023; Li et al., 2024],
and incorporate such behavior into the development of AI
models. In this study, we focus on designing behavior-aware
AI to account for one particular aspect of the real-world human
behavior in adopting AI recommendation: humans’ confidence
in their own judgment is indicative of their inclination to accept
AI recommendation [Chong et al., 2022; Wang et al., 2022].

The idea of taking humans’ real-world behavior into account
in designing AI has been explored in other human-AI collab-
oration settings. For example, there is a line of literature on
learning to defer that highlights the division of labor between
humans and AI [Madras et al., 2018; Wilder et al., 2020;
Bondi et al., 2022; Dvijotham et al., 2023]. In these stud-
ies, the AI model is designed to decide whether to make the
decision itself or ask for a human to make the decision, tak-
ing humans’ and AI’s capabilities into account. In human-
robot co-planning settings, where human and AI agents
each make a sequence of decisions while coordinating with
each other to complete a joint goal, researchers have demon-
strated the advantage of training the AI agent using a hu-
man model rather than through self-play [Carroll et al., 2019;
Kwon et al., 2020]. Our work differs from these prior studies

as we focus on training behavior-aware AI in the AI-assisted
decision making setting, where AI only provides recommen-
dations and humans are always the final decision maker.

3 Problem Setup
In an AI-assisted decision making setting, given a decision
making case characterized by features x ∈ X , an AI model
first provides a decision recommendation ym = m(x; θm) to a
human decision maker (DM)—who has their own independent
judgment yh = h(x; θh) on this case—and then the human
DM needs to make the final team decision d ∈ Y . Unlike
some other human-AI collaboration paradigms, humans al-
ways retain the role of final decision maker here, which is
ubiquitous especially in contexts involving high-stake deci-
sions. Without loss of generality, we focus on multiclass
classification tasks in this study (i.e., Y = {1, 2, . . . ,K}).

The AI model is typically learned from a training
dataset which comprises N data instances, i.e., D =
{I1, I2, . . . , IN} where Ii = (xi, yi). A common practice
adopted to train the AI model is to learn the model parameters
θm to minimize the empirical risks over D:

θm = argminθ′
m

∑
(xi,yi)∈D

ℓ (m(xi; θ
′
m), yi) (1)

where ℓ(·) is a loss function of interest (e.g., 0-1 loss). How-
ever, this training process effectively optimizes for the AI
model’s independent performance rather than the performance
of the human-AI team. In other words, this optimization pro-
cess neglects the human DM’s contribution to the decision
making process. Assuming that the human DM’s final team
decision d = f(x, ym = m(x; θm), yh = h(x; θh)), i.e., d
is influenced by the decision making case x, the AI model’s
decision recommendation ym, and the human DM’s own inde-
pendent judgment yh, training an AI model that optimizes for
the human-AI team performance requires us to solve a new
empirical risk minimization problem focusing on team loss:

argminθ′
m

∑
(xi,yi)∈D

ℓ (f(xi,m(xi; θ
′
m), h(xi; θh)), yi) (2)

It is therefore critical to understand the form of the human-
AI team decision making model f(·) to accurately reflect how
human DMs factor the AI model’s decision recommendations
into their final decisions. Interestingly, recent empirical studies
suggest that when assisted by an AI model in decision making,
human DMs are more inclined to accept the AI recommen-
dation when they have low “self-confidence”, that is, their
confidence in their own independent judgment is low [Chong
et al., 2022; Wang and Du, 2018; Schemmer et al., 2023;
Wang et al., 2022]. Thus, when a human confidence oracle C
that provides us with human self-confidence on each decision
making instance (i.e., C : H(X ) 7→ [0, 1]) is available, this
empirical insight can be reflected by a threshold-based team
decision making model:

f(xi,m(xi; θm), h(xi; θh)) =

{
h(xi; θh) if Ci > τ

m(xi; θm) otherwise
(3)
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where Ci := C(h(xi; θh)) is the human DM’s self-confidence
on instance i, and τ is the self-confidence threshold for the
human DM to adopt or ignore the AI recommendation. Since
humans will rely on the AI recommendation if their self-
confidence is below τ , a higher value of τ is associated with
a higher frequency for humans to rely on the AI recommen-
dation. Note that the human DM’s self-confidence does not
necessarily reflect the accuracy of their own judgment. In
fact, humans can often overestimate (e.g., “Dunning-Kruger
effect” [Dunning, 2011]) or underestimate (e.g., “impostor
syndrome” [Langford and Clance, 1993]) their abilities.

In this paper, as an initial step to better factor the human
DM’s behavior in AI-assisted decision making into the training
of the AI model, we explore how the AI model should be
trained to optimize for the human-AI team performance when
the team uses the threshold-based model (i.e., Equation 3) to
make the joint decisions.

4 Human-Confidence-Based Instance
Weighting

When humans use the threshold-based model to determine
their final decisions in AI-assisted decision making, they will
only adopt the AI recommendation when their self-confidence
is sufficiently low (i.e., below τ ). Intuitively, this implies that
an AI model needs to be as accurate as possible on those deci-
sion making instances where humans are less confident about
their own judgments and thus “need” the AI advice more. To
operationalize this idea, we propose to train a behavior-aware,
complementary AI model yc = mc(x; θc) that minimizes the
weighted empirical risks over the entire training dataset, where
the weight of each instance (wi) is a function of the human
DM’s self-confidence on it (Ci):

θc = argminθ′
c

∑
(xi,yi)∈D

wi · ℓ(mc(xi; θ
′
c), yi) (4)

Note that the standard AI model ym = m(x; θm) can be seen
as weighing all instances equally (i.e., wi = 1 ∀ Ii ∈ D). In
general, without additional information about the value of the
self-confidence threshold, we have the following proposition:
Proposition 1. If the human DM is less confident about Ii
than Ij , then Ii should be weighted at least as high as Ij , i.e.,
wi ≥ wj if Ci < Cj .

Proof. See supplemental materials (SM) for the proof.

Following this proposition, we may propose a few heuristic
methods for setting the weight for each training data instance,
e.g., wi = 1 − Ci or wi = 1

Ci
. Below, we discuss how to

derive the optimal weight of each training data instance in two
different scenarios with different kinds of information about
the self-confidence threshold τ .
Scenario 1: Optimization for Known Self-Confidence
Threshold. First, we consider the simplest scenario where
the human DM has a fixed self-confidence threshold τ to de-
termine their reliance on the AI recommendation, and its value
is known to the AI model developer. Let Dh := {Ii | Ci > τ}
and Dl := D \ Dh be the sets of instances where human

DM has high and low self-confidence, respectively. Using
the threshold-based team decision making model (Equation
3), the complementary AI should focus only, and equally, on
instances in the low confidence set Dl.
Proposition 2. When the human DM uses a fixed and known
self-confidence threshold τ to determine the human-AI team
decision, the team loss is minimized when wi = 1[Ci ≤ τ ].

Proof. See SM for the proof.

Scenario 2: Optimization for Expected Self-Confidence
Thresholds. In practice, humans’ self-confidence threshold
τ may not only be unknown to the AI model developer, but
may also vary across different DMs and across time. To reflect
this, we consider a scenario where the human DM draws τ
from a known distribution (i.e., τ ∼ fT (τ)) and then applies
the threshold-based model to determine their final decision. In
this case, the complementary AI model needs to be trained to
minimize the expected team loss over all possible τ .
Proposition 3. When the human DM draws a self-confidence
threshold from a known distribution to determine the human-
AI team decision, i.e., τ ∼ fT (τ), the expected team loss
is minimized when wi = 1 − FT (Ci), where FT (·) is the
cumulative distribution function (CDF) for τ .

Proof. Given the threshold-based team decision making
model, we decompose the expected team loss (E[Lteam]) as
follows (we use h(x) and mc(x) to refer to h(x; θh) and
mc(x; θc), respectively, for convenience and readability):∫ 1

τ=0

fT (τ) ·
1

|D|
∑

(xi,yi)∈D

ℓ(f(xi,mc(xi), h(xi)), yi) dτ

=
1

|D|
∑

(xi,yi)∈D

∫ 1

0

fT (τ) · ℓ(f(xi,mc(xi), h(xi)), yi) dτ

=
1

|D|
∑

(xi,yi)∈D

(∫ Ci

0

fT (τ) · ℓ(h(xi), yi) dτ

+

∫ 1

Ci

fT (τ) · ℓ(mc(xi), yi) dτ

)
=

1

|D|
∑

(xi,yi)∈D

FT (Ci) · ℓ(h(xi), yi)︸ ︷︷ ︸
uncontrollable human loss

+
1

|D|
∑

(xi,yi)∈D

(1− FT (Ci)) · ℓ(mc(xi), yi)

∝
∑

(xi,yi)∈D

(1− FT (Ci)) · ℓ(mc(xi), yi)

Thus, minimizing E[Lteam] is equivalent to minimizing∑
(xi,yi)∈D (1− FT (Ci)) · ℓ(mc(xi; θc), yi), which implies

wi = 1− FT (Ci).
Remark. Following Proposition 3, we can see that when the
human DM draws τ from a uniform distribution, i.e., τ ∼
U [0, 1], the heuristic method of setting the weight of each
training instance wi = 1− Ci is in fact the optimal.
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5 Simulation Study

In this section, we conduct simulations to examine whether,
and how, the joint decision making performance of human-AI
teams improves when assisted by an AI model trained follow-
ing our proposed human-confidence-based instance weighting
(CBIW) method instead of the standard approach. This sim-
ulation is conducted on a synthetically generated college ad-
mission decision making dataset. Evaluation on this synthetic
dataset is useful because it allows us to systematically control
characteristics of the human DM’s behavior, so that we can
examine the robustness of the proposed method in improving
the human-AI joint decision making performance.

5.1 Synthetic Dataset Generation

Generating the Ground Truth. We consider a decision
making task where DMs need to determine whether to admit
an applicant to college, given two features of the applicant—
their Grade Point Average (i.e., “GPA”) and standardized test
scores (i.e., “SCORE”). Inspired by Haider et al. [2022], we
assume that applicants belong to either the privileged group or
the underprivileged group, and admission outcomes for appli-
cants of different groups are primarily decided by distinct sets
of features. More specifically, we generate a set of 100, 000
(xGPA, xScore, y) instances, where the values of xGPA and
xScore are uniformly randomly sampled between 0 and 1 with-
out loss of generality. The applicant is further assigned to the
privileged group with probability r, and we use r = 0.75 in
this simulation study. Finally, we follow the two steps below
to generate the ground truth label y for each applicant: (1)
we first set y for each applicant to reflect that SCORE is more
predictive of the admission outcome for privileged applicants,
while GPA is more predictive for underprivileged applicants;
(2) to account for a degree of randomness in the admission
process, we then flip the label y currently set for each applicant
with a small probability, and this probability is either propor-
tional (when flipping from “reject” to “admit”) or inversely
proportional (when flipping from “admit” to “reject”) to the
value of xGPA + xScore. Details of the generation process of
the College Admission dataset can be found in SM.

Generating Human DMs’ Behavior. Beyond generating
the ground truth label for all instances in the synthetic dataset,
we also need to simulate how humans will make their deci-
sions on these instances. To reflect that humans have varying
levels of accuracy on different subsets of decision making
tasks, on a decision making instance that belongs to group
g (i.e., privileged or underprivileged), we randomly generate
a human DM’s independent judgment yh such that it is cor-
rect with a probability equal to their accuracy on this group
(i.e., accg). Further, the human DM’s confidence on this in-
stance is randomly sampled from a range between âccg −∆u

and âccg + ∆o to reflect the DM’s varying degree of confi-
dence calibration (âccg = accg is not guaranteed). Finally, the
DM’s self-confidence threshold τ on this instance is randomly
sampled from a distribution fT (τ), and we experiment with
different fT (τ) in our simulation.
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Figure 1: The human-AI team decision making accuracy (y-axis)
when human DMs’ self-confidence thresholds are drawn from dif-
ferent distributions (x-axis), and DMs collaborate with AI models
trained using different human-confidence-based instance weighting
strategies. Error shades represent the standard errors of the mean.
Black circles are used to highlight the largest y-values for every self-
confidence distribution on the x-axis.

5.2 Evaluating Varied Threshold Distributions
We first evaluate the effectiveness of the proposed CBIW-
training method in improving the human-AI team performance
when human DMs have different self-confidence threshold
distributions in determining the team decisions (i.e., fT (τ)).
Proposition 3 suggests that given a specific self-confidence
threshold distribution fT (τ), the optimal weighting function
to be used to train the complementary AI model is wi = 1−
FT (Ci). However, knowing or being able to reliably estimate
fT (τ) can be unrealistic in practice. Thus, as a secondary goal
of this evaluation, we aim to explore how critical using the
exact optimal weighting function is to obtaining human-AI
team performance gains through our CBIW-training method.
Evaluation Setup. We assume DMs’ independent judg-
ments are more accurate for applicants from the privileged
group. Thus, we set accpriv = 0.9 and accunpriv = 0.6.
We further set âccg = accg,∆u = ∆o = 0.1 (i.e., DMs’
confidence is well calibrated). We consider five types of
self-confidence threshold distributions fT (τ): (1) UNIFORM:
τ ∼ β(1, 1)1, reflecting that DMs’ self-confidence threshold
for relying on or ignoring the AI recommendation is uniformly
spread over the spectrum; (2) UNBALANCED: τ ∼ β(1, 2)1, re-
flecting that DMs’ self-confidence threshold leans towards the
lower end of the spectrum; (3) U-SHAPED: τ ∼ β(0.5, 0.5)1,
reflecting that DMs’ self-confidence threshold tends to be ei-
ther very low or very high; (4) INV-U: τ ∼ β(2, 2)1, reflecting
that DMs’ self-confidence threshold leans towards the middle
of the spectrum; (5) δ: an impulse at 0.75, reflecting that DMs’
self-confidence threshold is fixed.

1Distributions are rescaled to reflect that confidence on binary
classification task varies between 0.5 and 1, instead of 0 and 1.
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We randomly divide our synthetic dataset into the training
and test folds based on a 80 : 20 split. Given the training set,
we train random forest classifiers with maximum tree depth of
5 as our AI models. The baseline model is trained using the
standard loss (Equation 1), while the five other complementary
AI models are trained using the team loss following the CBIW
method (i.e., wi = 1− FT (Ci)), and each model corresponds
to one threshold distribution listed above. Then, given each of
the six AI models, we simulate the human-AI team decision
on each test instance following the threshold-based model
(Equation 3) and determine its accuracy by comparing the
team decision against the ground truth label. We repeat this
procedure for five times in total.

Evaluation Results. Figure 1 reports the comparison of the
average human-AI team decision making accuracy on the test
dataset, when human DMs are assisted by different AI models.
We make three important observations: (1) Compared to the
case when humans collaborate with the baseline AI model
(red markers in Figure 1), for each of the 5 types of fT (τ),
when training the AI model using the corresponding optimal
weighting function (markers with the same colors as the dis-
tribution names on the x-axis in Figure 1), we can see most
significant increase in the human-AI joint decision making per-
formance. (2) In most cases (except for when the true fT (τ) is
U-SHAPED), even if the instance weights are not optimal (i.e.,
computed based on incorrect assumptions about the threshold
distribution), a notable human-AI team performance gain can
still be found when humans collaborate with a complemen-
tary AI model rather than the baseline AI model. (3) The
heuristic weighting function wi = 1 − Ci (green markers in
Figure 1), which does not rely on knowledge of fT (τ), seems
to be a good default choice that can lead to reasonable team
performance gains in many cases. Based on these findings, we
use this heuristic weighting function for convenience in the
experiments below, unless stated otherwise2.

5.3 Evaluating Varied Expertise Overlap
Next, we systematically vary human DMs’ expertise overlap
with the baseline AI model to identify under what conditions
the proposed CBIW-training method may lead to the largest
gain in the human-AI joint decision making performance.

We create five sets of human DMs’ independent decision
data to simulate that human DMs have varying levels of exper-
tise overlap with the baseline AI (i.e., very high, high, medium,
low, very low). In our setting, the baseline AI is more accurate
on the privileged applicants as they are the majority group. Dif-
fering degrees of expertise overlap are achieved by adjusting
the comparison between accpriv and accunpriv (i.e., humans’
independent decision accuracy) from being consistent with
that of the baseline AI (accpriv > accunpriv , high overlap) to

2We also conduct another simulation in which fT (τ) = U [τavg−
0.05, τavg+0.05], τavg ∈ {0.55, 0.65, 0.75, 0.85, 0.95} to examine
how the average self-confidence threshold τavg influences the human-
AI team decision making accuracy gains when humans are assisted
by a CBIW-trained AI versus the standard AI. Our results suggest
that our proposed CBIW-training strategy is robust to the average
self-confidence threshold changes, often leading to substantial gains
over the standard training approach. See SM for details.
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Figure 2: Impacts of the expertise overlap between humans and
standard AI on human-AI team performance gains from the comple-
mentary AI (see differences between solid green and red lines).

being opposite to that of the baseline AI (accpriv < accunpriv ,
low overlap)3. We concurrently try to keep the overall accuracy
of humans’ independent decisions relatively stable. We again
set âccg = accg,∆u = ∆o = 0.1, and assume the human
self-confidence threshold is sampled from τ ∼ U [0.8, 0.9].

Figure 2 shows the evaluation results. While our proposed
method outperforms standard approach in both high and low
expertise overlap settings, we find that it leads to considerably
larger human-AI team performance gains when the baseline
AI model has high expertise overlap with humans (i.e., it is not
complementary already). This is because when the humans
have low expertise overlap with the baseline AI, the baseline
model due to being accurate yet dissimilar is “complementary”
by itself, and becomes largely similar to the AI model obtained
from using the proposed CBIW-training method.

5.4 Evaluating Varied Confidence Distributions
Finally, we examine how the human-AI team performance
gains brought up by the CBIW method vary with human
DM’s degree of confidence calibration. In this simulation,
we set accpriv = 0.9, accunpriv = 0.6, ∆u = ∆o = 0.2,
and τ ∼ U [0.8, 0.9]. To reflect that DMs may be under-
confident on instances where they are accurate, we assume
that âccpriv = accpriv = 0.9 with probability λ, while
âccpriv = 0.7 with probability 1 − λ. Similarly, to reflect
that DMs may be over-confident on instances where they are
inaccurate, we assume that âccunpriv = accunpriv = 0.6
with probability ω, while âccunpriv = 0.8 with probability
1 − ω. Intuitively, the smaller λ and ω are, the more uncal-
ibrated DMs’ confidence is. To further highlight the impor-
tance of incorporating human confidence rather than human
accuracy in developing behavior-aware AI for AI-assisted de-
cision making, in addition to training the complementary AI
model following the proposed CBIW method, we also train an-
other complementary AI model following an accuracy-based
instance weighting (ABIW) method by assuming perfect confi-
dence calibration (wi = 1− acci). Figure 3 shows our results,

3The Pearson correlation between humans’ and the baseline AI
model’s decisions decreases gradually from 0.52 to 0.31 as we go
from “very high” to “very low” expertise overlap dataset.
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Figure 3: Impacts of humans’ confidence calibration on human-AI
team performance gains from the complementary AI obtained using
the CBIW training method (see the solid green line).

suggesting: (1) DMs assisted by CBIW-trained AI consistently
outperform DMs assisted by the baseline AI (see solid green
and red lines), regardless of how uncalibrated their confidence
is; and (2) DMs assisted by CBIW-trained AI outperform
DMs assisted by ABIW-trained AI (see solid green and yellow
lines), especially when DMs’ confidence is uncalibrated.

6 Human Subject Experiments
To examine the effectiveness of our proposed method in im-
proving the human-AI team performance in real-world AI-
assisted decision making settings, we conduct a large-scale,
randomized experiment with real human subjects.
Experimental Task. In this experiment, subjects are re-
cruited to complete image classification tasks with the as-
sistance of an AI model. We curate a subset of the widely used
ImageNet dataset [Deng et al., 2009], consisting of classes and
instances that present varying levels of difficulty for humans.
Specifically, we select 10 classes, comprising five easily recog-
nizable objects (Church, Garbage Truck, Gas Pump, Golf Ball
and Parachute) and five challenging dog breeds (Australian
Terrier, Border Terrier, Dingo, Old English Sheepdog, and
Rhodesian Ridgeback). The resulting dataset, which we name
WoofNette, consists of a total of 9, 446 training images and
4, 054 test images, each of size 128 × 128 × 3. Images that
subjects are asked to classify in our experiment are randomly
sampled from a 300-image subset of the WoofNette test set.
AI Training. We utilize the ResNet-50 architecture to train
the AI models that we use in our experiment. The baseline
AI model is established by fine-tuning the ResNet-50 network
on the WoofNette training dataset to minimize the standard
cross-entropy loss. On the other hand, we train the complemen-
tary AI model by minimizing the human-confidence-based,
instance-weighted cross-entropy loss. For simplicity, we adopt
the heuristic weighting function wi = 1− Ci.

Training the complementary AI model requires the knowl-
edge of human DMs’ self-confidence Ci on different training
data instances (i.e., different images). To estimate Ci, we con-
ducted a pilot study on Amazon Mechanical Turk (MTurk), in

which subjects were asked to complete 18 image classification
tasks independently, without any AI assistance. The images
were randomly sampled from a 500-image subset from the
WoofNette training dataset. In total, 206 subjects attended
our pilot study, leading to 4644 image classifications, with
about 9 classifications on each image. Based on the pilot study
data, for each image, we used the inter-annotator agreement—
the proportion of subjects whose classification on this image
matches the majority classification—as a proxy for humans’
self-confidence on it (i.e., higher agreement indicates greater
confidence in humans’ independent judgments)4. To gener-
alize the human self-confidence estimation to other images
outside of the 500-image subset used, we further leveraged
the pre-trained ResNet-50 architecture to train an AI model
for predicting humans’ self-confidence on each image, i.e.,
Ĉi = g(xi). Thus, when training the complementary AI model,
the weight of each training instance is set as wi = 1−Ĉi based
on the predicted human self-confidence on the instance.

Note that training AI models to reach the optimal perfor-
mance leads to extremely high AI accuracy, which limits the
potential for achieving human-AI complementarity in joint
decision making. Thus, in our experiment, we train the AI
models for fewer epochs—we stop the training once the AI
model reaches a target accuracy of 65%, which is close to
humans’ independent accuracy that we observed in our pilot
study on this image classification task5. As a result, the test
accuracy of the baseline AI model and complementary AI
model we use in the experiment is 69% and 65%, respectively.

Experimental Treatments and Procedure. We include two
treatments in our experiment. In the control treatment, subjects
are assisted by the baseline AI model (i.e., the “standard AI”)
to complete the image classification tasks, while subjects in
the experimental treatment are assisted by the complementary
AI model in the image classification tasks.

We post our experiment on MTurk as a human intelligence
task (HIT) and recruit MTurk workers as our subjects. Upon
arrival, each subject is randomly assigned to one of the two
treatments. Subjects start the HIT by completing a tutorial,
which describes the image classification tasks that they need
to work on in the HIT. At the end of the tutorial, subjects
are asked to complete an example task, and they could only
proceed to the actual experiment after making correct classi-
fication in this example task. After completing the tutorial,
subjects start to work on a set of 18 image identification tasks
under the AI assistance, and the images used in these tasks are
randomly sampled from the WoofNette test dataset.

Our experiment was only open to US workers who have
completed more than 100 HITs on MTurk and with a 90+%
approval rate. Each subject could participate in the experiment
only once. We included two attention check questions in our

4High confidence here does not necessarily imply high accuracy;
it is possible that humans tend to agree with each other (hence high
confidence) on some tasks but they agree on a wrong decision.

5We conducted additional simulation experiments by varying the
target AI accuracy. We found that the human-AI team equipped with
complementary AI consistently outperformed the standard AI across
a range of target AI accuracy values, though the target AI accuracy
did affect the magnitude of the gains. See SM for additional details.
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AI Accuracy H-AI Team Accuracy

Data # Instances # Classifications Human Accuracy Standard Complementary Standard Complementary

Objects 150 1144 0.86 0.86 0.63∗∗∗ ↓ 0.82 0.86 ∗∗∗ ↑
Dogs 150 1196 0.46 0.61 0.71∗∗∗ ↑ 0.55 0.64∗∗∗ ↑
High Conf 150 1148 0.72 0.85 0.64∗∗∗ ↓ 0.81 0.85 ∗∗∗ ↑
Low Conf 150 1192 0.47 0.61 0.70∗∗∗ ↑ 0.57 0.65∗∗∗ ↑
Overall 300 2340 0.66 0.73 0.67∗∗∗ ↓ 0.68 0.75∗∗∗ ↑

Table 1: Comparing the decision accuracy of the human-AI team on different subsets of data when human subjects are assisted by the standard
or the complementary AI model. In the “AI Accuracy” and “H-AI Team Accuracy” columns, we compare the values corresponding to the
complementary AI model and the values corresponding to the standard AI model. We use ↑ (↓) to indicate that the value corresponding to the
complementary AI model is larger (smaller). Moreover, ∗, ∗∗ and ∗∗∗ indicate the difference is statistically significant, with p < 0.05, p < 0.01
and p < 0.001, respectively. Human Accuracy values are for reference only; they are collected from a separate pilot study in which subjects
complete classification tasks without AI assistance on a different subset of the WoofNette dataset than the one we used in our experiment. High
Conf and Low Conf refer to the two sets of task instances where the predicted human self-confidence was above or below the median value.

experiment, asking subjects to choose a randomly specified op-
tion in these questions. Only data from subjects who answered
both attention check questions correctly was considered as
valid. The base payment of the task was $1.2. In addition, we
provided a performance-based bonus to encourage subjects
to make decisions to the best of their abilities—if a subject’s
decision accuracy was higher than 70%, we provided them
with extra 5 cents for each correct decision that they made.

Experimental Results. After filtering the data from inatten-
tive subjects, we obtained valid data from 130 subjects. We
find that when subjects are assisted by the complementary AI
model, the resulting decision accuracy of the human-AI team
is 75%, which is higher than those subjects who are assisted
by the standard AI model and achieve an accuracy of 68%. A
t-test suggests that the accuracy difference between subjects
in the two treatments is statistically significant (p < 0.001).

We then take a closer look into our experimental data to
gain insights into why the use of the complementary AI model
leads to increased human-AI team accuracy in AI-assisted
decision making. First, based on how the WoofNette dataset
is prepared, we conjecture that the complementary AI model
may lead to increased decision accuracy of the human-AI
team because it better supports human DMs in classifying the
challenging dog breeds, on which DMs may have low self-
confidence. We thus compare the human-AI team’s decision
accuracy between the two treatments for the five classes of
easily recognizable objects and the five classes of dog breeds
separately, and results are reported in Table 1 (top two rows).
Indeed, we find that on dog classes, the complementary AI
model’s independent accuracy is significantly higher than that
of the standard AI model, which further results in a significant
increase in the human-AI team accuracy on them. Interest-
ingly, even on the easily recognizable object classes, while the
complementary AI model’s independent accuracy is signifi-
cantly lower than that of the standard AI model, human DMs
also achieve a slightly higher accuracy (although insignificant)
on these classes when they are assisted by the complementary
AI model rather than the standard AI model.

One explanation for this observation is that even within
easily recognizable object classes, human DMs may still find
some task instances to be challenging and have low confi-

dence in them, and our CBIW-training method allows the
complementary AI model to better support human DMs on
these instances. To test this explanation more directly, we split
all images used in our human-subject experiments into two
subsets based on the median value of the predicted human self-
confidence on the images. We then compare the human-AI
team’s decision accuracy between the two treatments for the
subset of images where human DMs have either high or low
self-confidence, and results are reported in Table 1 (rows 3–4).
As we expect, here, we find that the use of complementary
AI model primarily results in increases in the human-AI team
accuracy on those task instances where humans have low self-
confidence, although on task instances where humans have
high self-confidence, humans also seem to be able to avoid
being misled by the less accurate recommendations made by
the complementary AI model.

7 Conclusion
This paper contributes a novel behavior-aware AI design
paradigm to enhance the human-AI team decision making
performance in AI-assisted decision making. We address the
challenge of improving human-AI joint decision making by
designing AI-driven decision aids that take into account the
real-world human behavior when interacting with AI. Our ap-
proach focuses on adjusting the training of AI models based
on humans’ confidence in their own decisions. We first for-
mulate a threshold-based team decision making model that
characterizes humans’ willingness to adopt AI advice. We
then propose a human-confidence-based instance weighting
strategy for training complementary AI models. Extensive
experiments are conducted on both the synthetic College Ad-
mission and the real-world WoofNette datasets to evaluate
the effectiveness of the proposed behavior-aware AI training
approach. Results of our experiments demonstrate that our
proposed strategy can significantly improve the team perfor-
mance, and such improvement is robust across a wide range
of settings where human decision makers exhibit diverse be-
haviors. By considering the human factors and integrating
them into the AI model design, we offer insights into how AI
models can be tailored to human behavior to better support
and complement humans in their decision-making processes.
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