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A Datasets
A.1 College Admission
In this dataset, we mimic the college admission scenario,
where decision makers need to determine whether to admit
an applicant to college (i.e., Y = {+1,−1}, +1 represents
admitted while −1 represents rejected), given two features of
the applicant—their Grade Point Average (i.e., “GPA”) and
their standardized test scores (i.e., “SCORE”). We assume
that applicants may either belong to the privileged group or
underprivileged group; we will later use these two groups
to reflect that human decision makers may have different
levels of confidence on different subsets of decision making
instances. In addition, our synthetic dataset (i.e., a set of
decision making instances in the form of (xGPA, xScore, y)
tuple) is generated to reflect that SCORE is more predictive of
the admission outcome for privileged applicants, while GPA
is more predictive for underprivileged applicants. Privileged
applicants with access to better schools and preparation
material, and ability to retake the test multiple times are more
likely to have a representative SCORE—and their admission
decision could primarily be made based on that. On the other
hand, underprivileged applicants better demonstrate their
abilities via more school/context-specific GPA.

We start by generating a set of decision making task in-
stances. For each of the n instances (i.e., applicants), the
values of xGPA and xScore are uniformly randomly sampled
between 0 and 1 without loss of generality; for both GPA and
SCORE, we refer to a value that is above (below) a threshold
t as high (low). The applicant is further assigned to the privi-
leged group with probability r. Finally, we follow these steps
to determine the ground truth label y for each applicant:

1. If both xGPA and xScore are high, set y = +1 regardless
of the group identity of the applicant;

2. For a privileged applicant, if xScore is low, set y = −1;
and if xScore is high yet xGPA is low, set y = +1 with a
probability p that is proportional to the value of xScore +
xGPA, i.e., the higher the xScore + xGPA value is, the
more likely the applicant will be admitted1. This reflects

1We operationalize this by mapping the value of xScore + xGPA

to a p value in the interval between pmin (0.5 in our study) and pmax

(1 in our study).
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Figure A1: Visualization of decision making task instances from the
synthetic College Admission dataset.

that SCORE is more predictive of the admission outcome
for privileged applicants.

3. For an underprivileged applicant, if xGPA is low, set
y = −1; and if xGPA is high yet xScore is low, we again
set y = +1 with a probability p that is proportional to the
value of xScore + xGPA

1. This reflects that GPA is more
predictive of the admission outcome for underprivileged
applicants.

4. Lastly, to account for a degree of randomness in the ad-
mission process, we will flip the label y currently set for
the applicant with a small probability q. q is designed
in a way such that when the current label y = +1, ap-
plicants with higher values of xGPA + xScore will have
smaller q (thus less likely to be flipped to “rejected”),
while when y = −1, applicants with smaller values of
xGPA+xScore will have smaller q (thus less likely to be
flipped to “admitted”)2.

2We operationalize this by mapping the value of xScore + xGPA

to a q0 value in the interval between 0 and qmax (0.1 in our study).
Then, when y = +1, q = 0.1− q0, and when y = −1, q = q0.



In the data we use for our experiments, we set number
of instances n = 100, 000 to have sufficiently large data,
threshold t = 0.5 to refer an x value as high (low) if it is
above (below) the mid point of the range, and r = 0.75 to
have privileged applicants as the majority group. Sample
instances from this dataset are provided in Figure A1.

A.2 WoofNette
The WoofNette dataset comprises images of five easily rec-
ognizable objects (Church, Garbage Truck, Gas Pump, Golf
Ball and Parachute) and five challenging dog breeds (Aus-
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Figure A2: Sample images from the WoofNette dataset.

tralian Terrier, Border Terrier, Dingo, Old English Sheep-
dog, and Rhodesian Ridgeback) The selection was moti-
vated by two existing datasets, ImageWoof and ImageNette:
github.com/fastai/imagenette. We select a reduced number of
classes to avoid cognitive overload . It contains 9, 446 training
images and 4, 054 test images, each of size 128 × 128 × 3.
Samples from the training data are shared in Figure A2.

B Proofs for Propositions
We restate Propositions 1 and 2 from the main text, and provide
the deferred proofs here. Recall that Dh := {Ii | Ci > τ}
and Dl := D \ Dh are the sets of instances where the human
decision maker has high and low self-confidence respectively.
Proposition 1. If the human decision maker is less confident
about Ii than Ij , then Ii should be weighted at least as high
as Ij , i.e., wi ≥ wj if Ci < Cj .

Proof. We aim to maximize the AI model’s performance in
the low confidence region Dl, where humans will adopt its
recommendation, so the training data instances more likely
to be in Dl should be weighed higher. Thus to show that
wi ≥ wj if Ci < Cj , we can show that expectation of Ii
(instance i) being in Dl is higher than that of Ij .

wi ∝ E[Ii ∈ Dl]

=

∫ 1

0

fT (τ) · P[Ii ∈ Dl] dτ

=

∫ 1

0

fT (τ) · 1[Ci ≤ τ ] dτ

=

∫ 1

Ci

fT (τ) dτ

=1− FT (Ci)
Since cumulative distribution function is non-decreasing,
Ci < Cj =⇒ FT (Ci) ≤ FT (Cj) =⇒ wi ≥ wj .

Proposition 2. When the human decision maker uses a fixed
and known self-confidence threshold τ to determine the human-
AI team joint decision, the team loss is minimized when
wi = 1[Ci ≤ τ ].

Proof. According to Equation 3, the team loss can be decom-
posed as follows:

Lteam =
1

|D|
∑

(xi,yi)∈D

ℓ(f(xi,mc(xi; θc), h(xi; θh)), yi)

=
1

|D|
∑

(xi,yi)∈Dh

ℓ(h(xi; θh), yi)︸ ︷︷ ︸
human loss

+
1

|D|
∑

(xi,yi)∈Dl

ℓ(mc(xi; θc), yi)︸ ︷︷ ︸
AI loss

Since we can directly optimize AI only, the first term (i.e., the
“human loss”) is effectively a constant. This is equivalent to
assigning a weight of 0 to instances in Dh and 1 to instances
in Dl, or setting wi = 1[Ci ≤ τ ].

https://github.com/fastai/imagenette


C Additional Results (College Admission)
C.1 Evaluating Varied Self-Confidence Thresholds
We are interested in investigating the impact of average self-
confidence threshold on the human-AI team performance gains
using our complementary AI training strategy. The human self-
confidence threshold (τ ) reflects the dependency of humans on
AI, with a higher value indicating human DMs would adopt
AI recommendation more frequently.

Our default setting of τ ∼ U [0.8, 0.9] (i.e., τavg =
0.85) maps to a high self-confidence threshold on average,
which reflects the human DM will be receptive to AI rec-
ommendation unless they are fairly confident about their
own decision. We then change the sampling distribution
to U [0.5, 0.6], U [0.6, 0.7], U [0.7, 0.8] and U [0.9, 1.0] to rep-
resent very low, low, medium, and very high average val-
ues of self-confidence threshold, respectively. We again set
accpriv = 0.9, accunpriv = 0.6, ˆaccg = accg, ∆u = ∆o =
0.1, and we continue to the use the heuristic-based instance
weighting function: wi = 1− Ci.

As reflected in Figure A3, we find that the proposed method
leads to the largest human-AI team performance gains when
the self-confidence threshold takes on moderate values on
average. This is because both humans and AI get frequent
opportunities to contribute to the final team decision here,
and our complementary model gets a chance to exhibit its
complementary strengths. When τavg is very low, human DM
mostly discards AI recommendation so team accuracy is close
to human accuracy with limited gains from complementary
AI model. When τavg is very high, human DM mostly adopts
AI recommendation so team accuracy is close to AI accuracy.
Here, the complementary AI model leads to negative gains;
this is expected since complementary AI typically sacrifices
individual accuracy to be able to focus on instances where
human DMs need it more.
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Figure A3: Impacts of the average human self-confidence threshold
on human-AI team performance gains from the complementary AI
(see differences between solid green and red lines).

D Additional Results (WoofNette)
We discuss here some additional insights from experiments
on WoofNette, the real-world dataset central to our human
subject experiments.

D.1 Evaluating Varied AI Accuracy
In our human-subject experiment, we employ an AI model that
is trained after targeting for an accuracy that is comparable to
that of independent human judgments. Here, we extend our
investigation to understand how the benefits of our proposed
human-confidence-based instance weighting training strategy
may vary with the target accuracy of the AI model. To explore
this, we conduct a simulation study.

We anticipate that our complementary training approach
would yield improvements across scenarios, although the mag-
nitude of these gains may differ. For instance, when the AI
exhibits exceptionally high accuracy across all instances, there
may be limited room for complementarity, resulting in modest
improvements through any method, including ours. Neverthe-
less, even in such scenarios, the proposed strategy should not
be detrimental, and should at least maintain team performance.
Our evaluation results align well with these expectations.
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Figure A4: Human, AI and Human-AI team performance on
WoofNette using standard and complementary AI training strategies
(see differences between solid green and red lines).
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Figure A5: Comparing the decision accuracy of the human-AI team when human subjects collaborate with the standard (baseline) AI model or
the complementary AI model. Error bars represent the standard errors of the mean.

Generating Human DMs’ Behavior. For simulating human
DMs’ decisions on the WoofNette dataset, we utilize the
data that we have already collected from our pilot study in
which subjects completed image classification tasks on their
own; we used this data originally to build the AI model for
predicting humans’ self-confidence on each image, i.e., Ĉi =
g(xi). This data allowed us to estimate the human subjects’
own decision accuracy for classifying each class of object.
Utilizing these accuracy estimates, human decision makers’
independent judgment on images belonging to a certain class
was then randomly simulated such that the probability that
it was correct equals to humans’ accuracy on that class. We
further used Ĉi as human confidence estimates for each image.

AI model training. We utilize the ResNet-50 architecture,
which is pre-initialized with ImageNet weights, as the AI
model. To establish a baseline AI, we train this model on the
WoofNette dataset by minimizing the standard categorical
cross-entropy loss. Additionally, to obtain a complementary
AI, we train the AI model using human-confidence-based
instance-weighted categorical cross-entropy loss. We again
adopt the simple wi = 1 − Ĉi weighting scheme. We inten-
tionally restrict the AI’s accuracy by training it till a “target
accuracy” is reached. In the main text, this target accuracy
was set to 65%, which is close to the expected human accu-
racy on our dataset. In our simulation setup here, we explore
the impact of varying AI’s target accuracy, ranging from 35%
(very low or v low) to 95% (very high or v high) in evenly
spaced intervals of 15%, on the observed gains of human-AI
team performance in joint decision making.

Evaluation results. To simulate the human-AI team deci-
sion on each task, we consider two self-confidence threshold
distributions: UNIFORM (U [0.1, 1]) and δ (impulse at 0.7).
UNIFORM represents the most basic, uninformative scenario.
On the other hand, δ may be more representative here as it
would lead to two high and low confidence regions, which
is what we expect with easy object images and difficult dog

images. Figure A4 illustrates significant gains in the decision
accuracy of the human-AI team when utilizing our proposed
training method for both self-confidence threshold distribu-
tions, though the absolute improvement is more pronounced
when human self-confidence follows a δ distribution. As ex-
pected, the human-AI team performance gains are higher when
the target AI accuracy is lower since there is more room for
contribution by human teammate (and for dissimilarity be-
tween baseline and complementary AI).

D.2 Performance Breakdown
We also conducted an analysis of the performance of our pro-
posed complementary solution at the class level. The results of
this breakdown for our human subject experiments are shared
in Figure A5.

It is noteworthy that, although the individual performance
of the complementary AI may experience significant drops
for specific object classes, the overall human-AI team per-
formance throughout remains comparable, if not higher, than
AI trained through the standard approach. This observation
suggests that even within easily recognizable object classes
(or challenging dog classes), human decision-makers may
encounter instances that pose difficulty (or are easier) and ex-
hibit low (or high) confidence. Our confidence-based instance
weighting strategy enables the complementary AI model to
better support human decision-makers in handling these spe-
cific instances, resulting in nuanced instance-level support
rather than generic class-level gains.
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