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ABSTRACT

Today, machine learning (ML) technologies have penetrated almost

every aspect of people’s lives, yet public understandings of these

technologies are often limited. This highlights the urgent need of

designing effective methods to increase people’s machine learning

literacy, as the lack of relevant knowledge may result in people’s

inappropriate usage of machine learning technologies. In this paper,

we focus on an ML-assisted decision-making setting and conduct a

human-subject randomized experiment to explore how providing

different types of user tutorials as the machine learning literacy

interventions can influence laypeople’s reliance on ML models, on

both in-distribution and out-of-distribution examples. We vary the

existence, interactivity and scope of the user tutorial across different

treatments in our experiment. Our results show that user tutorials,

when presented in appropriate forms, can help some people rely on

ML models more appropriately. For example, for those individuals

who have relatively high ability in solving the decision-making

task themselves, receiving a user tutorial that is interactive and

addresses the specific ML model to be used allows them to reduce

their over-reliance on the ML model when they could outperform

the model. In contrast, low-performing individuals’ reliance on the

ML model is not affected by the presence or the type of user tutorial.

Finally, we also find that people perceive the interactive tutorial to

be more understandable and slightly more useful. We conclude by

discussing the design implications of our study.
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1 INTRODUCTION

In recent years, decision aids driven by machine learning (ML) mod-

els have become increasingly ubiquitous in diverse domains, from

entertainment [8] to medical diagnosis [19]. As a result, today, a

growing population is assisted by ML technologies in making better

decisions, both at home and at work. On the other hand, despite

their great success in uncovering hidden insights from massive

data to enhance decision making, the current ML technologies have

their own limitations, such as their tendency to reflect and rein-

force existing biases and discrimination in the society [3, 11], their

potential to pick up spurious correlations rather than causal rela-

tionships [12, 49], and their poor performance in generalizing to the

external data [43, 69]. Unfortunately, those people who are assisted

by ML-driven decision aids often lack sufficient understandings

of the ML technologies and are not fully aware of the limitations

of ML. Even worse, the lack of ML-related knowledge sometimes

results in people’s inappropriate usage of the ML technologies, such

as interacting with the ML model’s decision recommendations in

a way that further increases the decision disparities among dif-

ferent demographic groups [26, 53], or overly relying on an ML

model even when dataset shift occurs and the model’s performance

substantially degrades [13].

In light of this, researchers and practitioners alike have recently

advocated for increasing people’s literacy in machine learning and

AI [41]. To this end, educators have proposed a diverse set of guide-

lines for effectively teaching machine learning and AI to children

in K-12 classrooms [17, 32, 58, 72, 73], with the goal of increas-

ing the AI literacy of the next generation in long term. However,

for the large number of laypeople who have already utilized ML

models—which are often commercial—in their decision making

today, how can we improve their machine learning literacy? For

example, are there any short-term ML literacy interventions that

can be provided to them to raise their awareness of the limitations

of ML and influence how they interact with ML models? And how

do the designs of these interventions change their effectiveness in

promoting appropriate usage of ML models and impact people’s

perceptions of them?

In this work, we provide some initial answers to these questions

through an experimental study. We envision that the developers

of the commercial ML models could provide users with a machine

learning literacy intervention, in the form of a user tutorial, right
before people’s use of the ML model in decision making. The em-

phasis of this tutorial is to inform users of the development and
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evaluation procedure of the MLmodel and warn them about the ML

model’s limitations. In this study, we focus on designing tutorials

that communicate to users one particular limitation of ML, that is,

the ML model’s possible performance disparities on different data.

Specifically, we considered two design variables for the user tu-

torial. The first variable is the interactivity of the tutorial (i.e., static
vs. interactive), with the interactive tutorial providing people with

a sandbox environment in which they can construct customized

testing datasets to evaluate the ML model’s performance on differ-

ent data. The second variable is the scope of the ML model discussed

in the tutorial (i.e., general vs. specific)—while directly providing

information in the tutorial about the specific commercial ML model

that people will use in their decision making is the ideal, some-

times model developers are constrained in doing so due to various

concerns (e.g., confidential/proprietary information). Thus, it’s in-

teresting to explore the alternative way of providing information

about general ML models in the tutorial and see whether people

can apply the learned knowledge about ML models in general to

their specific use contexts. Corresponding to these two variables,

we designed 2 × 2 = 4 versions of user tutorials. We recruited lay

human subjects from Amazon Mechanical Turk to complete a set

of house price prediction tasks with the help of an ML model, and

we varied the presence and the type of user tutorial in different

experimental treatments. We examined how the provisions and

designs (i.e., tutorial scope and interactivity) of different types of

user tutorials affect subjects’ reliance on the ML model, both on

tasks that come from the same distribution as the model’s train-

ing data (i.e., “in-distribution examples”) and on tasks that come

from a different distribution than the model’s training data (i.e.,

“out-of-distribution examples”). We further looked into whether the

reliance changes brought up by the user tutorial are appropriate or

not. Finally, we also explored how subjects’ perceptions of the user

tutorial vary with the designs of the tutorial.

Our results show that some ML literacy interventions that we

designed in this study can indeed change subjects’ reliance on the

ML model. For example, overall, subjects who received the interac-

tive user tutorial slightly decreased their reliance on the ML model

on out-of-distribution examples compared to subjects who received

the static version of the user tutorial, while there was an interac-

tion effect between the scope and interactivity of the user tutorial

in influencing subjects’ reliance on the model on in-distribution

examples. Interestingly, a closer look into the data suggests that the

impacts of ML literacy interventions on people’s reliance on the

ML model are different for subjects with varying levels of decision-

making performance themselves. For those high-performing sub-

jects who are relatively capable in solving the decision-making

tasks themselves, the provision of most types of user tutorials led

to a reduction of reliance on the ML model on out-of-distribution

examples.

In particular, when the tutorial addressed the specific ML model

to be used and contained interactive components, high-performing

subjects’ reduction of reliance on the model implied a more appro-

priate level of reliance when they themselves outperformed the ML

model. In contrast, whether and how user tutorials were provided

to low-performing subjects did not affect how much they relied on

the ML model on either in-distribution or out-of-distribution exam-

ples. Finally, we also found that subjects perceived interactive user

tutorials to be significantly more understandable and marginally

more useful, compared to the static ones.

Taken together, our findings bring insights into how to influence

people’s interactions with the ML models and help people rely

on ML models more appropriately through designing short-term

ML literacy interventions. We conclude by providing the design

implications of our results, discussing the limitations of our study,

and highlighting future opportunities in promoting appropriate

usage of ML models through advancing people’s ML literacy.

2 RELATEDWORK

With the rapid development of ML-driven decision aids, a growing

body of empirical studies have been conducted to understand what

factors will affect people’s reliance on ML models. For example,

various factors related to the properties of the ML model, such as

the ML model’s accuracy [48, 66, 68], confidence [48, 70], and the

level of agreement between the ML model and one’s own judgment

or reasoning [42, 71], are shown to affect howmuch a person will be

willing to rely on an ML model. People’s reliance on an ML model

will also be heavily shaped by their interaction experience with

the model, including how good their first impression of the model

is [56], whether they have witnessed the model make mistakes [16],

what the type of mistakes the model makes are [51], when the

mistake happens [34], and whether the model’s behavior aligns

with their mental model of the model [6]. In addition, contextual

factors such as the cultural background of a person [14] and the

domain of the prediction tasks [29] can also affect people’s trust in

and reliance on the model.

Together with a deeper understanding of possible factors that

will affect people’s reliance on ML models, empirical studies also

reveal more evidence suggesting that people often rely on ML

models inappropriately. For example, a few studies have shown

that people tend to reject recommendations provided by an ML

model even when the model outperforms human predictions [16,

65], leading to the phenomenon of “algorithm aversion.” Suresh

et al. [55] showed that the presence of information about an ML

system’s training data, model architecture, and performance all

results in people’s increased blind trust in the system. More recently,

it was found that people are more likely to delegate the decision-

making right to an ML model when covariate shift occurs and the

model operates poorly in a novel environment, compared to when

the model operates in a static environment [13].

One common approach used for promoting more appropriate

reliance on ML models is to provide explanations of model predic-

tions [2, 33, 47, 61, 63], though these attempts show mixed success.

In particular, Liu et al. [39] explored the effects of providing inter-

active local explanations on people’ reliance on ML models, and

they found that these explanations do not help people to rely on the

ML models more appropriately on either in-distribution or out-of-

distribution examples. Other approaches have also been studied for

reducing people’s over-reliance on ML models, such as explicitly

signaling to people that the model is not perfect [4], or design-

ing cognitive forcing interventions to nudge people into engaging

more thoughtfully with the ML model’s recommendations and ex-

planations [10]. More recently, realizing that one of the root causes

for people’s inappropriate reliance on ML models could be their
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lack of understanding of basic ML-related knowledge, researchers

and educators have advocated for the need of improving people’s

literacy in AI and machine learning [41, 72]. As such, a growing

line of research has been carried out to explore how to effectively

increase children’s AI literacy through K-12 education [20, 36, 72].

For example, Touretzky et al. developed the guideline for teaching

AI to K-12 students, with the goal of ensuring a more informed pop-

ulace that understands the AI technologies and inspiring the next

generation of AI researchers and developers [57]. As another ex-

ample, researchers utilized gamified design to help students better

understand the inner workings of ML models [31, 59].

Different from these earlier works that aim at comprehensively

and systematically improving people’s AI and machine learning

knowledge in the long-term, in this study, we focus on exploring

the possibility of providing short-term ML literacy interventions to

those people who have the need to interact with some ML model

(often commercial) in their decision making. These interventions

can be provided by the developers of the ML model, and their

ultimate goal is to help people better utilize the model (e.g., rely

on the model more appropriately). In this sense, such ML literacy

intervention share similarities with the ideas of “user guide” or “user

manual” in other domains like automotive vehicles [22, 25, 44].

To help people make better use of the ML model, a critical task of

theML literacy intervention is to inform users of theMLmodel’s po-

tential limitations. In this study, we focus on designing ML literacy

interventions that can convey to people one particular limitation of

ML models, i.e., the ML model is learned from a set of training data

and may not generalize to other distributions of data well. We bor-

rowed existing frameworks likemodel cards [46] andmethodologies

like disaggregated evaluation of anMLmodel [7] during the designs

of our ML literacy interventions. We also adopted the concept of

“sandbox” for designing an interactive ML literacy intervention—

sandbox is an almost realistic but isolated environment that people

can explore the system without influencing the real world [5], and

it has been widely used in education in different domains like chem-

istry [5], computer security [50], and entrepreneurial thinking [23].

In our context, we used sandbox as a way for allowing users to

construct customized testing datasets to explore an ML model’s

performance disparity on different data by themselves.

3 STUDY DESIGN

To explore the impacts of different types of machine learning lit-

eracy interventions on laypeople’s reliance on machine learning

models, we conduct a human-subject randomized experiment on

Amazon Mechanical Turk (MTurk).

3.1 Experimental Task

In this experiment, human subjects were recruited to evaluate the

value of houses with the help of an ML model. In each task, subjects

saw the profile of a house, which included information on eight

features such as living area size, quality, and number of bedrooms,

and they were asked to predict the final sale price of the house. The

house presented in each task was selected from the Ames Housing

Dataset, a public dataset containing information of properties sold

in Ames, Iowa, between 2006 and 2018 [15].

We decided to focus on the domain of real estate valuation in

our experiment for several reasons. First, real estate valuation is

a realistic domain where commercial ML models have been devel-

oped to help humans make better decisions. Second, predicting

house prices is a kind of task that laypeople may need to complete

in their real life (e.g., when purchasing or selling a home). Thus,

laypeople may find it possible to utilize their day-to-day knowledge

to make the predictions and to gauge whether to rely on the ML

models. Lastly, as we are interested in examining how ML literacy

interventions affect laypeople’s reliance on ML models on both

in-distribution and out-of-distribution examples, the Ames Hous-

ing Dataset provided us with unique opportunities to simulate the

differences between in-distribution and out-of-distribution data,

as well as the ML model’s performance gap on these two types

of data distributions. Specifically, we used the K-means clustering

algorithm to split all the houses in the Ames Housing Dataset into

two clusters—Cluster 1 mainly consisted of low-quality houses with

small living areas while Cluster 2 primarily consisted of bigger and

higher-quality houses. Then, we randomly sampled 800 houses in

Cluster 1 to be used as the training dataset. We trained a linear

regression model, M, based on the training dataset, and the rest of

the houses in Cluster 1 were used as our hold-out validation dataset.

The predictions given by the modelM were then provided to our

human subjects on each task in the experiment. In other words,

since the ML model used throughout our experiment was M, we

can treat houses from Cluster 1 as the in-distribution examples,

while houses from Cluster 2 are the out-of-distribution examples.

The performance of M is much better on Cluster 1 as compared to

that on Cluster 2 (e.g., the R2 of M on Cluster 1 validation dataset

and Cluster 2 are 0.47 and 0.17, respectively); this reflects that the

performance of ML models may degrade when applied to a new

distribution of data that is different from the model’s training data.

3.2 Experimental Treatments

In our experiment, we operationalized theML literacy interventions

as the user tutorials of ML models that were presented to human

subjects before they started to work on the house price prediction

tasks. We intended to use this user tutorial to help our subjects

improve three of the key competencies that they need in order

to effectively interact with and evaluate ML technologies, which

were previously identified in [41]—understand the steps involved

in machine learning (“ML Steps”), recognize that machine learning

algorithms learn from data (“Learning from Data”), and be aware

of that the examples provided in the training dataset of a machine

learning model can affect the results of the model (“Critically In-

terpret Data”). As a result, the user tutorial we designed always

included the same five parts content-wise—Part 1 addressed what

an ML model is; Part 2 described how to get an ML model from a

training dataset; Part 3 discussed how to evaluate an ML model’s

performance using a testing dataset; Part 4 emphasized that an ML

model can exhibit systematic performance disparities when eval-

uated on different data; and Part 5 explained that the ML model’s

systematic performance disparity on different data could be partly

caused by the composition of the model’s training dataset.

We varied the designs of the user tutorial along two dimensions—

the scope of the ML model discussed in the tutorial, and whether
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interactive components were included in the tutorial—and created

4 versions of tutorials in total (see the supplementary materials

for the detailed content of these 4 tutorials). Specifically, we first

created two static versions of the user tutorials without any inter-

active components. The key concepts of machine learning were

communicated to subjects either as a general fact that applies to any
ML models, or in the context of the specific house price prediction
model that subjects would need to use in the tasks. These two ver-

sions of user tutorials were presented to subjects in the following

two experimental treatments, respectively:

• General Static: In this treatment, the user tutorial was static,

and it was presented as explaining the general properties of any

supervised ML models. To help explain concepts (e.g., prediction,

data, patterns, training dataset, testing dataset) in concrete terms,

we usedML-powered face recognitionmodels as a running exam-

ple throughout the tutorial. In particular, in Part 4 of the tutorial,

in order to illustrate that an ML model’s performance can be dif-

ferent on different data, we revealed to subjects the findings of a

recent academic paper which suggested that today’s commercial

face recognition systems have different levels of performance

for people from different demographic groups [60]. Further, in

Part 5 of the tutorial, we explained that such findings might be

attributed to an unbalanced training dataset—when a face recog-

nition model was trained on a dataset that is overwhelmingly

composed of faces from a certain demographic group, even the

model performed well on that group, its performance on faces

from other demographic groups can be limited. We stressed that

this phenomenon was not unique for face recognition models

and reminded subjects to be mindful of an ML model’s possible

performance discrepancies on different data when utilizing it.

• Specific Static: In this treatment, the user tutorial was static,

and it was presented as explaining the properties of the spe-

cific house price prediction model (i.e., M) that subjects would

use in the task. We followed the “model card” template [46]—a

transparent model reporting framework—to design this tutorial.

Specifically, the user tutorial covered information on the type,

developer, and intended use of the model in Part 1. Next, in Part

2, we explained what the training dataset of the model is, but

did not directly describe the distributions of the training dataset

to reflect commercial model developers’ constraints on sharing

training data details. In Part 3, we further described what the

evaluation dataset of the model is (i.e., a sample of 200 houses

from the hold-out validation dataset
1
), the metrics adopted to

evaluate the model’s performance (i.e., absolute percentage error,

APE), and the relevant factors along which the model’s perfor-

mance may vary (i.e., living area size and house quality). Then, in

Part 4, we performed a disaggregated evaluation of the model’s

performance on the evaluation dataset according to the two

chosen factors
2
, and visualized the average APE of the model’s

predictions as well as the 95% confidence interval for each subset

1
We used houses from the hold-out validation dataset as the evaluation dataset, because

in reality model developers may not be able to get access to a large set of out-of-

distribution examples when conducting model evaluations and preparing ML literacy

interventions based on the evaluation results.

2
Specifically, we divided the living area size of a house into three categories: small

(<1200 square feet), medium (1200 − 2000 square feet), and large (>2000 square feet).

We also divided the quality of a house (which was a score between 1 and 10) into three

categories: low (<5), medium (5 − 7), and high (>7). We then split the evaluation

of the evaluation data. As houses in the evaluation dataset were

selected from Cluster 1, some of its subsets corresponding to

the intersection of the chosen factors may contain very few or

even no data points (e.g., houses with large size and high qual-

ity). Thus, for all subsets that contained fewer than 5 houses,

we told subjects that we did not have sufficient data to conduct

a reliable evaluation of the model’s performance within those

subsets, hence we indicated the model’s performance as “N/A”

in the visualization accordingly. Finally, in Part 5, we explained

that a possible reason for the model’s performance disparity on

different subsets of evaluation data could be the composition

of the training dataset, and asked subjects to be mindful of this

when utilizing the house price prediction model in their tasks.

Beyond these two static versions of user tutorials, we made a

further attempt to increase the interactivity of the tutorials to make

them more engaging. In particular, in Part 4 of the tutorial, we

provided subjects with a sandbox environment in which they can

construct customized testing datasets to evaluate the ML model’s

performance on different data. We thus created two interactive

versions of user tutorials which were presented to subjects in the

following two experimental treatments:

• General Sandbox: The user tutorial used in this treatment was

the same as that used in the General Static treatment, except

for the designs in Part 4. Specifically, here in Part 4, we actu-

ally trained an imperfect face recognition model (with relatively

high performance on male faces but low performance on female

faces), and we invited subjects to evaluate the performance of

this model by themselves (see Figure 1). We had prepared for

our subjects 8 candidate datasets with each set containing 200

pairs of face images, while 4 of these sets contained only pairs

of male faces and the other 4 sets contained only pairs of female

faces. Subjects were then asked to select 6 sets out of the 8 candi-

date sets to compose their own testing dataset (Figure 1a). Once

the subject finalized her selection, we provided her with a brief

summary of the gender decomposition for the face image pairs

in the selected testing dataset (Figure 1b). We then informed

the subject of the model’s accuracy on the training dataset, and

prompted her to make a guess about the model’s accuracy on

the selected testing dataset in predicting whether each pair of

face images belong to the same person (Figure 1c). After the sub-

ject made her guess, we revealed to her the correct answer and

displayed the feedback on the errors in her estimate (e.g., “You

have overestimated/underestimated the model’s accuracy on the

selected testing dataset by x%”, Figure 1d). Lastly, we nudged the
subject to think about why the face recognition model’s perfor-

mance on the training and testing dataset can be quite different,

before providing the explanation of training data composition in

Part 5. The design of the interactive components in this tutorial

was inspired by earlier research findings which showed that

prompting people to reflect on their prior knowledge by making

predictions and providing self-explanations could improve the

recall and comprehension of the information [35].

• Specific Sandbox: The user tutorial used in this treatment was

the same as that used in the Specific Static treatment except

dataset into subsets based on each factor individually or based on the combinations of

the two factors, and we evaluated the model’s performance within each subset.
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(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Figure 1: The interface for Part 4 of the tutorial used in the General Sandbox treatment. Subjects were first prompted to

constructed their own testing dataset (a). After the testing dataset was selected, subjects were given a summary of its gender

decomposition (b). Subjects were then asked to guess the performance of the model on the selected testing dataset (c), before

the model’s actual performance on the selected testing dataset was revealed to them (d).

for the designs in Part 4. Further, the interactive designs of

Part 4 of this tutorial was very similar to that of the tutorial

in the General Sandbox treatment. The only differences were

that in this tutorial, (1) subjects were invited to evaluate the

performance of the house price prediction model M that they

would use in the tasks by themselves; (2) subjects needed to select

5 houses from a set of 9 candidate houses (6 houses from Cluster

1 and 3 houses from Cluster 2) to compose their own testing

dataset; and (3) the summary of the selected testing dataset

reported information on the size distribution of the houses in

the testing dataset.

Finally, we also included a control treatment in which subjects

would not receive any user tutorial about ML models. Together

with the previous four treatments, in total, we had 5 experimental

treatments in this experiment.

3.3 Experimental Procedure

Figure 2 provides an overview of the procedure of our experiment.

On the high-level, our experiment was designed to reflect the fol-

lowing real-life scenario: the developers of a commercial ML model

want to help users utilize the model properly, but are constrained in

the kind of information they can share (e.g., they can’t show details

of the proprietary training data). Thus, they first present the user

with a tutorial as an ML literacy intervention, and offer the user

with a chance to try out the ML model on some training data so that

users can get a sense of how well the model performs. Afterward,

the user starts to make decisions in the wild with the help of the

model, and the decision-making cases the user encounters may

come from the same distribution as the model’s training data, but

they may also come from a different distribution.

More specifically, our experiment was posted as a Human Intel-

ligence Task (HIT) on Amazon Mechanical Turk (MTurk)
3
. Upon

arriving at the HIT, each subject was randomly assigned to one of

the five experimental treatments. We started by asking the subject

to complete a brief survey reporting her expertise in real estate

valuation and machine learning on a five-point Likert scale. Next,

the subject was presented with the instructions of the house valua-

tion task, informing them that their task in the HIT was to predict

house sale prices with the help of an ML model. For those subjects

in the four treatments with user tutorial, after they finished reading

the task instructions, we told them that to help them better utilize

the ML model in the house valuation task, we had prepared a brief

3
Screenshots of the HIT interface can be found in the supplementary materials.
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Pre-survey & Task 
Instructions

● Expertise in real 
estate valuation

● Expertise in 
machine learning

Phase 1
(10 Tasks)

Phase 2
(10 Tasks) Exit Survey

Demographics & User 
perceptions

Understanding
Usefulness
Enjoyment
Satisfaction

etc.

Treatment 
Dependent

User Tutorial

e.g., All from Training Data 
(Cluster 1)

First 5 from Cluster 1
Last 5 from Cluster 2

Mid-point Feedback

Ground truth

ML model’s prediction

Subject’s prediction Initial prediction

ML model’s prediction

Final prediction

Phase 1 performance 
summary 

Subjects’ Phase 1 APE
vs.

ML model’s Phase 1 APE

(for each task & averaged 
across all Phase 1 tasks)

Figure 2: An overview of the procedure of our experiment.

machine learning tutorial for them. The user tutorial of the treat-

ment that the subjects were assigned would then be shown to them.

Subjects were required to go through the tutorial at least once, but

they could also repeat it multiple times if wish.

Once the subjects completed the instructions and the tutorial,

they started to work on the same set of 20 tasks to predict house

sale prices, which were divided into two phases of 10 tasks each.

Phase 1 was designed to reflect the “trial” of the model—subjects

can use the model on a few training examples to better understand

how well they can predict house prices compared to the ML model,

and to get a sense of the kind of data distributions that the ML

model was trained on. In particular, subjects were told that the 10

houses in Phase 1 were all selected from the training dataset of

the ML model. This means that all Phase 1 houses were selected

from Cluster 1 (i.e., small and low quality houses). In each task, the

subject was asked to first review the house information and make

her prediction on the sale price of the house. Then, the subject

would be able to check the prediction given by the ML model M as

well as the actual sale price of the house. The order of the 10 houses

that the subject saw in Phase 1was randomized. After completing all

Phase 1 tasks, the subject was presented with a mid-point feedback

page which showed a summary of her own prediction performance

as well as the ML model M’s prediction performance in Phase 1, as

measured by the absolute percentage error (APE) of the subject’s

or the model’s prediction on each of the 10 tasks. By design, the

model M’s average APE across the 10 tasks in Phase 1 was 15.4%.

After completing Phase 1, the subject moved on to Phase 2 to

make price predictions for another 10 houses. Phase 2 was designed

to reflect the decision making “in the wild.” Thus, we explicitly told

subjects that the 10 houses in Phase 2 do not belong to the ML

model’s training dataset, so it was also the first time for the model

to make predictions on them. In each task, the subject was asked

to first make her own initial prediction of the house price, Pi , after
reviewing the house information. Then, theMLmodelM’s predicted

sale price for the house, PM , would be disclosed to the subject.

Finally, the subject needed to submit her final price prediction, Pf .
Unlike in Phase 1, subjects would not receive immediate feedback

on the actual sale price of the house in each task after completing

that task. Again, all subjects saw the exactly same set of 10 houses in
Phase 2. In addition, the first 5 tasks in Phase 2 contained houses that

were selected from the validation dataset of the model (i.e., selected

from Cluster 1), while the last 5 tasks in Phase 2 contained houses

that were selected from Cluster 2. In other words, while making

predictions in Phase 2, subjects would experience distribution shift

such that the houses shown in the tasks gradually changed from

in-distribution examples to out-of-distribution examples for the

ML model M. The model M’s average APE across the first 5 and

last 5 tasks in Phase 2 were 12.3% and 50.4%, respectively, and it

systematically underestimated the prices for the out-of-distribution

examples (i.e., the last 5 tasks). Note that we did not explicitly

tell subjects about the change of data distributions in Phase 2, as

users seldom get such hints in the real-world ML-assisted decision

making settings.

Finally, after the subject completed all tasks, she filled out a brief

exit-survey. In particular, if the subject was presented with a user

tutorial in the HIT, she was asked to rate on a 5-point Likert scale

about how much she agreed with each of the following statements

from 1 (Strongly disagree) to 5 (Strongly agree):

• (Understanding) The tutorial about machine learning models

that I have received at the beginning of this HIT helps me better

understand the house price prediction model that I use in this

HIT.

• (Usefulness) The tutorial about machine learning models that

I have received at the beginning of this HIT helps me properly

make use of the house price prediction model in this HIT.

• (Enjoyment) I enjoy the tutorial aboutmachine learningmodels

that I have received at the beginning of this HIT.

• (Satisfaction) I’m satisfied with the tutorial about machine

learning models that I have received at the beginning of this

HIT.

Our HIT was open only to U.S. workers on MTurk, and each

worker was allowed to take the HIT at most once. The base pay-

ment of our HIT was $1.0. To motivate subjects to make accurate

predictions and carefully consider how much to rely on the ML

model in their predictions, we further provided performance-based

bonus opportunities to subjects—In Phase 2, if the average percent-

age error (APE) of a subject’s initial prediction was less than 30%,

she could earn extra bonuses (APE < 10%: $0.15, 10% ≤ APE < 20%:

$0.10, 20% ≤ APE < 30%, $0.05). The same bonus rule also applied

to the subject’s final prediction in each Phase 2 task. Thus, the max

amount of bonuses a subject could earn in our HIT was $3.0.

4 DATA

In total, 498 unique subjects participated in our experiment
4
. For

each subject, we recorded her responses to the survey questions

both at the beginning and at the end of the HIT. For each task in

Phase 1, we recorded her house price prediction, while for each

task in Phase 2, we recorded her initial prediction Pi as well as her
final prediction Pf .

Since subjects only made “ML-assisted decisions” (i.e., they could

update their predictions after seeing the ML model’s predictions)

4
On average, a subject spent 10 minutes on our HIT and was compensated $1.8, leading

to an effective hourly wage of $10.7.
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in Phase 2, our analyses on people’s reliance on the ML model

were conducted only on Phase 2. We adopted the weight of advice
(WOA)—a measure initially introduced in the literature of advice-

taking [24, 27, 64] and more recently used in several studies of

human trust in algorithms [21, 29, 40, 47]—to quantify the extent

to which a subject relied on the ML model in each Phase 2 task.

Specifically,WOA is defined as

Pf −Pi
PM−Pi , which reflects howmuch the

subject weighed the advice PM that she received from theMLmodel

in a task. As the WOA is highly sensitive to outliers, following the

convention established in the literature [24, 30, 52, 54], we truncated

the value of WOA by setting values smaller than 0 to 0 and values

greater than 1 to 1. So, a WOA of 0 suggests that the subject did not

move her prediction towards the ML model’s prediction at all after

receiving the model’s prediction, while a WOA of 1 suggests that

the subject adjusted her final prediction to fully match or evenmove

beyond that of the ML model’s after seeing the model prediction.

While the WOA values help us quantify subjects’ reliance on the

ML model, they do not directly provide implications on whether

such reliance is appropriate or not. This is because the “ideal” WOA

value depends on the accuracy comparison between the subject’s

initial prediction Pi and the model’s prediction PM . In light of this,

we adopted another metric—the subject’s prediction performance
gain in each task after seeing the ML model’s prediction—to quan-

tify the degree to which the subject’s reliance on the ML model

is appropriate. Formally, a subject’s prediction performance gain

(i.e., “prediction error reduction”) in a task is defined as the abso-

lute percentage error (APE) difference between the subject’s initial

prediction and final prediction on the task, i.e., |
Pi−PA
PA | − |

Pf −PA
PA |

(PA is the actual sale price for the house in the task). Intuitively,

the larger the prediction performance gain, the more appropriate

the subject’s reliance on the model was, and this is true regardless

of how accurately Pi was compared to PM .

Finally, we conducted data cleaning to filter out potential spam-

mers. Previous literature suggests that spammers on MTurk tend

to quickly go through a HIT and enter short random answers to

maximize their earnings [38]. Thus, following a similar approach

adopted in previous studies [13], we considered keep predicting ex-

tremely low prices for houses as a spamming behavior and deemed

subjects whose house price predictions were lower than $10,000 on

over half of the tasks in Phase 1 as not paying attention
5
.

After filtering out the data from inattentive subjects, we were

left with the valid data from 458 subjects. Our analyses were con-

ducted on these valid data
6
. Table 1 shows the average level of

self-reported expertise in real estate valuation and machine learn-

ing for subjects across different treatments (1 is the lowest level

and 5 is the highest level). We did not find significant differences

in subjects’ domain expertise in real estate valuation and machine

learning across treatments. We also looked into subjects’ prediction

performance in Phase 1 to understand their own ability in making

5
$10,000 was chosen as the threshold to ensure subjects’ predictions are on the right

scale in Phase 1. The actual sale prices for houses in Phase 1 were always 5 or 6 digit

numbers that are above $80,000. Since the actual prices were revealed to subjects as

feedback in Phase 1, if subjects were paying attention in the HIT, they should be able

to learn the magnitude of the house prices while completing the tasks.

6
We also explored other data cleaning methods (e.g., conduct additional data cleaning

steps to remove subjects who kept making high or the same predictions), and our

analysis results are qualitatively similar.

house price predictions. Again, we found no significant differences

in subjects’ prediction performance in Phase 1 across treatments.

The median value for subjects’ average APE in Phase 1 was 35%,

which was close to the bonus threshold we set in the experiment

(30%). Thus, after completing the tasks in Phase 1, a significant por-

tion of subjects might perceive themselves as having some degree

of capability to make accurate house sale price predictions and earn

bonus payments in the HIT even without utilizing the ML model.

5 RESULTS

As discussed earlier, our experiment had a 2× 2+ 1 (control) design.

Following the recommendations on how to analyze the experimen-

tal data when the control treatment does not fit into the factorial

design [28], we first made the comparison between the control

treatment and each treatment with a user tutorial to understand

whether each type of ML literacy intervention changes laypeople’s

reliance on ML models, as compared to when the intervention is

absent. Then, we focused on analyzing the four treatments resulting

from the factorial design to understand how the two factors—the

scope and interactivity of the user tutorial—influence laypeople’s

reliance on ML models. We next looked into whether the changes

in laypeople’s reliance on the ML models brought up by the ML

literacy interventions lead to more appropriate reliance on the

ML model or not. Finally, we explored the individual differences

in the reliance on ML models across people with different levels

of decision-making performance, as well as people’s self-reported

perceptions of different ML literacy interventions.

5.1 Do ML literacy interventions change

people’s reliance on ML models?

We start by looking into that for our entire population of subjects,
whether providing ML literacy interventions to them prior to they

start makingML-assisted decisions had any impact on their reliance

on theMLmodel, both on the out-of-distribution and in-distribution

examples. Since the dependent variable that we used to capture the

subject’s reliance on the ML model—the weight of advice (WOA)

in Phase 2—did not follow normal distributions, we visualized the

median values of the WOA as well as the 95% bootstrap confidence

intervals across different treatments in Figure 3.

Formally, we used Mann-Whitney U tests with Bonferroni cor-

rections to test whether the difference in the median WOA values

between each treatment with a user tutorial and the control treat-

ment was significant or not. The results showed that on the out-of-

distribution examples (Figure 3a), subjects in the Specific Sandbox

treatment significantly decreased their reliance on the ML model

compared to those in the control treatment (p = 0.025). Further,

when focusing on the in-distribution examples (Figure 3b), we found

that subjects in the General Static and Specific Sandbox treat-

ments decreased their reliance on the ML model on in-distribution

examples as compared to subjects in the control treatment (General

Static vs. control: p = 0.031, Specific Sandbox vs. control:

p = 0.001). These observations suggest that the Specific Sandbox

version of user tutorial may be especially effective in conveying

that ML models could suffer from performance drop when distri-

bution shift occurs, so it leads to subjects’ decreased reliance on

the model on those out-of-distribution examples. However, when
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Baseline General Static Specific Static General Sandbox Specific Sandbox

N 100 89 91 88 90

Expertise in house price prediction (mean) 3.3 3.3 3.3 3.5 3.6

Expertise in machine learning (mean) 3.5 3.7 3.4 3.5 3.7

Phase 1 average APE (median) 0.36 0.33 0.30 0.36 0.39

Table 1: Comparing subjects’ expertise and Phase 1 prediction performance across treatments. Subject’s prediction on the first

task in Phase 1 was excluded when we computed the average Phase 1 APE for each subject, since subjects may need to use the

feedback of the house’s actual price they received from the first task to calibrate their predictions.

Figure 3: Comparing the median values of the weight of

advice (WOA) on (a) out-of-distribution examples and (b)

in-distribution examples in Phase 2 across different treat-

ments, for the entire population of subjects. Error bars rep-

resent 95% bootstrap confidence intervals. For the control

treatment, the dashed horizontal lines represent themedian

values, and the 95% bootstrap confidence intervals of theme-

dian are shown by the red shaded areas.

subjects received the Specific Sandbox version of user tutorial,

they might not be engaged in a comprehensive evaluation of the

model’s performance (e.g., by constructing many different varia-

tions of the testing dataset and evaluating the model’s performance

on each of them) to thoroughly understand the model’s strength

and weakness, thus they also decreased their reliance on the ML

model on in-distribution examples. On the other hand, we speculate

that when subjects received the General Static version of user

tutorial, they might form a strong negative impression of the ML

model’s overall capability (e.g., perceive all ML models as unable to

make consistently accurate predictions), which may explain their

decrease of reliance on the model on in-distribution examples.

5.2 The effects of the scope and interactivity of

the ML literacy interventions

We next focused on the 4 experimental treatments with a user

tutorial, and examined how the scope and interactivity of the

ML literacy interventions changed laypeople’s reliance on the

ML model. For example, as shown in Figure 3a, subjects who re-

ceived a user tutorial with the interactive components seemed to

have a lower reliance on the ML model on the out-of-distribution

examples compared to subjects who received a static version of

the user tutorial, while the scope of the tutorial did not seem to

have an obvious effect here. Since the WOA measures were not

normally distributed, we used the aligned rank transformation

ANOVA (ART ANOVA) [37, 62], a non-parametric version of the

factorial ANOVA, to analyze how the scope and interactivity of

the user tutorial influence subjects’ reliance on the ML model on

out-of-distribution examples. A marginally significant main effect

of the interactivity of the tutorial was found in influencing sub-

jects’ reliance on the ML model on out-of-distribution examples

(F (1, 1778) = 3.028,p = 0.082). A post-hoc pairwise comparison

with Tukey adjustment [18] suggests that such influence is par-

ticularly salient when the ML literacy intervention concerns the

specific ML model that people will use, as the WOA values for sub-

jects in the Specific Sandbox treatment on the out-of-distribution

examples were significantly lower than those subjects in the Spe-

cific Static treatment (p = 0.046). Moreover, we did not find any

significant main effect of the scope of the ML literacy intervention

(F (1, 1778) = 0.015,p = 0.900), or any significant interaction be-

tween the scope and interactivity of the ML literacy intervention in

influencing people’s reliance on the model on out-of-distribution

examples (F (1, 1778) = 0.381,p = 0.537).

Interestingly, when examining how the scope and interactivity

of the ML literacy intervention affect subjects’ reliance on the ML

model on in-distribution examples (Figure 3b), the ART ANOVA

test detected a significant interaction effect between these two

factors, F (1, 1779) = 4.734,p = 0.030. That is, when the user tutorial

described properties of ML models in general, the addition of the

sandbox in the tutorial did not seem to affect people’s reliance on

the ML model on in-distribution examples much. However, when

the user tutorial discussed properties of the specific ML model that

people would use in their tasks, the addition of the sandbox in the

tutorial substantially decreased people’s reliance on the ML model

on in-distribution examples (p = 0.041). Again, we speculate that

this is because when the user tutorial was interactive, subjects did

not engage in a comprehensive evaluation of the model’s strength

and weakness in the interactive sandbox environment. Yet, subjects

in the General Sandbox treatment did not attempt to generalize

the limited performance of the face recognition model that they

saw in the sandbox to their current use context (i.e., predict house

prices), while subjects in the Specific Sandbox treatment might

have done so.

5.3 Do ML literacy interventions lead to more

appropriate reliance?

To see whether changes in subjects’ reliance on the model brought

up by the ML literacy interventions result in more appropriate

reliance, we compared the subject’s prediction performance gain

across different treatments. Specifically, we used theMann-Whitney

U tests with Bonferroni corrections to test if the subject’s median

prediction performance gain was significantly different between

the control treatment and each treatment with a user tutorial.

Overall, when considering subjects’ prediction performance gain

on all Phase 2 tasks, we found that subjects in the Specific Sandbox

treatment obtained a significantly larger prediction performance

155



IUI ’22, March 22–25, 2022, Helsinki, Finland

gain than subjects in the control treatment (p = 0.007), indicating

that people’s reliance on the ML model become more appropri-

ate when the user tutorial addresses the specific ML model to be

used and contains interactive components. A closer look into the

data suggests that such improvement in appropriate reliance was

mainly observed on the out-of-distribution examples—Indeed, on

the out-of-distribution examples, compared to that in the control

treatment, subjects’ decreased reliance on the ML model in the Spe-

cific Sandbox treatment leads to a larger prediction performance

gain (p = 0.001) when the subject’s initial prediction was more accu-

rate than the model’s prediction, and it does not significantly affect

the prediction performance gain when the subject’s initial predic-

tion was less accurate than the model’s prediction. This means that

the Specific Sandbox version of the user tutorial helped subjects

reduce their over-reliance on the ML model on out-of-distribution

examples when subjects could outperform the model. In contrast,

on the in-distribution examples, we did not find subjects’ decreased
reliance on the ML model in the Specific Sandbox or General

Static treatment was associated with any significant change in

their prediction performance gain, regardless of how accurately the

subject’s initial prediction was compared to the model.

5.4 Individual differences in the effects of ML

literacy interventions

Whether and how much people are willing to rely on an ML model

may be highly dependent on their perception of their own decision-

making performance. In this subsection, we are interested in explor-

ing that for subjects with different levels of performance in making

house price predictions themselves, how their reliance on an ML

model would be changed by different ML literacy interventions.

We thus split all subjects in our experiment into two groups based

on their own prediction performance in Phase 1: If the mean APE

of a subject’s own predictions across the 10 tasks in Phase 1 was

lower than 30% (which was the bonus threshold we chose in the

experiment), the subject might perceive herself as being able to

earn bonus payments even without the assistance of the ML model

after seeing the mid-point performance feedback page; we thus

considered such subject as a “high-performing” subject. In contrast,

if the mean APE of a subject’s own predictions across the 10 tasks

in Phase 1 was higher than 30%, we considered such subject as a

“low-performing” subject. Following this split, 40.4% of subjects in

our experiment were high-performing subjects, while the rest 59.6%

of the subjects were low-performing subjects.

5.4.1 The effects of ML literacy interventions on high-performing
subjects. We first analyzed the data from the high-performing sub-

jects. Figure 4a and Figure 4b showed high-performing subjects’

reliance on the ML model on out-of-distribution examples and

in-distribution examples, respectively.

Specifically, on the out-of-distribution examples, the Mann-Whit-

ney U tests with Bonferroni correction suggested that high-perform-

ing subjects who received any type of user tutorial, except for the

Specific Static one, significantly decreased their reliance on the

ML model compared to those high-performing subjects who did

not receive any user tutorial (i.e., General Static vs. control:

p = 0.030, General Sandbox vs. control: p = 0.002, Specific

Sandbox vs. control: p = 0.039). An ART ANOVA test further

Figure 4: Comparing high-performing subjects’ median

WOA on (a) out-of-distribution examples and (b) in-

distribution examples in Phase 2 across different treatments.

Error bars represent 95% bootstrap confidence intervals. For

the control treatment, the dashed horizontal lines represent

the median values, and the 95% bootstrap confidence inter-

vals of the median are shown by the red shaded areas.

showed that providing a user tutorial that describes the proper-

ties of ML models in general leads to a significant decrease in

high-performing subjects’ reliance on the ML model on out-of-

distribution examples, as compared to providing a user tutorial

that discusses the specific house price prediction model to be used

(F (1, 716) = 7.319,p = 0.007). Moreover, increasing the interactivity

of the user tutorial also results in a significant decrease in howmuch

high-performing subjects rely on the model on out-of-distribution

examples (F (1, 716) = 4.799,p = 0.028).

When focusing on high-performing subjects’ reliance on the

ML model on in-distribution examples, we found that compared

to those high-performing subjects who did not receive any ML

literacy interventions, the ones who received the General Static

(p = 0.008) or Specific Sandbox (p < 0.001) tutorial tended to

significantly decrease their reliance on the model on in-distribution

examples. Moreover, a significant interaction between the scope

and the interactivity of the ML literacy intervention was detected

in influencing high-performing subjects’ reliance on the ML model

on in-distribution examples (F (1, 715) = 20.078,p < 0.001).

Finally, we examined whether these changes in subjects’ re-

liance on the ML model lead to more appropriate reliance. Overall,

we found that high-performing subjects in the Specific Sandbox

treatment achieved a significantly higher level of prediction per-

formance gain across all prediction tasks in Phase 2 compared to

high-performing subjects who did not receive any user tutorial

(p = 0.001). A closer examination of the data suggests that sub-

jects in the Specific Sandbox treatment mainly relied on the ML

model more appropriately by reducing their over-reliance on the

ML model when they could outperform the model—their decreased

reliance on the model results in a significantly larger prediction

performance gain on out-of-distribution examples (p = 0.034), and

a marginally larger prediction performance gain on in-distribution

examples (p = 0.081), when their initial prediction was more accu-

rate than the model. However, when a high-performing subject’s

initial prediction was less accurate than the model, the subject’s

decrease of reliance on the ML model, as a result of the presence

of the Specific Sandbox version of user tutorial, actually leads
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to a smaller prediction performance gain on in-distribution exam-

ples (p = 0.020). Similarly, we also found that when they under-

performed the model in their initial predictions, high-performing

subjects in the General Sandbox treatment had a significantly

smaller prediction performance gain on out-of-distribution exam-

ples (p = 0.006) compared to those in the control treatment, due to

their decreased reliance on the model.

5.4.2 The effects of ML literacy interventions on low-performing
subjects. When we conducted similar analyses on the data obtained

from low-performing subjects, we had substantially different find-

ings. As shown in Figures 5a and 5b, providing the ML literacy

interventions to low-performing subjects did not have significant

impacts on their reliance on the model on either out-of-distribution

or in-distribution examples, as compared to those low-performing

subjects who did not receive any ML literacy interventions. In ad-

dition, neither the scope of the ML literacy intervention nor the

interactivity had any impact on how much low-performing sub-

jects would rely on the ML model for both out-of-distribution and

in-distribution examples. As a result, the provision of ML literacy

interventions did not significantly change low-performing subjects’

prediction performance gain in the tasks, either.

5.4.3 Summary. Put together, these results suggested that people’s
own capability in making accurate predictions largely moderates

how the ML literacy interventions impact their reliance on the ML

model. When people perceive themselves as having low prediction

performance themselves, we saw minimal evidence suggesting that

whether and how ML literacy interventions were provided would

change their reliance on the ML model, possibly because they felt a

strong “need” for the assistance from the ML model (hence mostly

ignore the limitations of the model). However, for people who

perceive themselves as having some capability in making accurate

predictions even without the help of the ML model, receiving ML

literacy interventions did change their reliance on the ML models.

When the ML literacy interventions are presented in proper formats

(e.g., the Specific Sandbox tutorial), these changes may lead to

reductions in high-performing subjects’ over-reliance on the ML

model (e.g., when they can outperform the ML model on a task)

and thus result in more appropriate reliance.

5.5 Perceptions of the ML literacy

interventions

Lastly, we looked into subjects’ responses in the exit-survey to

explore whether the designs of the user tutorial had any impact

on subjects’ perceptions of the tutorial, including the perceived

understandability and usefulness of the tutorial, as well as the ex-

tent to which subjects enjoyed the tutorial and be satisfied with

the tutorial. As subjects’ responses to these survey questions fol-

lowed normal distributions, we used two-way ANOVAs to examine

whether and how the scope and interactivity influenced subjects’

perceptions of the ML literacy interventions. Our results showed

that increasing the interactivity of the user tutorial leads to a signifi-

cant increase in subjects’ perceived understandability of the tutorial

(∆M = 0.18, F (1, 320) = 5.086,p = 0.024), as well as a marginal in-

crease in subject’s perceived usefulness of the tutorial (∆M = 0.16,

Figure 5: Comparing low-performing subjects’medianWOA

on (a) out-of-distribution examples and (b) in-distribution

examples in Phase 2 across different treatments. Error bars

represent 95% bootstrap confidence intervals. For the con-

trol treatment, the dashed horizontal lines represent theme-

dian values, and the 95% bootstrap confidence intervals of

the median are shown by the red shaded areas.

F (1, 320) = 3.432,p = 0.065). In addition, although we find no im-

pact of the interactivity of tutorial on how much subjects reported

to enjoy the tutorial or found the tutorial satisfying, our data sug-

gested that subjects receiving the interactive tutorial spent signifi-

cantly more time on the tutorial (F (1, 362) = 14.411,p < 0.001) and

marginally increased the number of times that they replayed the

tutorial (F (1, 362) = 2.816,p = 0.094). On the other hand, the scope

of the user tutorial was not shown to have any significant impacts

on subjects’ perceptions of the tutorial.

6 DISCUSSION

In this paper, we present an experimental study to understand

whether and how various designs of machine learning literacy in-

terventions will influence laypeople’s willingness to rely on an ML

model on the data that comes from the same distribution as the

model’s training data (i.e., in-distribution data) and on the data that

comes from a different distribution than the model’s training data

(i.e., out-of-distribution data). We briefly summarize our experimen-

tal results in Table 2. In this section, we reflect on the findings of

our study and provide design implications of our results.

Towards interactive ML literacy interventions. A key finding

of our experiment is that increasing the interactivity of an ML liter-

acy intervention by, for example, providing people with a sandbox

environment to evaluate the ML model’s performance on different

customized testing datasets, can change people’s reliance on the ML

model, especially for those people who have a relatively high level

of performance on the prediction tasks themselves. In particular,

the access to the Specific Sandbox tutorials actually nudged the

high-performing subjects in our experiment into relying on the

ML model more appropriately overall, especially on those cases

where they could outperform the model. Moreover, our analyses

on subjects’ survey responses also indicated that increasing the

interactivity of ML literacy interventions may improve people’s sub-

jective perceptions of them—in general, people perceive interactive

ML literacy interventions to be more understandable and slightly

more useful. Together, these results highlight the importance of

providing interactive components in the ML literacy interventions

to increase the effectiveness of these interventions in influencing
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Out-of-distribution examples In-distribution examples

All High-performing Low-performing All High-performing Low-performing

Do tutorials change

reliance?
Specific Sandbox ↓

General Static ↓

General Sandbox ↓

Specific Sandbox ↓
No

General Static ↓

Specific Sandbox ↓

General Static ↓

Specific Sandbox ↓
No

Does tutorial scope

affect reliance?
No General ↓ No

Interaction with

tutorial interactivity

Interaction with

tutorial interactivity
No

Does tutorial interactivity

affect reliance?

Sandbox ↓

(marginal)
Sandbox ↓ No

Interaction with

tutorial scope

Interaction with

tutorial scope
No

Do tutorials lead to

more appropriate reliance?

Specific Sandbox ↑

(human > ML)

Specific Sandbox ↑

(human > ML);

General Sandbox ↓

(human < ML)

No No

Specific Sandbox ↑

(marginal, human > ML);

Specific Sandbox ↓

(human < ML)

No

Table 2: A summary of our main experimental results. In the first three rows, ↓ means subjects’ reliance decreased in the

specified treatment. In the last row, ↑ (↓) means subjects’ reliance on the ML model became more (less) appropriate in the

specified treatment under the specified scenario, which is shown in parentheses as either the subject’s initial prediction was

more accurate than themodel’s prediction (“human >ML”) or the subject’s initial predictionwas less accurate than themodel’s

prediction (“human < ML”).

both user understanding and user behavior, which is consistent

with findings on how to design effective user education in other

contexts like automated driving systems [22].

In our study, the interactive component was designed to help

people understand the ML model’s possible performance disparities

on different data, with the hope that these interactions could allow

people to utilize the model more appropriately on different distribu-

tions of data. Our experimental results show promises to this end,

but we also note that our current designs of the interactive tutorials

are still far from the ideal. For example, we found a few undesirable

scenarios during our experiment that the inclusion of interactive

user tutorials actually results in a less appropriate reliance on the

ML model, when people’s own prediction is less accurate than the

model, especially on in-distribution examples. This may be caused

by subjects’ insufficient interactions with the user tutorial, so that

they did not get a full picture of the model’s strength and weak-

ness. It’s also possible that subjects had limited knowledge on how

their own prediction performance compared with the ML model

on different decision making tasks, making it difficult for them to

determine how to rely on the model appropriately even after fully

understanding the model’s strength and weakness. Thus, future

research should be conducted to explore how to provide guidance to

people during their evaluations of the model in interactive tutorials,

so that they can obtain a more comprehensive understanding of

both the model’s and their own performance on different distribu-

tions of data. Finally, how to design suitable interactive components

in ML literacy interventions that can serve other purposes (e.g.,

help people understand how the choice of the objective function for

the ML model affects its performance and fairness properties [67])

is another interesting future direction.

On the scope ofML literacy interventions.Weexploredwhether

the scope of ML models addressed by the ML literacy interventions

changes people’s reliance on the ML models, because we suspected

that in practice, it is not always possible for developers of commer-

cial models to directly provide information about their model in

an ML literacy intervention due to privacy or intellectual property

concerns. In this case, it would be ideal if the ML literacy interven-

tions could be provided in the context of other ML models, while

people could still generalize the knowledge that they learn from

other ML models to the specific model that they would use. In our

study, some subjects expressed the difficulty to do so in the exit

survey. For example, when asked about what feedback they have for

the design of the user tutorial, one subject in the General Static

treatment said: “I think that it was not focused enough on examples

relative to the HIT to really make it worthwhile. Comparing the

ML results of faces is not the same as housing prices to me.”

Surprisingly, when examining whether the scope of the user tuto-

rial affects people’s reliance on the ML model, we did not detect any

main effect of it for the overall subject population. Moreover, for the

high-performing subjects, we even found that those who received a

user tutorial discussing properties of ML models in general reduced

their reliance on the model on out-of-distribution examples to a

larger extent than those who received a user tutorial specifically

discussing the house price prediction model. However, such larger

reduction did not directly result in more appropriate reliance for

subjects who received the general tutorials, possibly due to their lim-

ited ability to differentiate when they outperform/under-perform

the model (e.g., high-performing subjects in the General Sandbox

treatment mainly decreased their reliance on the model when their

own predictions were less accurate than the model). Nevertheless,

our results still suggest that people seem to have some ability to

generalize their learned knowledge about ML models from one

context to another, showing the promise of designing effective ML

literacy interventions even if the information about the specific ML

model cannot be fully revealed.

On improving the designs of model cards. We followed the

“model card” template [46] to design the user tutorial in the Specific

Static treatment of our experiment. Through the exit-survey, some

subjects in this treatment expressed how they benefited from the

user tutorial to gauge on how much they should rely on the ML

model (e.g., “I was glad to know that it rated certain houses with

more accuracy than others so I didn’t rely on it for those other

houses.”), and some other subjects also seemed to realize the house

price prediction model was trained on an unbalanced dataset (e.g.,

“I also don’t think the tutorial prepared me for the very large houses

with very high quality ratings.”). On the other hand, we found this

static version of the user tutorial on the house price prediction

model had very limited impacts on most subjects’ reliance on the

ML model for both in-distribution and out-of-distribution data, and

this is true even for the high-performing subjects.
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We had a few conjectures on why the model card seemed to lack

a degree of effectiveness in influencing laypeople’s reliance on the

ML models. First, the target user populations of model cards are

mostly people with domain expertise inmachine learning, including

ML and AI practitioners, model developers, and software develop-

ers. As such, in model cards, much of the information related to the

performance of ML models was communicated through sophisti-

cated visualizations, such as bar charts with error bars representing

confidence intervals. It is thus unclear that for laypeople who may

lack sufficient background in STEM, whether they can correctly

interpret the information contained in these visualizations. In fact,

previous research has found that most non-expert users cannot fully

understand statistical information contained in visualizations [45].

Thus, to improve the effectiveness of model cards as an ML literacy

intervention in influencing laypeople’s reliance on ML models, the

designers of the model cards may need to either communicate the

model’s performance information on different data to people using

more accessible language or diagrams, and/or help them increase

their literacy in data visualization [9].

We suspected another reason may have also contributed to the

ineffectiveness of the model cards: The evaluation dataset we used

in the model card was a subset of the hold-out validation dataset of

the ML model; as a result, we indicated the model’s performance as

“N/A” for those subsets of the evaluation dataset containing very few

or even no data points. Our intention here was to signal to subjects

that houses in those “N/A” subsets could potentially be out-of-

distribution examples (we explicitly told subjects that the training

dataset and the evaluation dataset of the house price prediction

model were sampled from the same dataset). However, subjects

in our experiment may interpret “N/A” differently than what we

would expect—for example, subjects may simply consider “N/A” as

suggesting themodel’s performance on those subsets was unknown,

without realizing that the model’s performance could be poor on

those subsets as they represent the out-of-distribution data for the

model. This highlights the critical challenge of how to transparently

communicate and set the right expectation about an ML model’s

possible performance on out-of-distribution data without sufficient

out-of-distribution examples in the model’s evaluation dataset.

Finally, given that in our experiment, the user tutorial used in

the Specific Sandbox treatment had a much salient impact on

laypeople’s reliance on the ML models compared to the model

cards, especially for empowering subjects to rely on the model

more appropriately, we recommend incorporating interactive com-

ponents with model cards to improve its effectiveness as an ML

literacy intervention. We note that the example model cards Google

deployed online [1] did add a degree of interactivity into the orig-

inal model card template—given an ML model, users can choose

an evaluation dataset from a pre-defined list or upload their own

testing dataset, select relevant factors for analysis, and view the

model’s performance on the selected evaluation dataset. Compared

to Google’s interactive model card, our Specific Sandbox tutorial

allowed subjects to customize the composition of the testing dataset

along pre-defined factors (e.g., gender, house size) and included

more elements that aimed to increase subjects’ recall and compre-

hension of information (e.g., guess the model’s performance on

the testing dataset). Further studies are thus needed to advance

our understandings of whether and how these variations result in

differences in laypeople’s reliance on ML models.

Limitations and other future work. Our study was conducted

with laypeople (i.e., subjects recruited from Amazon Mechanical

Turk) on one specific type of prediction task. Therefore, cautions

should be used when generalizing results in this work to differ-

ent settings, such as how real-estate experts who lack ML-related

knowledge would rely on the ML model after receiving the ML

literacy interventions, or how laypeople will rely on ML models

upon receiving the ML literacy interventions when working on

prediction tasks that are significantly easier or harder. In addition,

for the two versions of specific user tutorials used in our experi-

ment, we assumed at least some key relevant variables for defining

out-of-distribution examples (i.e., house sizes) for the ML model are

known, but such information may not exist in reality. Therefore,

an interesting future work is to design an effective ML literacy

intervention for a specific ML model to help people rely on this

model appropriately on its out-of-distribution examples, even when

how to characterize its out-of-distribution examples is unclear. We

also note that none of our ML literacy interventions could impact

the low-performing subjects’ reliance on the ML model. Future

work should investigate more into how to help individuals with

low decision-making performance themselves to utilize the ML

models more appropriately. Finally, our study was motivated by

the scenario that developers of commercial models design user tu-

torials to help users utilize the ML model more appropriately, thus

the contents of these tutorials are often subject to constraints (e.g.,

training data details can’t be shared). It’s interesting in the future to

explore that in a non-commercial setting where these constraints

no longer exist, how to design effective ML literacy interventions

to promote appropriate reliance on ML models.

7 CONCLUSION

In this paper, we present an experimental study to explore whether

and how a short-term machine learning literacy intervention can

be designed to help laypeople become aware of ML model’s possi-

ble limitations in generalizing to new data distributions, and thus

influence the ways that they interact with the model. We find that

a brief tutorial about machine learning that highlights ML model’s

possible performance disparities on different data has the potential

to help those people who have a relatively high level of ability in

the decision-making tasks themselves to rely on the model more

appropriately, when the tutorial addresses the specific model people

will use in their decision making and contains interactive compo-

nents. On the other hand, for people whose own decision-making

performance is relatively low, how much they are willing to rely on

an ML model is not significantly affected by whether they receive

any ML literacy interventions and what types of interventions they

receive. Finally, ML literacy interventions are perceived to be more

understandable and slightly more useful when they are interac-

tive. These results provide important implications for promoting

appropriate use of ML models through enhancing people’s machine

learning and AI literacy, and we hope the findings we report in this

paper can inspire more discussions in this line.
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