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Abstract

In Deep Neural Networks (DNNs), manipulating gradients is central
to various algorithms, including data subset selection and instance
attribution. For better tractability, practitioners often resort to using
only the gradients of the last layer as a heuristic, instead of the full
gradient across all model parameters, which we show is detrimental
due to the Support Vector Effect (SVE). We introduce SVE, a max-
margin-like behavior in the last layer(s) of DNNs and employ it
to thoroughly scrutinize prevalent data selection and attribution
methods relying on last layer gradients. Our investigation exposes
limitations in these techniques and not only provides explanations
for previously observed pitfalls, like lack of diversity and temporal
performance degradation, but also offers fresh insights, including
the vulnerability of existing methods to basic poisoning attacks
and the potential for competitive performance using much simpler
alternatives. Based on insights from SVE, we craft new methods
RandE and PAE for data subset selection and instance attribution,
respectively, which often outperform the purported state-of-the-art
at a fraction of the cost, emphasizing the practical advantages of
more efficient and less complex approaches.
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1 Introduction

Deep Neural Networks (DNNs) have revolutionized predictive mod-
eling across diverse domains, driven largely by increasing model
scale and dataset sizes. Yet, their remarkable success contrasts with
a limited understanding of their inner workings. As models and
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datasets continue to grow, a critical question emerges: how do indi-
vidual data points shape these vast models? Answering this is key
to understanding model behavior and developing more efficient,
sustainable training methods.

The exploration of the importance of individual data points for
high-performing DNNs has given rise to at least two prominent
use cases: instance attribution and data subset selection. Instance
attribution utilizes the notion of importance to select training in-
stances that the model capitalized on to make a given prediction
for insights into model behavior, while data subset selection uses
it to curate a smaller, impactful data subset for accelerated model
training without substantial performance degradation.

Newer methods continue to emerge for both instance attribution
[12, 18,32, 38, 42] and data subset selection [11, 13, 14, 23, 30, 31, 41],
often to mitigate perplexing issues linked with prior approaches.
In instance attribution literature, some methods are observed to
lead to only a few training instances repeatedly being considered
most important for multiple test instances [10, 38, 43]. Attempts
to overcome such limitations have generally been method-specific.
For example, Sui et al. [38] reformulates work on Representer Point
Selection [42] to get rid of a regularization term, which helps ame-
liorate the lack of diversity. Additionally, Basu et al. [2] find that
Influence Functions [18] for instance attribution are fragile when
non-convex models like DNNs are involved, and a follow-up in-
vestigation by Schioppa et al. [34] reveals that influence estimates
may be reasonable initially but steadily degrade as DNN training
progresses. Similar issues have also intriguingly emerged in data
subset selection recently. Specifically, a few instances are observed
to dominate the selection process, and performance gains using
meticulously crafted coreset methods—instead of simple random
baseline—are found to diminish when large subset sizes are involved
[41]. These pervasive concerns, shared across multiple methods
and diverse applications, signal a larger underlying problem.

In the present work, we find a surprising commonality across
these methods that explicate the concerns. Although not intrinsic
to the design of all methods, the computational costs involved
with these vast networks encourage a predominant focus on the
last layer, which we find is a bad idea. Our investigations reveal an
intriguing phenomenon, the Support Vector Effect (SVE): the last
layer of DNNs behaves like a Support Vector Machine, forming a
maximum-margin linear decision boundary dependent on a sparse
set of support vectors. This exposes a critical flaw in using last-
layer approximations to assess data point importance, as they are
disproportionately influenced by a small set of support vectors,
which in turn results in data selection and attribution methods
yielding counterproductive outcomes.
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We rigorously establish the foundations of the SVE, leveraging
the implicit regularization effect of gradient descent adjacent al-
gorithms. We further illustrate the SVE in practice, identify key
limitations that are direct consequences of the SVE, and offer amelio-
ration strategies. Specifically, we make the following contributions:

(1) We introduce the Support Vector Effect, illuminating how
the last layer(s) of DNNs exhibit SVM-like behavior. We not
only provide a comprehensive framework for understanding
the phenomenon but also offer both theoretical insights and
empirical evidence into the substantial impact of the SVE.

(2) We utilize SVE as a unifying framework to explain perplexing
shortcomings in varied methods across two prominent use
cases of instance attribution and data subset selection. We
illustrate that concentrating on the last layer(s) in DNNs to
overcome computational limitations is often suboptimal.

(3) We utilize SVE to uncover fresh limitations and insights,
including group-level influence and vulnerability to basic
adversarial attacks, as well as how embarrassingly simple
and efficient alternatives will often perform competitively.

(4) We utilize SVE to design new methods for data selection and
attribution, which achieve state-of-the-art performance with
significantly improved efficiency. We also provide guidelines
for further optimization and refinement of these methods,
aiming to stimulate further method development through a
different, and much more efficient, lens.

2 Background and Related Work

Implicit biases. Popular optimization algorithms like Gradient
Descent and Adam [16] have been found to implicitly regularize
the training process, steering parameters to certain kinds of global
minima without any explicit regularization [27, 40]. Some of these
works [7, 26, 37] support observation of max-margin behavior in
DNNS, providing a foundation for our work on the Support Vector
Effect. These “implicit biases” have helped elucidate why highly
non-convex DNNs may generalize well. In this work, we empirically
verify a similar implicit behavior in the last layer of DNNs, and
discuss its impact on relative importance of individual data points
for instance attribution and data subset selection.

Instance attribution. A growing body of research [12, 15, 18, 32,
35, 42] has explored methods for understanding and interpreting
DNNs, with work on gradient-based approaches to understanding
the influence of individual training instances on the prediction
process being of particular relevance to us. Traditional approaches
like leave-one-out methodologies are computationally expensive,
leading to the emergence of relatively efficient attribution score
methods. These include Influence Functions [18] that employ first-
and second-order derivatives to estimate influence, Representer
Point Selection [42] that utilizes a representer theorem in the last
layer of DNNs, and TracIn [32] that tracks gradients during opti-
mization. Some recent works [10, 29] also introduce methods to
select important instances that help explain entire learning algo-
rithms or model classes. However, these are less relevant to our
study, as we focus on understanding specific model instantiations
and methods employing last layer gradients.
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For illustration through a concrete instantiation, Influence Func-
tions [18] estimate Ajp(x,x’), the influence on a test point x” at-
tributed to a training point x, through the sensitivity of the model’s
loss ¢ with respect to its parameters ©, expressed as:

Arp(x,x') = -Vot(x,0) T Hg'Vot(x, ©), (1)

where Hg is the Hessian of the loss over the training data. For
large DNNs, calculating (1) is intractable, which is why last layer
gradients are often used as a proxy to the full model gradients.
We use SVE to uncover, explain and improve limitations in such
sensitivity-based methods.

Data subset selection. To address efficiency and sustainability
concerns in large-scale machine learning, data-efficient learning
methods have emerged with the objective of judiciously selecting a
small subset of training data that yields performance comparable
to the full dataset. In the context of efficient model training, data
subset selection methods [13, 14, 23, 30, 41] delve into the iterative
creation of weighted data subsets, known as coresets, by aligning
subset and full gradients.

For illustration through a concrete instantiation, CRAIG [23]
employs a greedy algorithm to identify a coreset S* that minimizes
the subset size while ensuring that its gradients approximate the
gradients of the entire dataset O within an € tolerance:

S* =arg minge ) >0 vx, sl subject to:

max|| )} Vol(xi,0) - 3 y;Vel(x;0)| <& (2

xi€D X €S

where y; are weights assigned to the selected subset data points.
The model is then updated using the weighted gradient sum of just
the identified coreset. Again, because of the size of DNNS, solving (2)
is hard and last layer gradients are often used as a proxy to the
full model gradients. We use SVE to uncover, explain and improve
limitations in such methods.

Pervasive use of last layer. Given the large number of parameters
in DNNs and resulting high dimensional gradients, it is common
practice to resort to using only (the gradients of) the last layer
as a heuristic approximation. This is quite popular for instance
attribution and data subset selection, which is the focus of our
work. However, its adoption also extends to multiple other use
cases, including DNN compression [6], analyzing DNN limitations
[36], active learning [1] and robust training [17]. Therefore, the
implications of our work elucidating how and when last layer ap-
proximations could be detrimental are expected to extend beyond
discussion on the two aforementioned use cases, and opens route
for significant further research.

3 Support Vector Effect

One can view neural network training as a combination of two
serial steps: representation learning, where the network learns to
extract meaningful features represented as the output of the penul-
timate layer, and learning linear classifiers using these last layer
representations. In a ‘good” DNN with (near) zero training error,
the learned representations are expected to be linearly separable.
Crucially, we observe that the last layer classifier in such good
DNNs does not learn just any linear boundary but a very specific
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one: the maximum margin solution. In other words, this last layer
classifier exhibits behavior akin to learning the maximum margin
linear decision boundary—a characteristic reminiscent of Support
Vector Machines (SVMs). We coin this SVM-like training phenome-
non in the last layer(s) of DNNs as the Support Vector Effect. The
core of the SVE lies in the sparsity of gradient contributions during
training: as training progresses, only a few data points significantly
influence the updates of the last layer’s parameters.

We now formalize the SVE and provide theoretical insights into
its manifestation in DNNs. Let {(x;, y;)}};, where x; € R< and yi €
{~1,+1}, be the training data. We consider a DNN parameterized by
© = {©r, 0}, where O, € R denotes the parameters of the last
layer, and ©; denotes the parameters of all preceding layers. We
conceive the output of the penultimate layer as the feature mapping
$(x;0;) € RP, and the output of the DNN is given by ®(x;©) =
@I(/ﬁ(x; ©;). For simplicity, we focus on binary classification using
logistic loss, defined as £(x;, y;; ©r) = log (1 + exp (—in)zng(xi))),
but the extension to multiclass classification and the softmax loss
is straightforward.

Our main result shows that the gradient updates with respect
to the last layer parameters ©; become dominated by the sup-
port vectors as training progresses, with the contributions from
non-support vectors becoming increasingly minuscule. For easier
exposition, we make a couple assumptions. Firstly, we assume that
the last layer feature representations ¢(-) are fixed for all training
data points. This can also be seen as freezing the weights ©; and
training only the last layer parameters ©r. Secondly, we assume
that the data is separable in the last layer, i.e., there exists a clas-
sifier that achieves perfect training accuracy, which is often true
for real-world DNNs. Both of these assumptions can be removed at
the expense of clarity. We also empirically verify that the central
conclusion holds in practical DNN.

THEOREM 3.1 (SuPPORT VECTOR EFFECT). Under the above as-
sumptions, the difference between the full gradient sum and the sum
over support vectors decreases as:

1
=0|—/|,
ty+§

where y = min;e g y; is the maximum margin, § = min;es(yi —y) >
0, t is the iteration number of gradient descent, S is the set of support
vectors, and the size of the set |S| < dim(¢(x)) is independent of the
number of data points n.

> Ve, (xi,yisOL(1)
ieS

n
> Ve, £(xi,yis OL(1)) -
i=1

The proof of the Support Vector Effect (Theorem 3.1) is deferred
to Appendix A.2. Intuitively, it implies that the gradient updates
for the last layer parameters © become increasingly dominated by
the contributions of a small set of support vectors, as contributions
from non-support vectors decay rapidly. For interpretation purpose,
these support vectors can be considered the most difficult (to learn)
data points, which we clarify further in Section 4.1.

Explaining existing limitations. The SVE implies sparsity
of gradient updates in the last layer and resulting dominance of
a small set of support vectors. This can explain observed issue
of lack of diversity in instance attribution methods [10, 38, 43].
Moreover, since the SVE intensifies over time, leading to a growing

1022

KDD ’25, August 3-7, 2025, Toronto, ON, Canada

50000 50000

Count by Threshold
>0.00001: 788
>0.001: 38

Count by Threshold
>0.00001: 38156

40000+ >0.001: 36413

40000

>0.1: 0 >0.1: 23037
>0.5: 0 >0.5: 12875
30000+ >0.9: 0 30000+ >0.9: 5755

20000+ 20000+

10000 10000+

07 T
0.0 0.2

T 07 !
1.0 0.0 0.2

Y f
0.4 0.6 0.8 1.0

Self-Influence

T T T
0.4 0.6 0.8

Self-Influence

(a) Last Layer Estimate (b) Ground Truth

Figure 1: Comparison of self-influence estimates for CIFAR-
100 using (a) last layer and (b) input layer representations,
highlighting sparsity in last layer estimates, in strong con-
trast to a more diverse spread in ground truth estimates.

imbalance in the importance assigned to individual data points, it
can explain the temporal performance degradation highlighted by
Schioppa et al. [34]. Together, these findings underscore the risks
of last layer approximations for assessing data importance, as such
methods tend to overemphasize a narrow subset of data points
while failing to capture the broader dataset’s influence.

3.1 Illustrating the SVE

To demonstrate the SVE’s relevance beyond the theoretical scope
of Theorem 3.1, we conduct empirical evaluation under multiclass
setting and common configurations of training time, optimizer,
weight initialization etc. While this could lead to falling short of
near-zero training error or even perfect training accuracy, the explo-
ration highlights the SVE’s significance across diverse, real-world
scenarios. Our experiments confirm the existence of SVE under
these settings: (1) with penultimate layer embeddings as features,
few data points have non-zero influence (Figure 1), and (2) number
of data points with non-zero gradients decrease rapidly (Figure 2).
Additionally, they help attain a more nuanced understanding of the
manifestation of SVE under popular DNN setups.

3.1.1  Validation of SVE in Practice. For direct illustration purposes,
we explicitly compute importance of individual data points using
last layer representations. Following Feldman and Zhang [5], we use
a sample-level notion of influence, defining a sample’s importance
by its impact on a specific prediction. We can define the influence [3]
of a data point x on a data point x’, Ziyye (%, '), as the change in
the loss ¢ at x” between having learned the model parameters ©
without and with x in the training data D, i.e.,

Tue(x,X) =t(x' |©:x2 D) - t(x' |®:x€ D) (3)

For the sake of illustration, we concentrate on self-influence, where
x = x’. While naive computation of Equation (3) for all x is prohibi-
tively expensive, we employ sub-sampling estimators [5] that make
the calculation relatively efficient. This involves training multiple
models on randomly chosen subsets of the data. We keep track of
which subsets each instance belongs to, allowing us to estimate its
influence without retraining the full model for every instance.
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Similar to Feldman and Zhang [5], we train ResNet-50 [9] on
CIFAR-100 images. However, we compute influence scores using
last layer embeddings!, and use the available influence scores com-
puted using input layer embeddings (i.e., raw images) with full
model training as ground truth [5]. Under the SVE, most data points
are expected to show zero influence when focusing on the last layer,
which is indeed the case in Figure 1a where fewer than 0.08% data
points are found to have non-zero self-influence (j (x’,x") > 0.001).
We further compare these values with ground truth estimates in
Figure 1b, to verify that the behavior actually arises from SVE rather
than some intrinsic data or model properties. Here, we find that over
70% of data points exhibit non-zero self-influence, a nearly 1000x
increase, with more than 10% having substantial self-influence ex-
ceeding (j(x’,x’) > 0.9).

Remark. While the focus of this work is on the last layer, the
behavior may not intuitively be very different in second last layer
where similar linear separability may often be attained. A prelim-
inary study using second and third last layer embeddings under
aforementioned setup suggests that while moving from the last to
earlier layers may alleviate the dominance of support vectors, the
SVE still influences gradient sparsity, albeit less pronouncedly.

3.1.2  Extent of Impact of SVE. We also evaluate how significantly
SVE manifests across a range of practical settings, going beyond
the specific configuration under which its theoretical foundations
are laid out. While we rigorously uncover the SVE and present
Theorem 3.1 under a particular choice of loss and optimizer, recent
literature on implicit bias of multiple optimization algorithms to-
wards maximum margin solutions [21, 22, 25, 40] help extend our
insights to more relaxed settings. Nonetheless, different optimizers
like AdaGrad [4] may demonstrate different implicit biases [33], so
the SVE may not always naturally follow.

We train DNNs for 500 steps under varied choices of dataset,
optimizer, model type and model size, while keeping track of per-
centage of non-zero gradients in the last layer—which the SVE
suggests should drop rapidly over time. We use CIFAR-10, ResNet-
50 and Adam as default choices for dataset, model and optimizer,
respectively. While the precise numbers end up being different, the
key expected trend of rapid drop to a small percentage of non-zero
(i.e., greater than 0.001) gradients persists almost throughout, as
seen in Figure 2. Quite paradoxically, better models are generally
impacted worse, i.e., models that attain lower error quickly experi-
ence faster decay in non-zero gradients, which could be explained
by the criteria of SVE manifestation, like near-zero training loss,
being attained faster with better models.

Impact of dataset (Figure 2a). We experiment with three image
datasets of increasing complexity: MNIST, CIFAR-10 and CIFAR-
100. While we stick with ResNet-50 for CIFAR datasets, we use
a multi-layer perceptron (MLP) for training on MNIST since it is
a relatively simple dataset. Moreover, the ResNet-50 models are
pretrained and initialized with ImageNet weights, while the MLP
is trained from scratch. Percentage of non-zero gradients drops to
under 2.5 after just 200 training steps across all datasets, illustrating
significant impact of SVE throughout.

!Models h(-) are trained on last layer representations ¢(x), and performance is
evaluated by checking if h($(x)) = y.
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Figure 2: Percentage of non-zero gradients in the last layer
decreases rapidly over time across multiple datasets, opti-
mizers, model types and model sizes, suggesting the Support
Vector Effect is observed in varied, real-world settings.

Impact of optimizer (Figure 2b). We experiment with three pop-
ular optimizers: AdaGrad [4], RMSProp [24] and Adam [16]. In
line with SVE, most last layer gradients drop to zero for RMSProp
and Adam, with just 3% and 1% non-zero gradients remaining after
500 training steps for RMSProp and Adam, respectively. However,
AdaGrad demonstrates a significantly different trend, with over
25% gradients being non-zero even at the end of training. This il-
lustrates that optimizer choice could influence SVE manifestation,
as well as consequent negative impact on downstream applications
like data selection and attribution. The trend may be explained
by AdaGrad having different implicit biases [33] than others. Still,
we speculate that such behavior is not unique to AdaGrad and is
worthy of deeper investigation in the future.

Impact of model type (Figure 2c). We experiment with three
prominent model architectures, from the popular ResNets [9] to the
scaling-focused EfficientNets [39] to the ConvNeXts [20] that incor-
porate learnings from vision transformers [19]. Specifically, we use
ResNet-50, EfficientNet-B0 and ConvNeXt-Base in our experiments.
All models are evidently influenced by the SVE.

Impact of model size (Figure 2d). We experiment with three Ef-
ficientNet [39] models of increasing sizes: EfficientNet-B0 (small),
EfficientNet-B2 (medium), and EfficientNet-B4 (large). Although
the SVE is evident across all model sizes, larger models experience a
more pronounced impact, with a sharper decline in the percentage
of non-zero gradients.
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4 Uncovering New Limitations Through SVE

Having established the foundations of the SVE, which helped ex-
plain some previously observed limitations of popular data selection
and attribution methods, we now use SVE to unveil new limita-
tions and insights. Our findings further highlight the risks of last
layer approximations, emphasizing the need for data selection and
attribution methods that account for broader dataset dynamics and
diverse contributions from training points.

4.1 Group-level Influence and Exemplar Effect

A direct consequence of the SVE is that so-called ‘instance’ attri-
bution methods exhibit neither local, instance-level behavior nor
global, data-level behavior, but instead they identify class or group-
level exemplars. We refer to this phenomenon as the exemplar effect:
with last layer approximations, a few training instances (the support
vectors) repeatedly receive the highest attribution scores for most
test instances belonging to the same class. Since attribution score
calculations rely on gradients [18], it is easy to see that these group-
level exemplars or support vectors are the most difficult (to learn)
instances from each class, as indicated by their high loss or large
gradient norm. The exemplar effect has critical implications for the
utility of instance attribution methods, revealing their tendency
to act as class-level explainers rather than providing meaningful,
instance-level insights.

To quantify this phenomenon, we define the set of exemplars as:

©

where count (x;, Drest, 7, k) represents the number of times a train-
ing point x; appears among the top-k highest attribution scores
with any test instance x j € Dhrest computed using 7. We are partic-
ularly interested in data points which repeat very frequently, say
more than r times, which we can refer to as exemplars. In the ab-
sence of SVE, one would expect very few, if any, training instances
to repeatedly influence large numbers of test points, particularly
for small values of k. However, we find extensive repetition on ex-
perimenting with multiple datasets and DNNs, as shown in Table 1.
Note that the first row depicts that just 3 out of 60,000 training
points in MNIST are considered the most influential for all 1000

k
ng = {x; | VXi € Dyrain, count (x;, Dtest, £, k) > r}

Table 1: Illustration of the exemplar effect.

Dataset k r  #Exemplars
1 1000 3
MNIST 1 900 7
3 1000 11
I 3% 24
1 1000 0
CIFAR-10 1 900 4
3 1000 4
I 3% 10
1 100 78
CIFAR-100 1 90 88
3 100 220
3 90 249
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test instances per class. Additionally, the number of exemplars (i.e.,
|S£;(k|) are close to the number of classes when k = 3, serving as
empirical evidence of class or group-level behavior.

While previous work has noted lack of diversity in attribution
methods through anecdotal examples [38], our results demonstrate
that this issue is systematic and pervasive across entire test sets.
Moreover, we attribute this behavior to the SVE’s emphasis on sup-
port vectors, even in settings where the data is not fully separable
and training loss is not exactly zero.

4.2 Vulnerability to Poisoning Attacks

Since the exemplars are often hard-to-learn data points, the exem-
plar effect makes the discussed attribution methods particularly
bad choices for data with mislabeling. Yet, even more concerning
is that this renders these methods vulnerable to data poisoning
attacks involving intentional mislabeling or label flipping; a small
proportion of flipped labels are enough to result in these malicious
data points being considered the most influential. This can have un-
intended consequences such as a biased DNN being considered fair
due to the most influential instances with flipped labels appearing
unbiased, although the DNN does not actually rely on them.

As shown in Table 2, we verify this behavior through multiple
experiments where we randomly flip a meager 1% of labels. With
a small amount of poisoning, the model training should not be
impacted much—and we indeed see little change in accuracy of
models trained on poisoned instead of the original data. While
the poisoned model continues to make very similar predictions,
the most influential data points change dramatically. Since the
poisoned instances do not naturally belong to their stated class,
they are difficult to learn and end up becoming support vectors with
disproportionately high influence. Moreover, due to the exemplar
effect, the poisoned instances repeatedly show up as most influential
training points for most test instances, which results in nonsensical
outcomes. For example, a cat image with label poisoned to frog could
end up being considered most influential for correctly predicting
frogs. Table 2 confirms that a handful of training instances show up
as most influential points for all test instances per class, and that
an overwhelming majority of these data points is in fact poisoned.
r is set to 1000 for MNIST and CIFAR-10, and 100 for CIFAR-100,
aligning with the typical number of test instances per class for each
dataset.

Table 2: Illustration of vulnerability of last layer gradient-
based instance attribution methods to data poisoning.

Dataset k #Exemplars # Poisoned % Poisoned

1 3 3 100.0
MNIST 3 12 12 100.0

10 41 36 87.8

1 2 2 100.0
CIFAR-10 3 11 11 100.0

10 55 45 81.8

1 27 26 96.3
CIFAR-100 3 188 178 94.7

10 844 497 58.9




KDD ’25, August 3-7, 2025, Toronto, ON, Canada

4.3 Coresets Are No Better than Random

To speed up model training for large data and model size, multiple
coreset-based data subset selection methods have been proposed.
These methods curate the selection of a fraction of the training
data for faster training with minimal loss in predictive performance.
They require representative selection of influential data points,
which would naturally be impacted by the SVE when such influence
is computed using last layer embeddings—which is the de facto
choice for application of coreset methods to DNNs. Note that while
the motivations of instance attribution and data subset selection
may be related, the impact of SVE differs significantly because the
influential instances are used differently. In instance attribution, just
five or ten most influential instances may be under consideration,
which happen to repeatedly be the same for different test instances
due to SVE. On the other hand, in data subset selection, even though
a small proportion of entire data is selected, this still typically
translates to thousands of instances. The intriguing insight is that
most of these instances may be as good as random because only
the few support vectors may adequately be identified as being
useful towards the model training. We formally discuss two critical
implications: (1) random selection performs at par with coreset-based
methods for a sufficiently large subset selection size, and (2) random
selection outperforms coreset-based methods when subset size is small.
Empirical validation is present in Figure 3 and Table 3.

Remember that coreset-based methods often greedily build the
important data subset S by adding to it instance x; with gradi-
ent contribution g; if it helps approximate the (last layer) gra-
dient g on entire training data. Specifically, we could have g =
2x;eD Vot (x;,0) and g; = w;Vel(xj,®) [23]. A greedy selection
may be practically seen as adding xj. to subset S from training data
D such that:

xj = arg min |lg Z;g gl ©)

Random performs at par with coreset-based methods for a suffi-
ciently large subset selection size. We leverage SVE to explicitly link
random and coreset-based selection. Techniques like CRAIG [23]
rely on the last layer gradients and g; = Vg, £(x;). Through Theo-
rem 3.1, we know that the gradients remain non-zero for largely
the support vectors, i.e., g; — Oand gj > g; for j’ € Sand j ¢ S.
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Figure 3: Accuracy (higher is better) and time (lower is better)
comparison of various data subset selection strategies for
training ResNet-18 on CIFAR-10.

1025

Syed Hasan Amin Mahmood, Ming Yin, and Rajiv Khanna

Table 3: Accuracy comparison of simple random for data
subset selection with the state-of-the-art CREST on CIFAR-
100. Accuracy with full training (i.e., size=100) is 74.5%.

Size (%) CREST Random % Change
1 23.2 333 +43.5

4 55.5 58.4 +5.2

7 64.1 65.3 +1.9

10 68.4 66.8 -2.3

15 71.6 71.0 -0.8

20 72.3 72.2 -0.1

This implies that, beyond the early training phase, significant gra-
dients are limited to a small set of support vectors, making most
other points indistinguishable for selection. Therefore, data subset
selection via Equation (5) with |S| > |S| effectively reduces to
random selection. This is in line with observations by Yang et al.
[41], who noted that a few key points drive group performance and
random selection rivals top methods when subset size exceeds 20%.

Random outperforms coreset-based methods when subset size is
small. For smaller subset sizes, we hypothesize that the coreset-
based methods tend to repeatedly select the same hard-to-learn
data points, while random selection provides greater diversity. Over
multiple steps, a random method samples a broader portion of the
training set, leading to potentially outperforming even the best
coreset-based methods, as seen in Table 3.

These findings collectively highlight that random selection can
be highly competitive with popular coreset methods at a fraction of
the computation cost. This is made even more explicit in Figure 3,
where we compare uniformly random selection with three popular
coreset-based methods: CRAIG [23], GLISTER [14] and GradMatch
[13]. To ensure fairness, we use a random baseline that selects
new subsets every e epochs, mirroring coreset methods. We also
include comparison with fixed random subsets (“Random (Fixed)”),
sometimes used unfairly as the baseline. Our findings hold across
varied datasets (CIFAR-10, CIFAR-100 and Tiny ImageNet) and
models (ResNet-18 and ResNet-101), confirming the generalizability
of these insights (see Figure A2 in Appendix).

5 Countering SVE

Despite the limitations of popular attribution and subset selection
methods, their continued use and associated positive impact might
seem puzzling. However, it is important to be clear that the key
takeaway from SVE is not that these methods are inherently flawed,
but that their practical instantiation is suboptimal. Their appar-
ent success can be attributed to incorporating various beneficial
elements, albeit within complex frameworks that necessitate last
layer approximations. We argue that by focusing on the simpler
underlying principles driving the gains, we can achieve comparable
or even superior results with significantly improved efficiency.

In this section, we introduce two novel methods informed by
SVE: Prediction As Explanation (PAE) for instance attribution and
Random sampling with Entropy weighting (RandE) for data subset
selection. We demonstrate that these methods can achieve state-
of-the-art performance while being substantially more efficient
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than existing approaches. Furthermore, we highlight the potential
for further optimization and refinement of these methods, empha-
sizing the importance of continued exploration in this direction.
We did not indulge in extensive exploration in current study since
we wanted to test efficacy and efficiency of these SVE-informed
methods rather than coming up with the best performing method.

5.1 Prediction As Explanation

Various previously discussed instance attribution approaches can
be decomposed into a uniform framework characterized by a prod-
uct of similarity between instances and the sensitivity of model
outputs to the model loss [43]. The SVE unveils shortcomings as-
sociated with the sensitivity part, resulting from the sparsity of
last layer gradients. However, the similarity part may still be used
for effective attribution, either as part of some complex method or
more efficiently to build independent alternatives.

In fact, distance comparison or nearest neighbor search on last
layer representations, often termed “penultimate layer embeddings,”
has been previously found to capture perceptual similarity well
and be effective for model explanation [8, 28, 44]. However, these
similarity comparisons for instance attribution have been neglected
recently in support of the more complex methods considered to
be superior [32]. To counter the SVE and allow for useful attribu-
tion, we revisit this idea and conduct experiments to validate the
efficacy of instance attribution using nearest neighbor search with
penultimate layer embeddings. It is much more efficient and versa-
tile since it involves no gradient tracking or manipulation. While
past work [32] may argue that similarity measures do not take into
account the DNN model—which does hold when using input layer
embeddings—the model is in fact central to penultimate embedding
preparation and consequent similarity analyses. We advocate for
broader utilization of model-informed similarity measures at large,
finding a lot of past criticism to be too harsh.

In particular, we propose using prediction layer outputs them-
selves as embeddings in similarity computation for instance attri-
bution. This method, which we term Prediction As Explanation, or
simply PAE (Algorithm 1), offers several advantages. Firstly, since
predictions directly reflect the model’s decision-making process,
PAE provides a faithful representation of how the model perceives
the data, thus offering high fidelity. Secondly, since predictions are
readily available and do not need access to internal model repre-
sentations or gradients, PAE offers high accessibility. Thirdly, unlike
sensitivity-based methods that can be unduly influenced by incor-
rect labels, PAE relies on the model’s own understanding of the
data, making it robust to mislabeling. Finally, the method elimi-
nates the need for expensive gradient operations while also having
low dimensionality—often much lower than even the penultimate
one—resulting in significantly improved computational efficiency.

5.1.1 PAEvs Penultimate Layer Embeddings. As advocates for model-
informed similarity, we consider penultimate embeddings to be a
solid choice for instance attribution. We do find PAE slightly supe-
rior due to being more faithful, accessible and efficient by design,
although these gains may not always be very significant or notice-
able. Beyond these obvious advantages, however, there is a crucial
use case where penultimate embeddings can be detrimental while
PAE performs effectively: when data points are close to the decision
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Algorithm 1 Prediction As Explanation (PAE)

Input: Training data D, test instance x’, trained model f(-)
Output: k most important training instances
for x; in D U {x'} do
pi — f(xi)
end for
for x; € D do
si < Similarity(p;, p’)
end for
R « Sort training instances by s; in descending order
Return: Top-k instances R[: k]

boundary. Since penultimate embeddings disregard the last layer
parameters and the linear boundaries they represent, if the test data
point’s embedding lies close to the decision boundary, its closest
training data point could belong to another class, which is coun-
terintuitive from an influence perspective. Using prediction vector
entropy as a proxy for such closeness, we are able to uncover such
failure cases of penultimate layer similarity comparison, as seen
in Figure 4. Penultimate embeddings lead to problematic attribu-
tion on the camel image expected to be close to decision boundary
with 0.40 entropy: a baby predicted as tank or a correctly predicted
elephant may not explain why the image was correctly predicted
as camel. On the other hand, PAE appears to provide reasonable
explanations. Still, note that penultimate layer embeddings will
often be effective, especially when it comes to providing perceptu-
ally similar attributions and when a data point is not close to the
decision boundary, as seen in apple image in with 0.08 entropy.

‘ (tractor) . camel .
n @i & E =3
- ;
_ s

(a) PAE

camel
(tractor)

(b) Penultimate Layer Embedding

Figure 4: Qualitative comparison of PAE and penultimate
layer embeddings on a camel image close to decision bound-
ary and an apple image far from decision boundary. The test
image is shown on the left, followed by 5 most important
training images selected by respective methods. Correctly
predicted labels are shown in green, while incorrect labels
are displayed in red along with the prediction (in brackets).
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Figure 5: Qualitative comparison of various instance attri-
bution methods on correctly and incorrectly classified data
points from CIFAR-10. The test image is shown on the left,
followed by the 3 most important training images selected
by respective methods.
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Figure 6: Qualitative comparison of various instance attri-
bution methods on a mislabeled data point from CIFAR-10.
The test image, of a frog labeled as cat yet correctly predicted
to be frog, is shown on the left, followed by 3 most and least
important training images selected by respective methods.
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5.1.2  Qualitative Evaluation. Due to the inherent subjectivity in
evaluating effectiveness of instance attribution, we primarily rely on
visual inspection of top training instances for the purpose, closely
resembling prior literature [32]. We find PAE, and simple embedding-
based methods in general, to consistently outperform complex
methods across multiple datasets. Figures 5 and 6 provide such
qualitative comparison on select CIFAR-10 images, where PAE is
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found to perform quite well in comparison to four baseline meth-
ods: Penultimate Layer Embeddings (Emb), TracIn [32], Representer
Point Selection (RPS) [42] and Influence Functions (IF) [18]. As seen
in Figure 5b, PAE appears particularly insightful in explaining possi-
ble reasons behind incorrect prediction. Moreover, we also uncover
a case of naturally mislabeled instance in CIFAR-10, and use it
to evaluate robustness of the methods to mislabeling. As seen in
Figure 6, and in line with our expectations, similarity-based meth-
ods significantly excel here. We also compare the least important
images here, and find PAE to arguably be more informative than
penultimate embeddings by providing a more diverse selection in-
stead of just perceptually similar images with correct predictions.
The examples highlight PAE’s ability to provide meaningful and in-
terpretable explanations, especially when naturally or maliciously
mislabeled data is present.

5.1.3 Quantitative Evaluation. For more objective assessment, we
applied the Identical Class and Identical Subclass tests from [9] on
the various attribution methods, as shown in Figure 7. The Iden-
tical Class Test ensures that the most similar instances for a test
instance belong to the same class, avoiding explanations that could
undermine user trust in model predictions. Additionally, the more
involved Identical Subclass Test adds the requirement that similar
instances belong to the same ‘latent subclass’, which is unknown
during model training. For this test, we create CIFAR-10B, a variant
of CIFAR-10 with binary classes (vehicle or not), where known sub-
class labels aid evaluation. While there are understandable concerns
about how well these tests capture true effectiveness of instance
attribution methods, they at least provide some meaningful as-
sessment of interpretability and reliability. Our findings reveal that
similarity-based methods, including our proposed PAE, significantly
outperform Influence Functions while being competitive with other
complex, sensitivity-based methods. These experiments underscore
the effectiveness of PAE as an efficient and insightful instance at-
tribution method, particularly in scenarios where computational
constraints or limited access to model internals pose challenges.
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Figure 7: Comparative performance (higher is better) on
Identical Subclass Test (left) and Identical Class Test (right)
for different instance attribution methods on CIFAR-10B.
Similarity-based methods demonstrate competitive, if not
superior, performance. It is important to highlight that RPS
involves explicit class-level filtering when selecting top train-
ing instances, trivially achieving a perfect score in the Iden-
tical Class Test.
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Table 4: Relative error (lower is better) compared to training full model (Size=100). We also share wall-clock time improvement
for our proposed RandE over state-of-the-art CREST. SGD shows accuracy of a standard mini-batch SGD pipeline at 10% training.

Dataset Model  Size (%) Random SGD CRAIG GradMatch GLISTER CREST RandE [Time]
CIFAR-10 ResNet-20 10 8.9+0.6  21.3+8.0 13.0+5.1 6.0+0.1 7.0£0.1 5.740.2 5.2+0.3 [] 6X]
CIFAR-100 ResNet-18 10 8.2+0.4  36.5+2.9 17.2+45 12.7+0.9 27.6+4.0  10.3+x04  5.6+0.4 [| 3X]
TinylmageNet ResNet-50 10 15.4+0.6  32.8+2.1 28.5+0.6 27.7£0.2 32.8+2.1 16.2+0.4 10.9+0.4 [| 10X]
5.2 Random Sampling with Entropy Weighting 5.2.1 Quantitative Evaluation. Adopting an evaluation framework

While coreset-based methods excel at identifying influential train-
ing examples, they incur substantial computational overhead due to
their iterative selection process. In contrast, random sampling offers
exceptional efficiency but may miss out on crucial data points that
contribute significantly to model training. We use SVE to bridge
this gap, and introduce a new algorithm that is both efficient and
effective. SVE highlights that, as DNNs converge, the influence of
training instances concentrates on a small set of support vectors.
Since these support vectors lie near the decision boundary, they
exhibit high uncertainty or entropy in associated model predic-
tions. By leveraging this insight, we hypothesize that prioritizing
examples with high entropy during random sampling can lead to a
more informative and effective subset selection, even without the
complex computations of coreset methods.

We introduce Random sampling with Entropy weighting, or
simply RandE, a simple yet powerful data selection strategy that
incorporates entropy as a guiding principle for random sampling.
RandE can be conveniently incorporated into a data-efficient learn-
ing pipeline, as depicted in Algorithm 2. After every few training
steps or epochs, we compute the entropy of the model’s predic-
tion vector for every training instance. We then randomly select a
subset of the training data, where the probability of selecting each
instance is proportional to its entropy. The model is trained on
this selected subset for the next few epochs. This approach allows
us to dynamically focus on the most uncertain or “difficult” exam-
ples during training, potentially leading to faster convergence and
improved generalization. In fact, RandE can attain state-of-the-art
performance on many datasets, models and subset sizes.

Algorithm 2 Model training with RandE

Input: Training data O, model f(-), number of epochs T, subset
ratio p, epoch interval e
Output: Trained model f(+)
fort=1to T step e do
for x; in O do
w; < Entropy of f(x;)
end for
S « Randomly select p - |D| examples from D with proba-
bility proportional to w;
for j=0toe—1do
Train f on S for one epoch
end for
end for
Return: f
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similar to the state-of-the-art, coreset-based CREST [41], we rig-
orously evaluate RandE against multiple prominent data subset
selection methods. As seen in Table 4, RandE not only performs
competitively in terms of error, but also requires significantly lower
runtime. Additionally, as seen in Table 5, RandE has even more
significant gains over CREST for smaller subset sizes, similar to
simple random in Table 3. This demonstrates the effectiveness of
incorporating entropy-based weighting into random sampling for
data selection. Overall, RandE offers a compelling alternative to
computationally expensive coreset methods, demonstrating that
substantial gains can be achieved through simple yet informed
modifications to random sampling.

Table 5: Performance comparison of RandE for data subset
selection with the state-of-the-art CREST on CIFAR-100.

Size (%) CREST RandE % Change
1 23.2 37.8 +62.9
4 55.5 61.2 +10.3
7 64.1 67.9 +5.9
10 68.4 70.3 +2.8
15 71.6 72.6 +1.4
20 72.3 73.2 +1.2

6 Conclusion

We unveil the Support Vector Effect (SVE)—a phenomenon arising
in the last layer of DNNs due to implicit regularization effect of
optimizers like gradient descent on interpolating DNNs. Using SVE,
we are not only able to explain previous perplexing observations re-
garding prominent data selection and attribution methods that rely
on last layer gradients, but also uncover various new limitations and
insights. Furthermore, SVE, and the insights drawn from it, inform
design of new methodologies and algorithms for both instance at-
tribution and data subset selection that compete with the respective
state of the art, despite being simple and order of magnitude faster.
Our work motivates for better data selection and attribution meth-
ods, and advocates against the use of last layer approximations for
downstream tasks. For future work, we aim to delve deeper into use
of adaptive random methods by combining our proposed methods
with varied sample importance criteria. Further, we plan to explore
impact on SVE of different optimization algorithms that may lead
to different forms of implicit regularization.
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A.1 Auxiliary Lemmas

We start by re-stating a result by Soudry et al. [37] that shows
that for separable data, (stochastic) gradient descent converges
to the max-margin solution for the logistic loss through implicit
regularization, even though there could be several solutions that fit
the training data with perfect accuracy.

LEMMA A.1 (SOUDRY ET AL. [37]). For a linearly separable dataset,
logistic loss and for any step size n < 2 f71A72.(X), the gradient
descent iterates will behave as:

Or(t) =0 logt + p(1), (6)

where © is the maximum {,-norm margin separator in the feature
space defined by ¢(-) and the residual grows at most as ||p(t)|| =
O(loglogt), and so

e e
im oLt & @)
t=oo [0 ()] (1Ol
Furthermore, the rate of convergence is H% - % } €0 (@)

We now encapsulate the growth rate of the norm of the optimizer.

LEmMMA A.2 (NorRM GROWTH OF Oy (t)). Under the above assump-
tions, the norm of © (t) grows logarithmically with t:

e ()l = ©(logt)

This follows from application of triangle inequalities to Equa-
tion (6), ., 0" log | - [lp(1) | < 0" log t+ p(1)] < [[6* log ]l +
lp(#)]l. These lemmas indicate that gradient descent on logistic loss
with linearly separable data leads to the weights growing in norm
logarithmically and their direction converging to the maximum
margin solution at a rate inversely proportional to log ¢. Next, we
establish a lemma regarding the decay of the gradient norms for
individual data points.

LEMMA A.3 (DEcAY OF GRADIENT NORMS). The gradient norms
satisfy:

1
176, 0L (030011 = O 1.

y;®* T ¢(x;) is the margin of the data point x; under ©*.

where y;

Proor. We begin by recalling the gradient of the logistic loss
function with respect to © for a single data point (x;, y;):

Vo, t(Or(1):xi,yi) = =0 (—yi®L(D) " ¢(xi)) yid(xi).

is the sigmoid function.

_1

where 0(u) = 1=z

Estimating y;0 ()T $(x;). Using Lemma A.1, we know that the
direction of ©f (t) converges to that of ©*:

im Or () _ o
t=eo |OL (D) (|67
We define the following normalized vectors:
A GL(t) Ak o
Or(t) = ——=, = o
e @l lle]]

Fort — oo,

yiOL() T P(xi) — 0L (1)]lyi® T p(xi),
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Next, we define the margin of data point x; under the maximum
margin separator ©*: y; = y;0* T ¢(x;). Note that because of the
separability assumption, y; > 0. Using this definition, we have:

A\ Yi
6" Th(xi) = L.
. Y e
Substituting back, we get for t — oo:
5OL(0T9(x) = 101015

Estimating ||© (¢)||. From Lemma A.2, we know that ||© (¢)|| =
[[©*||log t + O(loglog t). Thus for large t and ignoring the loglog ¢
term,

lec®l — lle*| logt.

Combining the Estimates. Substituting the estimate of ||®f (¢)||
into our previous approximation:

yiOL () "¢ (xi) ~ (/|07 log t) (ﬁ) = y;logt.
Thus, we have:
yiOL(1) ¢ (xi) — yilogt.

Estimating o (—y;0L(t) T¢(x;)). We now compute the sigmoid
function:
0(— o) (t)T¢(x-)) — ;
YyieL ! 1+ eYOL()TP(x:)
This gives:
. 1 1
o (~yiOL(t) " $(x:)) —

1+ evilogt

YA
Estimating the Gradient Norm. The norm of the gradient is:
Ve, £(OL(1);xi y)ll = o (~y:OL(1) Td(x2)) I (xa)l

since |y;| = 1.
Substituting the approximation for the sigmoid function we have,
ast — oo:

Ve, £(OL(1); i, yi)ll — %”¢(X1‘)”~

Since ||@#(x;)|| is a constant that does not depend on ¢,

1
RN

Vo, £0L(1)sx0 90 = O (

A.2 Proof of Theorem 3.1 (SVE)

Proor. We write ; = o (-y;01(t) "¢(x;)). From the gradient
of the logistic loss, the total gradient at iteration ¢ is:

G(t) = )" Ve, t(xi, 4:OL(1) = = Y Yiyip(x:)
i=1 i=1

Similarly, the gradient sum over support vectors is:

Gs() = ) Vo, t(xi, ysOL() = = ) Yinig(xi)
ieS ieS
The difference is:

D() = G(t) = Gs(t) = ), Vo, £(xi,yis OL(1))
i¢S
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We need to bound ||D(¢)||. Using Lemma A.3, for i ¢ S:

1
IV, 0103001 = O 1.

where y; > y, since non-support vectors have larger margins.
Let §; = y; — v, and § = min;¢ g 6; > 0. Therefore,

)=ols)

IDWI < Y, V6, e@10: x99l <| Y 166l .

i¢S i¢S

Ve, £(OL(1);xi, yi)ll = O (tY+5i

Summing over all non-support vectors:

O

To further elucidate the implications of the decay rates, note
that for support vectors, y; = y, so their gradient norms decrease

as O (tiY) Additionally, for non-support vectors, y; > y, so their

gradient norms decrease faster, at rate O (W

L ), where § > 0.

B Experiments

Sensitivity-Similarity Comparison through RPS. The instance at-
tribution method RPS [42] has this neat formulation where the
attribution score (“representer value”) can be neatly decomposed
into product of sensitivity and similarity terms. In Figure A1, we
visualize the distribution of these as an additional means to illus-
trate SVE, or sparsity of gradients, and reflect how similarity terms
may naturally be more meaningful.
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Figure A1: Illustration of SVE and its impact on instance at-
tribution on instances from MNIST (top), CIFAR-10 (middle)
and CIFAR-100 (bottom) datasets. We observe that almost all
training instances have near-zero gradient (b), which dom-
inates the representer values too (d), inadequately leading
to most instances being considered to have no significant
attribution. Similarity term (c) shows more diversity.
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Figure A2: Accuracy (higher is better) and time (lower is
better) comparison of various data subset selection strategies
for training ResNet-101 on different datasets.

Data Subset Selection. To further elucidate how coreset-based
methods are no better than random for data subset selection, as
discussed in Section 4.3 of main text, we conduct additional experi-
ments on a larger model (ResNet-101) and with multiple datasets
(CIFAR-10, CIFAR-100 and Tiny ImageNet). As seen in Figure A2,
while the exact performance and gains vary across datasets, the
general insights remain applicable throughout.

Experimental Details. Our experiments are implemented using
TensorFlow, Keras, and PyTorch, depending on the available imple-
mentation for existing methods. We stick with default configura-
tions wherever feasible. Training and evaluations are conducted on
a mix of NVIDIA A10 and A100 GPUs. Code is made available at:
https://github.com/shasanamin/sve.
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