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Abstract
In Deep Neural Networks (DNNs), manipulating gradients is central

to various algorithms, including data subset selection and instance

attribution. For better tractability, practitioners often resort to using

only the gradients of the last layer as a heuristic, instead of the full

gradient across all model parameters, which we show is detrimental

due to the Support Vector Effect (SVE). We introduce SVE, a max-

margin-like behavior in the last layer(s) of DNNs and employ it

to thoroughly scrutinize prevalent data selection and attribution

methods relying on last layer gradients. Our investigation exposes

limitations in these techniques and not only provides explanations

for previously observed pitfalls, like lack of diversity and temporal

performance degradation, but also offers fresh insights, including

the vulnerability of existing methods to basic poisoning attacks

and the potential for competitive performance using much simpler

alternatives. Based on insights from SVE, we craft new methods

RandE and PAE for data subset selection and instance attribution,

respectively, which often outperform the purported state-of-the-art

at a fraction of the cost, emphasizing the practical advantages of

more efficient and less complex approaches.
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1 Introduction
Deep Neural Networks (DNNs) have revolutionized predictive mod-

eling across diverse domains, driven largely by increasing model

scale and dataset sizes. Yet, their remarkable success contrasts with

a limited understanding of their inner workings. As models and
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datasets continue to grow, a critical question emerges: how do indi-
vidual data points shape these vast models? Answering this is key
to understanding model behavior and developing more efficient,

sustainable training methods.

The exploration of the importance of individual data points for

high-performing DNNs has given rise to at least two prominent

use cases: instance attribution and data subset selection. Instance
attribution utilizes the notion of importance to select training in-

stances that the model capitalized on to make a given prediction

for insights into model behavior, while data subset selection uses

it to curate a smaller, impactful data subset for accelerated model

training without substantial performance degradation.

Newer methods continue to emerge for both instance attribution

[12, 18, 32, 38, 42] and data subset selection [11, 13, 14, 23, 30, 31, 41],

often to mitigate perplexing issues linked with prior approaches.

In instance attribution literature, some methods are observed to

lead to only a few training instances repeatedly being considered

most important for multiple test instances [10, 38, 43]. Attempts

to overcome such limitations have generally been method-specific.

For example, Sui et al. [38] reformulates work on Representer Point

Selection [42] to get rid of a regularization term, which helps ame-

liorate the lack of diversity. Additionally, Basu et al. [2] find that

Influence Functions [18] for instance attribution are fragile when

non-convex models like DNNs are involved, and a follow-up in-

vestigation by Schioppa et al. [34] reveals that influence estimates

may be reasonable initially but steadily degrade as DNN training

progresses. Similar issues have also intriguingly emerged in data

subset selection recently. Specifically, a few instances are observed

to dominate the selection process, and performance gains using

meticulously crafted coreset methods—instead of simple random

baseline—are found to diminish when large subset sizes are involved

[41]. These pervasive concerns, shared across multiple methods

and diverse applications, signal a larger underlying problem.

In the present work, we find a surprising commonality across

these methods that explicate the concerns. Although not intrinsic

to the design of all methods, the computational costs involved

with these vast networks encourage a predominant focus on the
last layer, which we find is a bad idea. Our investigations reveal an
intriguing phenomenon, the Support Vector Effect (SVE): the last
layer of DNNs behaves like a Support Vector Machine, forming a

maximum-margin linear decision boundary dependent on a sparse

set of support vectors. This exposes a critical flaw in using last-

layer approximations to assess data point importance, as they are

disproportionately influenced by a small set of support vectors,

which in turn results in data selection and attribution methods

yielding counterproductive outcomes.
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We rigorously establish the foundations of the SVE, leveraging

the implicit regularization effect of gradient descent adjacent al-

gorithms. We further illustrate the SVE in practice, identify key

limitations that are direct consequences of the SVE, and offer amelio-

ration strategies. Specifically, we make the following contributions:

(1) We introduce the Support Vector Effect, illuminating how

the last layer(s) of DNNs exhibit SVM-like behavior. We not

only provide a comprehensive framework for understanding

the phenomenon but also offer both theoretical insights and

empirical evidence into the substantial impact of the SVE.

(2) We utilize SVE as a unifying framework to explain perplexing

shortcomings in varied methods across two prominent use

cases of instance attribution and data subset selection. We

illustrate that concentrating on the last layer(s) in DNNs to

overcome computational limitations is often suboptimal.

(3) We utilize SVE to uncover fresh limitations and insights,

including group-level influence and vulnerability to basic

adversarial attacks, as well as how embarrassingly simple

and efficient alternatives will often perform competitively.

(4) We utilize SVE to design new methods for data selection and

attribution, which achieve state-of-the-art performance with

significantly improved efficiency. We also provide guidelines

for further optimization and refinement of these methods,

aiming to stimulate further method development through a

different, and much more efficient, lens.

2 Background and Related Work
Implicit biases. Popular optimization algorithms like Gradient

Descent and Adam [16] have been found to implicitly regularize

the training process, steering parameters to certain kinds of global

minima without any explicit regularization [27, 40]. Some of these

works [7, 26, 37] support observation of max-margin behavior in

DNNs, providing a foundation for our work on the Support Vector

Effect. These “implicit biases” have helped elucidate why highly

non-convex DNNsmay generalize well. In this work, we empirically

verify a similar implicit behavior in the last layer of DNNs, and

discuss its impact on relative importance of individual data points

for instance attribution and data subset selection.

Instance attribution. A growing body of research [12, 15, 18, 32,

35, 42] has explored methods for understanding and interpreting

DNNs, with work on gradient-based approaches to understanding

the influence of individual training instances on the prediction

process being of particular relevance to us. Traditional approaches

like leave-one-out methodologies are computationally expensive,

leading to the emergence of relatively efficient attribution score

methods. These include Influence Functions [18] that employ first-

and second-order derivatives to estimate influence, Representer

Point Selection [42] that utilizes a representer theorem in the last

layer of DNNs, and TracIn [32] that tracks gradients during opti-

mization. Some recent works [10, 29] also introduce methods to

select important instances that help explain entire learning algo-

rithms or model classes. However, these are less relevant to our

study, as we focus on understanding specific model instantiations

and methods employing last layer gradients.

For illustration through a concrete instantiation, Influence Func-

tions [18] estimate 𝐴𝐼𝐹 (x, x′), the influence on a test point x′ at-
tributed to a training point x, through the sensitivity of the model’s

loss ℓ with respect to its parameters Θ, expressed as:

𝐴𝐼𝐹 (x, x′) = −∇Θℓ (x,Θ)⊤𝐻−1

Θ ∇Θℓ (x
′,Θ), (1)

where 𝐻Θ is the Hessian of the loss over the training data. For

large DNNs, calculating (1) is intractable, which is why last layer

gradients are often used as a proxy to the full model gradients.

We use SVE to uncover, explain and improve limitations in such

sensitivity-based methods.

Data subset selection. To address efficiency and sustainability

concerns in large-scale machine learning, data-efficient learning

methods have emerged with the objective of judiciously selecting a

small subset of training data that yields performance comparable

to the full dataset. In the context of efficient model training, data

subset selection methods [13, 14, 23, 30, 41] delve into the iterative

creation of weighted data subsets, known as coresets, by aligning

subset and full gradients.

For illustration through a concrete instantiation, CRAIG [23]

employs a greedy algorithm to identify a coreset 𝑆∗ that minimizes

the subset size while ensuring that its gradients approximate the

gradients of the entire dataset D within an 𝜖 tolerance:

𝑆∗ =arg min𝑆⊆D,𝛾 𝑗 ≥0 ∀x𝑗 ∈𝑆 |𝑆 |, subject to:

max

Θ
∥
∑︁
xi∈D

∇Θℓ (x𝑖 ,Θ) −
∑︁
xj∈𝑆

𝛾 𝑗∇Θℓ (x𝑗 ,Θ)∥ ≤ 𝜖, (2)

where 𝛾 𝑗 are weights assigned to the selected subset data points.

The model is then updated using the weighted gradient sum of just

the identified coreset. Again, because of the size of DNNs, solving (2)

is hard and last layer gradients are often used as a proxy to the

full model gradients. We use SVE to uncover, explain and improve

limitations in such methods.

Pervasive use of last layer. Given the large number of parameters

in DNNs and resulting high dimensional gradients, it is common

practice to resort to using only (the gradients of) the last layer

as a heuristic approximation. This is quite popular for instance

attribution and data subset selection, which is the focus of our

work. However, its adoption also extends to multiple other use

cases, including DNN compression [6], analyzing DNN limitations

[36], active learning [1] and robust training [17]. Therefore, the

implications of our work elucidating how and when last layer ap-

proximations could be detrimental are expected to extend beyond

discussion on the two aforementioned use cases, and opens route

for significant further research.

3 Support Vector Effect
One can view neural network training as a combination of two

serial steps: representation learning, where the network learns to

extract meaningful features represented as the output of the penul-

timate layer, and learning linear classifiers using these last layer

representations. In a ‘good’ DNN with (near) zero training error,

the learned representations are expected to be linearly separable.

Crucially, we observe that the last layer classifier in such good

DNNs does not learn just any linear boundary but a very specific
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one: the maximum margin solution. In other words, this last layer

classifier exhibits behavior akin to learning the maximum margin

linear decision boundary—a characteristic reminiscent of Support

Vector Machines (SVMs). We coin this SVM-like training phenome-

non in the last layer(s) of DNNs as the Support Vector Effect. The

core of the SVE lies in the sparsity of gradient contributions during

training: as training progresses, only a few data points significantly

influence the updates of the last layer’s parameters.

We now formalize the SVE and provide theoretical insights into

its manifestation in DNNs. Let {(x𝑖 , 𝑦𝑖 )}𝑛𝑖=1
, where x𝑖 ∈ R𝑑 and𝑦𝑖 ∈

{−1, +1}, be the training data. We consider a DNN parameterized by

Θ = {Θ𝐿,Θ𝐿̄}, where Θ𝐿 ∈ R𝑝
denotes the parameters of the last

layer, and Θ𝐿̄ denotes the parameters of all preceding layers. We

conceive the output of the penultimate layer as the feature mapping

𝜙 (x;Θ𝐿̄) ∈ R𝑝
, and the output of the DNN is given by Φ(x;Θ) =

Θ⊤
𝐿
𝜙 (x;Θ𝐿̄). For simplicity, we focus on binary classification using

logistic loss, defined as ℓ (x𝑖 , 𝑦𝑖 ;Θ𝐿) = log

(
1 + exp

(
−𝑦𝑖Θ⊤𝐿 𝜙 (x𝑖 )

))
,

but the extension to multiclass classification and the softmax loss

is straightforward.

Our main result shows that the gradient updates with respect

to the last layer parameters Θ𝐿 become dominated by the sup-

port vectors as training progresses, with the contributions from

non-support vectors becoming increasingly minuscule. For easier

exposition, we make a couple assumptions. Firstly, we assume that

the last layer feature representations 𝜙 (·) are fixed for all training
data points. This can also be seen as freezing the weights Θ𝐿̄ and

training only the last layer parameters Θ𝐿 . Secondly, we assume

that the data is separable in the last layer, i.e., there exists a clas-
sifier that achieves perfect training accuracy, which is often true

for real-world DNNs. Both of these assumptions can be removed at

the expense of clarity. We also empirically verify that the central

conclusion holds in practical DNNs.

Theorem 3.1 (Support Vector Effect). Under the above as-
sumptions, the difference between the full gradient sum and the sum
over support vectors decreases as:




 𝑛∑︁

𝑖=1

∇Θ𝐿
ℓ (x𝑖 , 𝑦𝑖 ;Θ𝐿 (𝑡)) −

∑︁
𝑖∈S
∇Θ𝐿

ℓ (x𝑖 , 𝑦𝑖 ;Θ𝐿 (𝑡))





 = O (

1

𝑡𝛾+𝛿

)
,

where 𝛾 = min𝑖∈S 𝛾𝑖 is the maximum margin, 𝛿 = min𝑖∉S (𝛾𝑖 −𝛾) >
0, 𝑡 is the iteration number of gradient descent, S is the set of support
vectors, and the size of the set |S| ≤ dim(𝜙 (x)) is independent of the
number of data points 𝑛.

The proof of the Support Vector Effect (Theorem 3.1) is deferred

to Appendix A.2. Intuitively, it implies that the gradient updates

for the last layer parameters Θ𝐿 become increasingly dominated by

the contributions of a small set of support vectors, as contributions

from non-support vectors decay rapidly. For interpretation purpose,

these support vectors can be considered the most difficult (to learn)
data points, which we clarify further in Section 4.1.

Explaining existing limitations. The SVE implies sparsity

of gradient updates in the last layer and resulting dominance of

a small set of support vectors. This can explain observed issue

of lack of diversity in instance attribution methods [10, 38, 43].

Moreover, since the SVE intensifies over time, leading to a growing
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(a) Last Layer Estimate
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(b) Ground Truth

Figure 1: Comparison of self-influence estimates for CIFAR-
100 using (a) last layer and (b) input layer representations,
highlighting sparsity in last layer estimates, in strong con-
trast to a more diverse spread in ground truth estimates.

imbalance in the importance assigned to individual data points, it

can explain the temporal performance degradation highlighted by

Schioppa et al. [34]. Together, these findings underscore the risks
of last layer approximations for assessing data importance, as such

methods tend to overemphasize a narrow subset of data points

while failing to capture the broader dataset’s influence.

3.1 Illustrating the SVE
To demonstrate the SVE’s relevance beyond the theoretical scope

of Theorem 3.1, we conduct empirical evaluation under multiclass

setting and common configurations of training time, optimizer,

weight initialization etc. While this could lead to falling short of

near-zero training error or even perfect training accuracy, the explo-

ration highlights the SVE’s significance across diverse, real-world

scenarios. Our experiments confirm the existence of SVE under

these settings: (1) with penultimate layer embeddings as features,
few data points have non-zero influence (Figure 1), and (2) number
of data points with non-zero gradients decrease rapidly (Figure 2).

Additionally, they help attain a more nuanced understanding of the

manifestation of SVE under popular DNN setups.

3.1.1 Validation of SVE in Practice. For direct illustration purposes,

we explicitly compute importance of individual data points using

last layer representations. Following Feldman and Zhang [5], we use

a sample-level notion of influence, defining a sample’s importance

by its impact on a specific prediction.We can define the influence [3]

of a data point x on a data point x′, Itrue (x, x′), as the change in
the loss ℓ at x′ between having learned the model parameters Θ
without and with x in the training data D, i.e.,

Itrue (x, x′) = ℓ (x′ | Θ : x ∉ D) − ℓ (x′ | Θ : x ∈ D) (3)

For the sake of illustration, we concentrate on self-influence, where

x = x′. While naive computation of Equation (3) for all x is prohibi-

tively expensive, we employ sub-sampling estimators [5] that make

the calculation relatively efficient. This involves training multiple

models on randomly chosen subsets of the data. We keep track of

which subsets each instance belongs to, allowing us to estimate its

influence without retraining the full model for every instance.
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Similar to Feldman and Zhang [5], we train ResNet-50 [9] on

CIFAR-100 images. However, we compute influence scores using

last layer embeddings
1
, and use the available influence scores com-

puted using input layer embeddings (i.e., raw images) with full

model training as ground truth [5]. Under the SVE, most data points

are expected to show zero influence when focusing on the last layer,

which is indeed the case in Figure 1a where fewer than 0.08% data

points are found to have non-zero self-influence (
ˆI(x′, x′) > 0.001).

We further compare these values with ground truth estimates in

Figure 1b, to verify that the behavior actually arises from SVE rather

than some intrinsic data or model properties. Here, we find that over

70% of data points exhibit non-zero self-influence, a nearly 1000×
increase, with more than 10% having substantial self-influence ex-

ceeding (
ˆI(x′, x′) > 0.9).

Remark. While the focus of this work is on the last layer, the

behavior may not intuitively be very different in second last layer

where similar linear separability may often be attained. A prelim-

inary study using second and third last layer embeddings under

aforementioned setup suggests that while moving from the last to

earlier layers may alleviate the dominance of support vectors, the

SVE still influences gradient sparsity, albeit less pronouncedly.

3.1.2 Extent of Impact of SVE. We also evaluate how significantly

SVE manifests across a range of practical settings, going beyond

the specific configuration under which its theoretical foundations

are laid out. While we rigorously uncover the SVE and present

Theorem 3.1 under a particular choice of loss and optimizer, recent

literature on implicit bias of multiple optimization algorithms to-

wards maximum margin solutions [21, 22, 25, 40] help extend our

insights to more relaxed settings. Nonetheless, different optimizers

like AdaGrad [4] may demonstrate different implicit biases [33], so

the SVE may not always naturally follow.

We train DNNs for 500 steps under varied choices of dataset,

optimizer, model type and model size, while keeping track of per-

centage of non-zero gradients in the last layer—which the SVE

suggests should drop rapidly over time. We use CIFAR-10, ResNet-

50 and Adam as default choices for dataset, model and optimizer,

respectively. While the precise numbers end up being different, the

key expected trend of rapid drop to a small percentage of non-zero
(i.e., greater than 0.001) gradients persists almost throughout, as

seen in Figure 2. Quite paradoxically, better models are generally
impacted worse, i.e., models that attain lower error quickly experi-

ence faster decay in non-zero gradients, which could be explained

by the criteria of SVE manifestation, like near-zero training loss,

being attained faster with better models.

Impact of dataset (Figure 2a). We experiment with three image

datasets of increasing complexity: MNIST, CIFAR-10 and CIFAR-

100. While we stick with ResNet-50 for CIFAR datasets, we use

a multi-layer perceptron (MLP) for training on MNIST since it is

a relatively simple dataset. Moreover, the ResNet-50 models are

pretrained and initialized with ImageNet weights, while the MLP

is trained from scratch. Percentage of non-zero gradients drops to

under 2.5 after just 200 training steps across all datasets, illustrating

significant impact of SVE throughout.

1
Models ℎ ( ·) are trained on last layer representations 𝜙 (x) , and performance is

evaluated by checking if ℎ (𝜙 (x) ) = 𝑦.
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Figure 2: Percentage of non-zero gradients in the last layer
decreases rapidly over time across multiple datasets, opti-
mizers, model types and model sizes, suggesting the Support
Vector Effect is observed in varied, real-world settings.

Impact of optimizer (Figure 2b). We experiment with three pop-

ular optimizers: AdaGrad [4], RMSProp [24] and Adam [16]. In

line with SVE, most last layer gradients drop to zero for RMSProp

and Adam, with just 3% and 1% non-zero gradients remaining after

500 training steps for RMSProp and Adam, respectively. However,

AdaGrad demonstrates a significantly different trend, with over

25% gradients being non-zero even at the end of training. This il-

lustrates that optimizer choice could influence SVE manifestation,

as well as consequent negative impact on downstream applications

like data selection and attribution. The trend may be explained

by AdaGrad having different implicit biases [33] than others. Still,

we speculate that such behavior is not unique to AdaGrad and is

worthy of deeper investigation in the future.

Impact of model type (Figure 2c). We experiment with three

prominent model architectures, from the popular ResNets [9] to the

scaling-focused EfficientNets [39] to the ConvNeXts [20] that incor-

porate learnings from vision transformers [19]. Specifically, we use

ResNet-50, EfficientNet-B0 and ConvNeXt-Base in our experiments.

All models are evidently influenced by the SVE.

Impact of model size (Figure 2d). We experiment with three Ef-

ficientNet [39] models of increasing sizes: EfficientNet-B0 (small),

EfficientNet-B2 (medium), and EfficientNet-B4 (large). Although

the SVE is evident across all model sizes, larger models experience a

more pronounced impact, with a sharper decline in the percentage

of non-zero gradients.
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4 Uncovering New Limitations Through SVE
Having established the foundations of the SVE, which helped ex-

plain some previously observed limitations of popular data selection

and attribution methods, we now use SVE to unveil new limita-

tions and insights. Our findings further highlight the risks of last

layer approximations, emphasizing the need for data selection and

attribution methods that account for broader dataset dynamics and

diverse contributions from training points.

4.1 Group-level Influence and Exemplar Effect
A direct consequence of the SVE is that so-called ‘instance’ attri-

bution methods exhibit neither local, instance-level behavior nor

global, data-level behavior, but instead they identify class or group-
level exemplars. We refer to this phenomenon as the exemplar effect:
with last layer approximations, a few training instances (the support

vectors) repeatedly receive the highest attribution scores for most

test instances belonging to the same class. Since attribution score

calculations rely on gradients [18], it is easy to see that these group-
level exemplars or support vectors are the most difficult (to learn)
instances from each class, as indicated by their high loss or large

gradient norm. The exemplar effect has critical implications for the

utility of instance attribution methods, revealing their tendency

to act as class-level explainers rather than providing meaningful,

instance-level insights.

To quantify this phenomenon, we define the set of exemplars as:

S𝑟,𝑘𝑒𝑥 = {x𝑖 | ∀x𝑖 ∈ Dtrain, count (x𝑖 ,Dtest,I, 𝑘) ≥ 𝑟 } (4)

where count (x𝑖 ,Dtest,I, 𝑘) represents the number of times a train-

ing point x𝑖 appears among the top-𝑘 highest attribution scores

with any test instance x𝑗 ∈ Dtest computed using I. We are partic-

ularly interested in data points which repeat very frequently, say

more than 𝑟 times, which we can refer to as exemplars. In the ab-

sence of SVE, one would expect very few, if any, training instances

to repeatedly influence large numbers of test points, particularly

for small values of 𝑘 . However, we find extensive repetition on ex-

perimenting with multiple datasets and DNNs, as shown in Table 1.

Note that the first row depicts that just 3 out of 60, 000 training

points in MNIST are considered the most influential for all 1000

Table 1: Illustration of the exemplar effect.

Dataset 𝒌 𝒓 # Exemplars

1 1000 3

MNIST 1 900 7

3 1000 11

3 900 24

1 1000 0

CIFAR-10 1 900 4

3 1000 4

3 900 10

1 100 78

CIFAR-100 1 90 88

3 100 220

3 90 249

test instances per class. Additionally, the number of exemplars (i.e.,

|S𝑟,𝑘
ex
|) are close to the number of classes when 𝑘 = 3, serving as

empirical evidence of class or group-level behavior.

While previous work has noted lack of diversity in attribution

methods through anecdotal examples [38], our results demonstrate

that this issue is systematic and pervasive across entire test sets.
Moreover, we attribute this behavior to the SVE’s emphasis on sup-

port vectors, even in settings where the data is not fully separable

and training loss is not exactly zero.

4.2 Vulnerability to Poisoning Attacks
Since the exemplars are often hard-to-learn data points, the exem-

plar effect makes the discussed attribution methods particularly

bad choices for data with mislabeling. Yet, even more concerning

is that this renders these methods vulnerable to data poisoning

attacks involving intentional mislabeling or label flipping; a small

proportion of flipped labels are enough to result in these malicious

data points being considered the most influential. This can have un-

intended consequences such as a biased DNN being considered fair

due to the most influential instances with flipped labels appearing

unbiased, although the DNN does not actually rely on them.

As shown in Table 2, we verify this behavior through multiple

experiments where we randomly flip a meager 1% of labels. With

a small amount of poisoning, the model training should not be

impacted much—and we indeed see little change in accuracy of

models trained on poisoned instead of the original data. While

the poisoned model continues to make very similar predictions,

the most influential data points change dramatically. Since the

poisoned instances do not naturally belong to their stated class,

they are difficult to learn and end up becoming support vectors with

disproportionately high influence. Moreover, due to the exemplar

effect, the poisoned instances repeatedly show up asmost influential

training points for most test instances, which results in nonsensical

outcomes. For example, a cat imagewith label poisoned to frog could

end up being considered most influential for correctly predicting

frogs. Table 2 confirms that a handful of training instances show up

as most influential points for all test instances per class, and that

an overwhelming majority of these data points is in fact poisoned.

𝑟 is set to 1000 for MNIST and CIFAR-10, and 100 for CIFAR-100,

aligning with the typical number of test instances per class for each

dataset.

Table 2: Illustration of vulnerability of last layer gradient-
based instance attribution methods to data poisoning.

Dataset 𝒌 # Exemplars # Poisoned % Poisoned

1 3 3 100.0

MNIST 3 12 12 100.0

10 41 36 87.8

1 2 2 100.0

CIFAR-10 3 11 11 100.0

10 55 45 81.8

1 27 26 96.3

CIFAR-100 3 188 178 94.7

10 844 497 58.9
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4.3 Coresets Are No Better than Random
To speed up model training for large data and model size, multiple

coreset-based data subset selection methods have been proposed.

These methods curate the selection of a fraction of the training

data for faster training with minimal loss in predictive performance.

They require representative selection of influential data points,

which would naturally be impacted by the SVE when such influence

is computed using last layer embeddings—which is the de facto

choice for application of coreset methods to DNNs. Note that while

the motivations of instance attribution and data subset selection

may be related, the impact of SVE differs significantly because the

influential instances are used differently. In instance attribution, just

five or ten most influential instances may be under consideration,

which happen to repeatedly be the same for different test instances

due to SVE. On the other hand, in data subset selection, even though

a small proportion of entire data is selected, this still typically

translates to thousands of instances. The intriguing insight is that

most of these instances may be as good as random because only

the few support vectors may adequately be identified as being

useful towards the model training. We formally discuss two critical

implications: (1) random selection performs at par with coreset-based
methods for a sufficiently large subset selection size, and (2) random
selection outperforms coreset-based methods when subset size is small.
Empirical validation is present in Figure 3 and Table 3.

Remember that coreset-based methods often greedily build the

important data subset 𝑆 by adding to it instance x𝑗 with gradi-

ent contribution g𝑗 if it helps approximate the (last layer) gra-

dient g on entire training data. Specifically, we could have g =∑
xi∈𝐷 ∇Θℓ (x𝑖 ,Θ) and g𝑗 = 𝑤 𝑗∇Θℓ (x𝑗 ,Θ) [23]. A greedy selection

may be practically seen as adding x∗
𝑗
to subset 𝑆 from training data

D such that:

x∗𝑗 = arg min

𝑗∈D\𝑆
∥g −

∑︁
𝑖∈𝑆

g𝑖 − g𝑗 ∥ (5)

Random performs at par with coreset-based methods for a suffi-
ciently large subset selection size. We leverage SVE to explicitly link

random and coreset-based selection. Techniques like CRAIG [23]

rely on the last layer gradients and g𝑗 = ∇Θ𝐿
ℓ (x𝑗 ). Through Theo-

rem 3.1, we know that the gradients remain non-zero for largely

the support vectors, i.e., g𝑗 → 0 and g𝑗 ′ ≫ g𝑗 for 𝑗 ′ ∈ S and 𝑗 ∉ S.
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Figure 3: Accuracy (higher is better) and time (lower is better)
comparison of various data subset selection strategies for
training ResNet-18 on CIFAR-10.

Table 3: Accuracy comparison of simple random for data
subset selection with the state-of-the-art CREST on CIFAR-
100. Accuracy with full training (i.e., size=100) is 74.5%.

Size (%) CREST Random % Change

1 23.2 33.3 +43.5

4 55.5 58.4 +5.2

7 64.1 65.3 +1.9

10 68.4 66.8 -2.3

15 71.6 71.0 -0.8

20 72.3 72.2 -0.1

This implies that, beyond the early training phase, significant gra-

dients are limited to a small set of support vectors, making most

other points indistinguishable for selection. Therefore, data subset

selection via Equation (5) with |𝑆 | ≫ |S| effectively reduces to

random selection. This is in line with observations by Yang et al.

[41], who noted that a few key points drive group performance and

random selection rivals top methods when subset size exceeds 20%.

Random outperforms coreset-based methods when subset size is
small. For smaller subset sizes, we hypothesize that the coreset-

based methods tend to repeatedly select the same hard-to-learn

data points, while random selection provides greater diversity. Over

multiple steps, a random method samples a broader portion of the

training set, leading to potentially outperforming even the best

coreset-based methods, as seen in Table 3.

These findings collectively highlight that random selection can

be highly competitive with popular coreset methods at a fraction of

the computation cost. This is made even more explicit in Figure 3,

where we compare uniformly random selection with three popular

coreset-based methods: CRAIG [23], GLISTER [14] and GradMatch

[13]. To ensure fairness, we use a random baseline that selects

new subsets every 𝑒 epochs, mirroring coreset methods. We also

include comparison with fixed random subsets (“Random (Fixed)”),

sometimes used unfairly as the baseline. Our findings hold across

varied datasets (CIFAR-10, CIFAR-100 and Tiny ImageNet) and

models (ResNet-18 and ResNet-101), confirming the generalizability

of these insights (see Figure A2 in Appendix).

5 Countering SVE
Despite the limitations of popular attribution and subset selection

methods, their continued use and associated positive impact might

seem puzzling. However, it is important to be clear that the key

takeaway from SVE is not that these methods are inherently flawed,

but that their practical instantiation is suboptimal. Their appar-

ent success can be attributed to incorporating various beneficial

elements, albeit within complex frameworks that necessitate last

layer approximations. We argue that by focusing on the simpler

underlying principles driving the gains, we can achieve comparable

or even superior results with significantly improved efficiency.

In this section, we introduce two novel methods informed by

SVE: Prediction As Explanation (PAE) for instance attribution and

Random sampling with Entropy weighting (RandE) for data subset
selection. We demonstrate that these methods can achieve state-

of-the-art performance while being substantially more efficient
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than existing approaches. Furthermore, we highlight the potential

for further optimization and refinement of these methods, empha-

sizing the importance of continued exploration in this direction.

We did not indulge in extensive exploration in current study since

we wanted to test efficacy and efficiency of these SVE-informed

methods rather than coming up with the best performing method.

5.1 Prediction As Explanation
Various previously discussed instance attribution approaches can

be decomposed into a uniform framework characterized by a prod-

uct of similarity between instances and the sensitivity of model

outputs to the model loss [43]. The SVE unveils shortcomings as-

sociated with the sensitivity part, resulting from the sparsity of

last layer gradients. However, the similarity part may still be used

for effective attribution, either as part of some complex method or

more efficiently to build independent alternatives.

In fact, distance comparison or nearest neighbor search on last

layer representations, often termed “penultimate layer embeddings,”

has been previously found to capture perceptual similarity well

and be effective for model explanation [8, 28, 44]. However, these

similarity comparisons for instance attribution have been neglected

recently in support of the more complex methods considered to

be superior [32]. To counter the SVE and allow for useful attribu-

tion, we revisit this idea and conduct experiments to validate the

efficacy of instance attribution using nearest neighbor search with

penultimate layer embeddings. It is much more efficient and versa-

tile since it involves no gradient tracking or manipulation. While

past work [32] may argue that similarity measures do not take into

account the DNN model—which does hold when using input layer

embeddings—the model is in fact central to penultimate embedding

preparation and consequent similarity analyses. We advocate for
broader utilization of model-informed similarity measures at large,
finding a lot of past criticism to be too harsh.

In particular, we propose using prediction layer outputs them-

selves as embeddings in similarity computation for instance attri-

bution. This method, which we term Prediction As Explanation, or
simply PAE (Algorithm 1), offers several advantages. Firstly, since

predictions directly reflect the model’s decision-making process,

PAE provides a faithful representation of how the model perceives

the data, thus offering high fidelity. Secondly, since predictions are
readily available and do not need access to internal model repre-

sentations or gradients, PAE offers high accessibility. Thirdly, unlike
sensitivity-based methods that can be unduly influenced by incor-

rect labels, PAE relies on the model’s own understanding of the

data, making it robust to mislabeling. Finally, the method elimi-

nates the need for expensive gradient operations while also having

low dimensionality—often much lower than even the penultimate

one—resulting in significantly improved computational efficiency.

5.1.1 PAE vs Penultimate Layer Embeddings. As advocates formodel-

informed similarity, we consider penultimate embeddings to be a

solid choice for instance attribution. We do find PAE slightly supe-

rior due to being more faithful, accessible and efficient by design,

although these gains may not always be very significant or notice-

able. Beyond these obvious advantages, however, there is a crucial

use case where penultimate embeddings can be detrimental while

PAE performs effectively: when data points are close to the decision

Algorithm 1 Prediction As Explanation (PAE)

Input: Training data D, test instance x′, trained model 𝑓 (·)
Output: 𝑘 most important training instances

for x𝑖 in D ∪ {x′} do
p𝑖 ← 𝑓 (x𝑖 )

end for
for x𝑖 ∈ D do
𝑠𝑖 ← Similarity(p𝑖 , p′)

end for
R ← Sort training instances by 𝑠𝑖 in descending order

Return: Top-𝑘 instances R[: 𝑘]

boundary. Since penultimate embeddings disregard the last layer

parameters and the linear boundaries they represent, if the test data

point’s embedding lies close to the decision boundary, its closest

training data point could belong to another class, which is coun-

terintuitive from an influence perspective. Using prediction vector

entropy as a proxy for such closeness, we are able to uncover such

failure cases of penultimate layer similarity comparison, as seen

in Figure 4. Penultimate embeddings lead to problematic attribu-

tion on the camel image expected to be close to decision boundary

with 0.40 entropy: a baby predicted as tank or a correctly predicted

elephant may not explain why the image was correctly predicted

as camel. On the other hand, PAE appears to provide reasonable

explanations. Still, note that penultimate layer embeddings will

often be effective, especially when it comes to providing perceptu-

ally similar attributions and when a data point is not close to the

decision boundary, as seen in apple image in with 0.08 entropy.

camel bear
(camel)

camel
(tractor)

camel
(tractor) camel camel

apple apple apple apple apple apple

(a) PAE

camel baby
(tank)

man
(camel)

baby
(camel) elephant

camel
(crab)

apple apple apple orange apple apple

(b) Penultimate Layer Embedding

Figure 4: Qualitative comparison of PAE and penultimate
layer embeddings on a camel image close to decision bound-
ary and an apple image far from decision boundary. The test
image is shown on the left, followed by 5 most important
training images selected by respective methods. Correctly
predicted labels are shown in green, while incorrect labels
are displayed in red along with the prediction (in brackets).
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Figure 5: Qualitative comparison of various instance attri-
bution methods on correctly and incorrectly classified data
points from CIFAR-10. The test image is shown on the left,
followed by the 3 most important training images selected
by respective methods.
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Figure 6: Qualitative comparison of various instance attri-
bution methods on a mislabeled data point from CIFAR-10.
The test image, of a frog labeled as cat yet correctly predicted
to be frog, is shown on the left, followed by 3 most and least
important training images selected by respective methods.

5.1.2 Qualitative Evaluation. Due to the inherent subjectivity in

evaluating effectiveness of instance attribution, we primarily rely on

visual inspection of top training instances for the purpose, closely

resembling prior literature [32].We find PAE, and simple embedding-

based methods in general, to consistently outperform complex

methods across multiple datasets. Figures 5 and 6 provide such

qualitative comparison on select CIFAR-10 images, where PAE is

found to perform quite well in comparison to four baseline meth-

ods: Penultimate Layer Embeddings (Emb), TracIn [32], Representer

Point Selection (RPS) [42] and Influence Functions (IF) [18]. As seen

in Figure 5b, PAE appears particularly insightful in explaining possi-

ble reasons behind incorrect prediction. Moreover, we also uncover

a case of naturally mislabeled instance in CIFAR-10, and use it

to evaluate robustness of the methods to mislabeling. As seen in

Figure 6, and in line with our expectations, similarity-based meth-

ods significantly excel here. We also compare the least important

images here, and find PAE to arguably be more informative than

penultimate embeddings by providing a more diverse selection in-

stead of just perceptually similar images with correct predictions.

The examples highlight PAE’s ability to provide meaningful and in-

terpretable explanations, especially when naturally or maliciously

mislabeled data is present.

5.1.3 Quantitative Evaluation. For more objective assessment, we

applied the Identical Class and Identical Subclass tests from [9] on

the various attribution methods, as shown in Figure 7. The Iden-

tical Class Test ensures that the most similar instances for a test

instance belong to the same class, avoiding explanations that could

undermine user trust in model predictions. Additionally, the more

involved Identical Subclass Test adds the requirement that similar

instances belong to the same ‘latent subclass’, which is unknown

during model training. For this test, we create CIFAR-10B, a variant

of CIFAR-10 with binary classes (vehicle or not), where known sub-

class labels aid evaluation. While there are understandable concerns

about how well these tests capture true effectiveness of instance

attribution methods, they at least provide some meaningful as-

sessment of interpretability and reliability. Our findings reveal that

similarity-based methods, including our proposed PAE, significantly
outperform Influence Functions while being competitive with other

complex, sensitivity-based methods. These experiments underscore

the effectiveness of PAE as an efficient and insightful instance at-

tribution method, particularly in scenarios where computational

constraints or limited access to model internals pose challenges.
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Figure 7: Comparative performance (higher is better) on
Identical Subclass Test (left) and Identical Class Test (right)
for different instance attribution methods on CIFAR-10B.
Similarity-based methods demonstrate competitive, if not
superior, performance. It is important to highlight that RPS
involves explicit class-level filtering when selecting top train-
ing instances, trivially achieving a perfect score in the Iden-
tical Class Test.
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Table 4: Relative error (lower is better) compared to training full model (Size=100). We also share wall-clock time improvement
for our proposed RandE over state-of-the-art CREST. SGD shows accuracy of a standardmini-batch SGD pipeline at 10% training.

Dataset Model Size (%) Random SGD CRAIG GradMatch GLISTER CREST RandE [Time]

CIFAR-10 ResNet-20 10 8.9±0.6 21.3±8.0 13.0±5.1 6.0±0.1 7.0±0.1 5.7±0.2 5.2±0.3 [↓ 6×]
CIFAR-100 ResNet-18 10 8.2±0.4 36.5±2.9 17.2±4.5 12.7±0.9 27.6±4.0 10.3±0.4 5.6±0.4 [↓ 3×]
TinyImageNet ResNet-50 10 15.4±0.6 32.8±2.1 28.5±0.6 27.7±0.2 32.8±2.1 16.2±0.4 10.9±0.4 [↓ 10×]

5.2 Random Sampling with Entropy Weighting
While coreset-based methods excel at identifying influential train-

ing examples, they incur substantial computational overhead due to

their iterative selection process. In contrast, random sampling offers

exceptional efficiency but may miss out on crucial data points that

contribute significantly to model training. We use SVE to bridge

this gap, and introduce a new algorithm that is both efficient and

effective. SVE highlights that, as DNNs converge, the influence of

training instances concentrates on a small set of support vectors.

Since these support vectors lie near the decision boundary, they

exhibit high uncertainty or entropy in associated model predic-

tions. By leveraging this insight, we hypothesize that prioritizing

examples with high entropy during random sampling can lead to a

more informative and effective subset selection, even without the

complex computations of coreset methods.

We introduce Random sampling with Entropy weighting, or

simply RandE, a simple yet powerful data selection strategy that

incorporates entropy as a guiding principle for random sampling.

RandE can be conveniently incorporated into a data-efficient learn-

ing pipeline, as depicted in Algorithm 2. After every few training

steps or epochs, we compute the entropy of the model’s predic-

tion vector for every training instance. We then randomly select a

subset of the training data, where the probability of selecting each

instance is proportional to its entropy. The model is trained on

this selected subset for the next few epochs. This approach allows

us to dynamically focus on the most uncertain or “difficult” exam-

ples during training, potentially leading to faster convergence and

improved generalization. In fact, RandE can attain state-of-the-art

performance on many datasets, models and subset sizes.

Algorithm 2 Model training with RandE

Input: Training data D, model 𝑓 (·), number of epochs𝑇 , subset

ratio 𝜌 , epoch interval 𝑒

Output: Trained model 𝑓 (·)
for 𝑡 = 1 to 𝑇 step 𝑒 do
for x𝑖 in D do
𝑤𝑖 ← Entropy of 𝑓 (x𝑖 )

end for
S ← Randomly select 𝜌 · |D| examples from D with proba-

bility proportional to𝑤𝑖

for 𝑗 = 0 to 𝑒 − 1 do
Train 𝑓 on S for one epoch

end for
end for
Return: 𝑓

5.2.1 Quantitative Evaluation. Adopting an evaluation framework

similar to the state-of-the-art, coreset-based CREST [41], we rig-

orously evaluate RandE against multiple prominent data subset

selection methods. As seen in Table 4, RandE not only performs

competitively in terms of error, but also requires significantly lower

runtime. Additionally, as seen in Table 5, RandE has even more

significant gains over CREST for smaller subset sizes, similar to

simple random in Table 3. This demonstrates the effectiveness of

incorporating entropy-based weighting into random sampling for

data selection. Overall, RandE offers a compelling alternative to

computationally expensive coreset methods, demonstrating that

substantial gains can be achieved through simple yet informed

modifications to random sampling.

Table 5: Performance comparison of RandE for data subset
selection with the state-of-the-art CREST on CIFAR-100.

Size (%) CREST RandE % Change

1 23.2 37.8 +62.9

4 55.5 61.2 +10.3

7 64.1 67.9 +5.9

10 68.4 70.3 +2.8

15 71.6 72.6 +1.4

20 72.3 73.2 +1.2

6 Conclusion
We unveil the Support Vector Effect (SVE)—a phenomenon arising

in the last layer of DNNs due to implicit regularization effect of

optimizers like gradient descent on interpolating DNNs. Using SVE,

we are not only able to explain previous perplexing observations re-

garding prominent data selection and attribution methods that rely

on last layer gradients, but also uncover various new limitations and

insights. Furthermore, SVE, and the insights drawn from it, inform

design of new methodologies and algorithms for both instance at-

tribution and data subset selection that compete with the respective

state of the art, despite being simple and order of magnitude faster.

Our work motivates for better data selection and attribution meth-

ods, and advocates against the use of last layer approximations for

downstream tasks. For future work, we aim to delve deeper into use

of adaptive random methods by combining our proposed methods

with varied sample importance criteria. Further, we plan to explore

impact on SVE of different optimization algorithms that may lead

to different forms of implicit regularization.
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A Theory
We reiterate our assumption that the feature representations𝜙 (x;Θ𝐿̄)
are fixed for all training data points. We also assume that the data is

separable in the last layer, i.e., there exists a classifier that achieves

perfect training accuracy. Note that both of these assumptions can

be removed at the expense of clarity, and we also empirically verify

that the central conclusion holds in practical DNNs.
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A.1 Auxiliary Lemmas
We start by re-stating a result by Soudry et al. [37] that shows

that for separable data, (stochastic) gradient descent converges

to the max-margin solution for the logistic loss through implicit
regularization, even though there could be several solutions that fit

the training data with perfect accuracy.

Lemma A.1 (Soudry et al. [37]). For a linearly separable dataset,
logistic loss and for any step size 𝜂 < 2 𝛽−1𝜆−2

max (X), the gradient
descent iterates will behave as:

Θ𝐿 (𝑡) = Θ∗ log 𝑡 + 𝝆 (𝑡), (6)

where Θ∗ is the maximum ℓ2-norm margin separator in the feature
space defined by 𝜙 (·) and the residual grows at most as ∥𝝆 (𝑡)∥ =
𝑂 (log log 𝑡), and so

lim

𝑡→∞
Θ𝐿 (𝑡)
∥Θ𝐿 (𝑡)∥

=
Θ∗

∥Θ∗∥ (7)

Furthermore, the rate of convergence is



 Θ(𝑡 )
∥Θ(𝑡 ) ∥ −

Θ∗

∥Θ∗ ∥




 ∈ O (
1

log 𝑡

)
.

We now encapsulate the growth rate of the norm of the optimizer.

Lemma A.2 (Norm Growth of Θ𝐿 (𝑡)). Under the above assump-
tions, the norm of Θ𝐿 (𝑡) grows logarithmically with 𝑡 :

∥Θ𝐿 (𝑡)∥ = Θ(log 𝑡)

This follows from application of triangle inequalities to Equa-

tion (6), i.e., ∥Θ∗ log 𝑡 ∥ − ∥𝝆 (𝑡)∥ ≤ ∥Θ∗ log 𝑡 +𝝆 (𝑡)∥ ≤ ∥Θ∗ log 𝑡 ∥ +
∥𝝆 (𝑡)∥. These lemmas indicate that gradient descent on logistic loss

with linearly separable data leads to the weights growing in norm

logarithmically and their direction converging to the maximum

margin solution at a rate inversely proportional to log 𝑡 . Next, we

establish a lemma regarding the decay of the gradient norms for

individual data points.

Lemma A.3 (Decay of Gradient Norms). The gradient norms
satisfy:

∥∇Θ𝐿
ℓ (Θ𝐿 (𝑡); x𝑖 , 𝑦𝑖 )∥ = O

(
1

𝑡𝛾𝑖

)
,

where 𝛾𝑖 = 𝑦𝑖Θ
∗⊤𝜙 (x𝑖 ) is the margin of the data point x𝑖 under Θ∗.

Proof. We begin by recalling the gradient of the logistic loss

function with respect to Θ𝐿 for a single data point (x𝑖 , 𝑦𝑖 ):

∇Θ𝐿
ℓ (Θ𝐿 (𝑡); x𝑖 , 𝑦𝑖 ) = −𝜎

(
−𝑦𝑖Θ𝐿 (𝑡)⊤𝜙 (x𝑖 )

)
𝑦𝑖𝜙 (x𝑖 ),

where 𝜎 (𝑢) = 1

1+𝑒−𝑢 is the sigmoid function.

Estimating 𝑦𝑖Θ𝐿 (𝑡)⊤𝜙 (x𝑖 ). Using Lemma A.1, we know that the

direction of Θ𝐿 (𝑡) converges to that of Θ∗:

lim

𝑡→∞
Θ𝐿 (𝑡)
∥Θ𝐿 (𝑡)∥

=
Θ∗

∥Θ∗∥
We define the following normalized vectors:

Θ̂𝐿 (𝑡) =
Θ𝐿 (𝑡)
∥Θ𝐿 (𝑡)∥

, Θ̂∗ =
Θ∗

∥Θ∗∥
For 𝑡 →∞,

𝑦𝑖Θ𝐿 (𝑡)⊤𝜙 (x𝑖 ) → ∥Θ𝐿 (𝑡)∥𝑦𝑖 Θ̂∗⊤𝜙 (x𝑖 ),

Next, we define the margin of data point x𝑖 under the maximum

margin separator Θ∗: 𝛾𝑖 = 𝑦𝑖Θ
∗⊤𝜙 (x𝑖 ). Note that because of the

separability assumption, 𝛾𝑖 ≥ 0. Using this definition, we have:

𝑦𝑖 Θ̂
∗⊤𝜙 (x𝑖 ) =

𝛾𝑖

∥Θ∗∥ .

Substituting back, we get for 𝑡 →∞:

𝑦𝑖Θ𝐿 (𝑡)⊤𝜙 (x𝑖 ) → ∥Θ𝐿 (𝑡)∥
𝛾𝑖

∥Θ∗∥ .

Estimating ∥Θ𝐿 (𝑡)∥. From Lemma A.2, we know that ∥Θ𝐿 (𝑡)∥ =
∥Θ∗∥ log 𝑡 +𝑂 (log log 𝑡). Thus for large 𝑡 and ignoring the log log 𝑡

term,

∥Θ𝐿 (𝑡)∥ → ∥Θ∗∥ log 𝑡 .

Combining the Estimates. Substituting the estimate of ∥Θ𝐿 (𝑡)∥
into our previous approximation:

𝑦𝑖Θ𝐿 (𝑡)⊤𝜙 (x𝑖 ) ≈ (∥Θ∗∥ log 𝑡)
(

𝛾𝑖

∥Θ∗∥

)
= 𝛾𝑖 log 𝑡 .

Thus, we have:

𝑦𝑖Θ𝐿 (𝑡)⊤𝜙 (x𝑖 ) → 𝛾𝑖 log 𝑡 .

Estimating 𝜎
(
−𝑦𝑖Θ𝐿 (𝑡)⊤𝜙 (x𝑖 )

)
. We now compute the sigmoid

function:

𝜎
(
−𝑦𝑖Θ𝐿 (𝑡)⊤𝜙 (x𝑖 )

)
=

1

1 + 𝑒𝑦𝑖Θ𝐿 (𝑡 )⊤𝜙 (x𝑖 )
.

This gives:

𝜎
(
−𝑦𝑖Θ𝐿 (𝑡)⊤𝜙 (x𝑖 )

)
→ 1

1 + 𝑒𝛾𝑖 log 𝑡
=

1

1 + 𝑡𝛾𝑖 .

Estimating the Gradient Norm. The norm of the gradient is:

∥∇Θ𝐿
ℓ (Θ𝐿 (𝑡); x𝑖 , 𝑦𝑖 )∥ = 𝜎

(
−𝑦𝑖Θ𝐿 (𝑡)⊤𝜙 (x𝑖 )

)
∥𝜙 (x𝑖 )∥,

since |𝑦𝑖 | = 1.

Substituting the approximation for the sigmoid function we have,

as 𝑡 →∞:

∥∇Θ𝐿
ℓ (Θ𝐿 (𝑡); x𝑖 , 𝑦𝑖 )∥ →

1

𝑡𝛾𝑖
∥𝜙 (x𝑖 )∥ .

Since ∥𝜙 (x𝑖 )∥ is a constant that does not depend on 𝑡 ,

∥∇Θ𝐿
ℓ (Θ𝐿 (𝑡); x𝑖 , 𝑦𝑖 )∥ = O

(
1

𝑡𝛾𝑖

)
.

□

A.2 Proof of Theorem 3.1 (SVE)
Proof. We write 𝜓𝑖 = 𝜎

(
−𝑦𝑖Θ𝐿 (𝑡)⊤𝜙 (x𝑖 )

)
. From the gradient

of the logistic loss, the total gradient at iteration 𝑡 is:

𝐺 (𝑡) =
𝑛∑︁
𝑖=1

∇Θ𝐿
ℓ (x𝑖 , 𝑦𝑖 ;Θ𝐿 (𝑡)) = −

𝑛∑︁
𝑖=1

𝜓𝑖𝑦𝑖𝜙 (x𝑖 )

Similarly, the gradient sum over support vectors is:

𝐺S (𝑡) =
∑︁
𝑖∈S
∇Θ𝐿

ℓ (x𝑖 , 𝑦𝑖 ;Θ𝐿 (𝑡)) = −
∑︁
𝑖∈S

𝜓𝑖𝑦𝑖𝜙 (x𝑖 )

The difference is:

𝐷 (𝑡) = 𝐺 (𝑡) −𝐺S (𝑡) =
∑︁
𝑖∉S
∇Θ𝐿

ℓ (x𝑖 , 𝑦𝑖 ;Θ𝐿 (𝑡))
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We need to bound ∥𝐷 (𝑡)∥. Using Lemma A.3, for 𝑖 ∉ S:

∥∇Θ𝐿
ℓ (Θ𝐿 (𝑡); x𝑖 , 𝑦𝑖 )∥ = O

(
1

𝑡𝛾𝑖

)
,

where 𝛾𝑖 > 𝛾 , since non-support vectors have larger margins.

Let 𝛿𝑖 = 𝛾𝑖 − 𝛾 , and 𝛿 = min𝑖∉S 𝛿𝑖 > 0. Therefore,

∥∇Θ𝐿
ℓ (Θ𝐿 (𝑡); x𝑖 , 𝑦𝑖 )∥ = O

(
1

𝑡𝛾+𝛿𝑖

)
≤ O

(
1

𝑡𝛾+𝛿

)
.

Summing over all non-support vectors:

∥𝐷 (𝑡)∥ ≤
∑︁
𝑖∉S
∥∇Θ𝐿

ℓ (Θ𝐿 (𝑡); x𝑖 , 𝑦𝑖 )∥ ≤
©­«
∑︁
𝑖∉S
∥𝜙 (x𝑖 )∥

ª®¬ · 1

𝑡𝛾+𝛿
.

□

To further elucidate the implications of the decay rates, note

that for support vectors, 𝛾𝑖 = 𝛾 , so their gradient norms decrease

as O
(

1

𝑡𝛾

)
. Additionally, for non-support vectors, 𝛾𝑖 > 𝛾 , so their

gradient norms decrease faster, at rate O
(

1

𝑡𝛾+𝛿

)
, where 𝛿 > 0.

B Experiments
Sensitivity-Similarity Comparison through RPS. The instance at-

tribution method RPS [42] has this neat formulation where the

attribution score (“representer value”) can be neatly decomposed

into product of sensitivity and similarity terms. In Figure A1, we

visualize the distribution of these as an additional means to illus-

trate SVE, or sparsity of gradients, and reflect how similarity terms

may naturally be more meaningful.
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Figure A1: Illustration of SVE and its impact on instance at-
tribution on instances from MNIST (top), CIFAR-10 (middle)
and CIFAR-100 (bottom) datasets. We observe that almost all
training instances have near-zero gradient (b), which dom-
inates the representer values too (d), inadequately leading
to most instances being considered to have no significant
attribution. Similarity term (c) shows more diversity.
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(b) CIFAR-100

0 5 10 15 20 25 30
Subset Size (%)

0

10

20

30

40

50

Ac
cu

ra
cy

 (
%

)

1000

1100

0 5 10 15 20 25 30
Subset Size (%)

0

100

200

300

400

Tr
ai

ni
ng

 T
im

e 
(m

in
s)

Full Random (Fixed) Random GLISTER CRAIG GradMatch

(c) Tiny Imagenet

Figure A2: Accuracy (higher is better) and time (lower is
better) comparison of various data subset selection strategies
for training ResNet-101 on different datasets.

Data Subset Selection. To further elucidate how coreset-based

methods are no better than random for data subset selection, as

discussed in Section 4.3 of main text, we conduct additional experi-

ments on a larger model (ResNet-101) and with multiple datasets

(CIFAR-10, CIFAR-100 and Tiny ImageNet). As seen in Figure A2,

while the exact performance and gains vary across datasets, the

general insights remain applicable throughout.

Experimental Details. Our experiments are implemented using

TensorFlow, Keras, and PyTorch, depending on the available imple-

mentation for existing methods. We stick with default configura-

tions wherever feasible. Training and evaluations are conducted on

a mix of NVIDIA A10 and A100 GPUs. Code is made available at:

https://github.com/shasanamin/sve.
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