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ABSTRACT
Decision-making aids powered bymachine learningmodels become
increasingly prevalent on the web today. However, when applied
to a new distribution of data that is different from the training data
(i.e., when covariate shift occurs), machine learning models often
suffer from performance degradation and may provide misleading
recommendations to human decision-makers. In this paper, we con-
duct a randomized experiment to investigate how people rely on
machine learning models to make decisions under covariate shift.
Surprisingly, we find that people rely on machine learning models
more when making decisions on out-of-distribution data than in-
distribution data. Moreover, while increasing people’s awareness
of the machine learning model’s possible performance disparity on
different data helps decrease people’s over-reliance on the model
under covariate shift, enabling people to visualize the data distri-
butions and the model’s performance does not seem to help. We
conclude by discussing the implication of our results.
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1 INTRODUCTION
Internet users today are increasingly assisted by recommendations
supplied by machine learning (ML) models to make better deci-
sions online in diverse domains from entertainment to investment.
Achieving the optimal human-machine partnership, however, re-
quires humans to rely upon the model recommendations appro-
priately, that is, rely on the model when its recommendation is
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right and override it when it is wrong [6]. A typical scenario for
ML models to provide unreliable recommendations is when the
distribution of data on which a model is trained is different from
that to which the model is applied, leading to what is known as
covariate shift [21]. Indeed, many ML models are developed based
on the assumption that the training data is drawn from an identical
distribution as the test data. Yet, this assumption often does not
hold in reality due to practical issues like sampling biases in the
training data collection process [4] and the constant evolvement of
the deployment environment. Unfortunately, when covariate shift
occurs, the performance of MLmodels may significantly deteriorate
[18], implying that the use of machine assistance in these scenarios
potentially poses risks to effective human decision-making.

A critical but currently under-explored question, thus, is how
humans rely on ML models when making decisions under covari-
ate shift: Can people recognize the changes in data distributions?
How would they adjust their reliance on ML models on out-of-
distribution data? And what can be done to help people rely on
ML models more appropriately under covariate shift? In this work,
we provide some initial answers to these questions to understand
how laypeople—who are increasingly the end-users of ML-powered
decision aids—rely on ML models when covariate shift occurs.

Specifically, we conducted a randomized controlled experiment
with 549 human subjects recruited from Amazon Mechanical Turk.
Subjects were asked to predict house sale price with the assistance
of an ML model in a sequence of 20 tasks, which were divided
into two phases of 10 tasks each. In Phase 1, subjects interacted
with the ML model and observed its performance on some houses
drawn from the in-distribution held-out validation dataset. Then, in
Phase 2, subjects needed to decide whether to delegate the decision
making right to the model for predicting the price for some unseen
houses. Subjects were randomized into treatments where houses
they saw in Phase 2 came from either the same distribution as the
training data of the ML model or a different distribution. Moreover,
to overcome people’s possible inability to recognize data distribu-
tion changes and/or their possible tendency to generalize an ML
model’s performance from one data distribution to another, we
designed two types of external interventions that aimed at helping
people address these limitations. Subjects in our experiment were
randomly assigned to receive one of these two interventions or
receive no intervention at all.

Our experimental results show that, surprisingly, laypeople tend
to rely on anMLmodelmorewhen covariate shift occurs, effectively
resulting in over-reliance on an ML model when its performance is
poor. A closer look into the data suggests that people have some
capability in detecting the change of data distribution. However,
they actively choose to rely on the model more under covariate
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shift because they expect the model to maintain its performance
on out-of-distribution data, while they believe their own decision-
making performance would decrease on those data. Besides, we
find that providing people with a brief education session about the
possible performance disparity of an ML model on different data
can effectively reduce people’s over-reliance on ML models under
covariate shift. In contrast, equipping people with an interactive
tool to visualize the distribution of data and the model’s perfor-
mance on different data is ineffective in helping people rely on an
ML model more appropriately on out-of-distribution data.

Taken together, our results reveal a concerning finding that
laypeople may have misbelief about an ML model’s capacity, and
thus overly rely on an erroneous model when the distribution of
data changes. These results highlight the importance of clearly and
transparently communicating to people the scope of application
and potential limitation of anMLmodel, as well as actively assisting
people in understanding the range of cases that they can generalize
a model’s observed performance to. There is also a pressing need
to increase people’s AI literacy, such as raising people’s awareness
of the possible performance degradation of ML models on out-of-
distribution data. We conclude by discussing the implications of
our study on promoting appropriate reliance on AI.

2 RELATEDWORK
The increasing prevalence of ML-aided decision making has in-
spired a growing number of empirical studies that aim at under-
standing how people interact with, trust, and rely upon ML models.
For example, previous research has shown that while laypeople
tend to adopt recommendations supplied by ML models over hu-
man suggestions in an objective and unfamiliar domain [13], they
are in general unwilling to rely on algorithmic models in highly
subjective domains [30], or after witnessing the model makes er-
rors [8]. Researchers have also identified a variety of factors that
could influence people’s reliance on ML models. For example, peo-
ple are shown to increase their reliance on models with higher
levels of accuracy [31]. In addition, people’s first impression and
mental model of an ML model [2, 26], the model’s confidence and
interpretability [22, 29, 32], and the consistency between the model
and humans in both their decisions and rationales [15, 33] are all
shown to impact people’s reliance on the model.

A major risk in ML-aided decision making is that people may
rely on a model inappropriately, and such risk is elevated when
ML models are operated on out-of-distribution data. Indeed, the
phenomenon of the distribution of input variables (i.e., features)
changes between the data of training and deployment stages is
known as “covariate shift” [21, 24]. Many ML models are known to
be not good at adapting to new and unfamiliar data [18, 25], which
raises the question of how people would rely on ML models when
covariate shift occurs.

In this paper, we focus on understanding, under covariate shift,
whether people rely on ML models appropriately and how to pro-
mote appropriate reliance. Previously, researchers mainly attempt
to enhance people’s appropriate reliance on ML models through
calibrated model confidence scores [32] or carefully designed model
explanations [22, 32]. These approaches have mixed success when
being evaluated on in-distribution data, and their effectiveness in

promoting appropriate reliance onMLmodels on out-of-distribution
data is unclear. For example, it is shown that the state-of-the-
art ML models that produce calibrated confidence scores on in-
distribution data often come with uncalibrated confidence scores
on out-of-distribution data [19], while increasing an ML model’s
transparency actually decreases people’s capability in detecting
obvious model mistakes on out-of-distribution data [20].

In light of this, here, we design two alternative interventions,
specifically for improving people’s appropriate reliance on ML un-
der covariate shift. In the first intervention, similar to the general
user education used in other domains like automated-driving [10],
we provide people with information that increases their understand-
ings of the performance of ML models, especially on ML models’
possible performance disparity on different data. Our second inter-
vention involves a visualization tool that helps people explore both
the data distribution and the model’s performance on different data;
this is inspired by previous efforts that use interactive visualizations
to explain the behavior of ML models [11].

3 STUDY DESIGN
To understand people’s reliance on ML models under covariate
shift, we conducted a randomized behavioral experiment1, in which
human subjects were recruited from Amazon Mechanical Turk
(MTurk) to complete some decision-making tasks with assistance
from an ML model. Our main research questions are:
• RQ1: When covariate shift occurs, how will people adjust their
levels of reliance on ML models?

• RQ2: Can external interventions, such as educating people about
the performance of ML models and enabling people to visualize
the distributions of decision-making tasks as well as the model’s
performance on different tasks, help people rely on ML models
more appropriately when covariate shift happens?

3.1 Experimental Task
The decision-making task that subjects worked on in our experi-
ment was to predict the sale prices of houses. In each task, subjects
were presented with information about a house on eight features
(e.g., living area size, quality, year built), and were asked to make
a prediction of the sale price of the house. The housing data we
used came from a public dataset [7] containing houses sold in Iowa,
United States, from 2006 to 2010.

We chose the task of house price prediction for several reasons.
First, this task characterizes a kind of decision-making activity in
people’s daily life; thus, it is easily understandable by our human
subjects. Second, it represents a realistic scenario where ML models
are developed to assist human decision-making. Another critical
reason for us to select this task in our experiment is that the hous-
ing dataset we used allowed us to simulate changes in the data
distribution and build real ML models whose performance would
decrease when applied to a new distribution of data. In particular,
by applying the K-means clustering algorithm on the entire set of
houses, we obtained two distinctive clusters of houses—Cluster 1
mostly consisted of houses with small living areas and low quality,
while Cluster 2 mostly contained houses that were bigger and of

1Our experiment was approved by the Purdue IRB.
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Pre-experiment Survey

S1 How much expertise do you have in estimating house price?
S2 How much knowledge do you have in machine learning?

Post-experiment Survey

S3 Based on your observations, are the houses you saw in phase 2 similar to those that you saw in phase 1?
S4 Do you think the model’s performance in phase 2 would be better than its performance in phase 1?
S5 Do you think your performance in phase 2 would be better than your performance in phase 1?
S6 [checkbox] What are the factors that make you stop using the model in phase 2? (for subjects who stopped using the model in phase 2)
S7 [checkbox] What are the factors that make you use the model for all the tasks in phase 2? (for subjects who always used the model in phase 2)

Table 1: Survey questions we asked in our experiment. For S1–S5, subjects answered each question using a 5-point Likert scale.
For S6 and S7, checkbox options are determined via a pilot study in which subjects provided free-form answers to the same
questions.

high-quality. Moreover, we found that the linear regression model
M that was trained using houses from Cluster 1 performed much
better on Cluster 1 than on Cluster 2 (e.g., the R2 of M on Clus-
ter 1 and Cluster 2 are 0:47 and 0:17, respectively). As a result, in
our experiment, we used M as our ML model and presented the
predictions of M to subjects in each task as the model’s recom-
mendations, making houses in Cluster 2 (Cluster 1) effectively the
out-of-distribution (in-distribution) data.

3.2 Experimental Procedure
The subject started our experiment by reporting her expertise in
predicting house price and in ML on a five-point Likert scale. Then,
she performed a sequence of 20 house price prediction tasks, divided
into two phases of 10 tasks each, with the help of a pre-trained
ML model. Phase 1 was designed to help subjects understand their
ability as well as the ML model’s ability in accurately predicting
house prices. In particular, on each task of phase 1, we showed
to the subject the information of a house that was drawn from
the held-out validation dataset of M, which belonged to Cluster 1.
After reviewing the house’s information, the subject was asked first
to forecast its sale price by herself. Then, the model’s prediction,
produced byM, and the house’s actual sale price would be revealed
to her. All subjects saw the same 10 tasks in phase 1, though the
order was randomized. Upon completing all tasks in phase 1, the
subject received a mid-point feedback page, summarizing in a table
her own prediction accuracy as well as the model’s accuracy in
phase 1, in terms of both the absolute percentage error (APE) on
each of the 10 tasks and the average APE across all 10 tasks.

Next, in phase 2, the subject was asked to predict prices for 10
additional houses for real. On these 10 tasks, the subject would not
receive the immediate feedback about the actual sale price of the
house. Specifically, on each task, after viewing the house’s informa-
tion, the subject needed to decide whether to delegate the decision-
making right to the ML model—if yes, the model’s prediction on
this task would be used as the subject’s prediction; otherwise, the
subject needed to make her own prediction on this task as well as
in all future tasks. This experimental setup was designed to reflect
the real-life scenarios that people may abandon an ML model once
they find it untrustworthy [12]—people could choose to rely on an
ML model by authorizing the model to make decisions on behalf of
themselves (e.g., use an auto-trading program to trade), but they
could also override such authorization anytime later by opting out
of the usage of the model when they lose faith in it (e.g., stop paying
for the auto-trading program thus lose access to it). Depending on

the treatment a subject was assigned, the 10 houses she saw in
phase 2 could come from Cluster 1 (small and low-quality houses)
or Cluster 2 (large and high-quality houses), but the model predic-
tion the subject saw on each house in phase 2 was always generated
by the model M, which was trained using data from Cluster 1 (see
more details in Section 3.3).

After completing all the prediction tasks, the subject was asked
to complete an exit survey to report her perceptions of the tasks,
her belief of the model’s performance and her own performance in
the tasks, the factors that influence her usage of the model in phase
2, as well as some demographic information. Table 1 shows the list
of questions we asked in our surveys. In the end, we revealed to the
subject the actual sale prices for the 10 houses in phase 2, together
with the subject’s prediction accuracy on these houses.

We opened the experiment only to U.S. workers on MTurk, and
each worker can participate at most once. The base payment of
this experiment was $0.5. In addition, to encourage subjects to
carefully consider whether to rely on the ML model in phase 2,
we informed each subject at the beginning of the experiment that
for each phase 2 task, if the APE of her prediction is less than
30%, she could earn additional bonuses (APE<10%: $0.30 bonus,
10%≤APE<20%: $0.20 bonus, 20%≤APE<30%: $0.10 bonus). This
bonus scheme leads to a maximum bonus amount of $3, which
could only be earned if subjects made accurate predictions in phase
2. We also carefully selected the bonus threshold (i.e., APE<30%)
given the set of prediction tasks we used in phase 1—the model M
had an average APE of 28.3% in phase 1, and for 7 out of the 10
tasks in phase 1, the model’s APE was less than 30%. Meanwhile, we
found via a pilot study that on average, a subject’s own predictions
could achieve an APE that was less than 30% on 5.7 out of the 10
tasks in phase 1. In other words, the bonus threshold was selected
to ensure that after completing phase 1, an average subject would
feel her own prediction performance was worse than the model, but
it’s still possible for her to earn some bonuses by herself without
relying on the model.

3.3 Experimental Design
Subjects in our experiment were randomly assigned to one of the
six experimental treatments that were arranged in a 2 × 3 design.
The treatments differed along two dimensions: the type of task
distribution in phase 2, and the existence and type of external inter-
ventions that subjects received to help them appropriately rely on
ML models when covariate shift occurs. With respect to the task
distribution, we randomized subjects into one of the two levels:
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